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Abstract

Quarkonium at temperatures above deconfinement is an open quantum system, whose dynamics

is determined not just by a potential energy and mass, but also by a drag coefficient which char-

acterizes its interaction with the medium. We develop path-integral Monte Carlo for examining

quarkonium at finite-temperature; first, the path integral approach for open quantum systems is de-

veloped analytically for imaginary-time, and then the imaginary-time Green function is calculated

with a realistic potential, mass, and drag term for quarkonium near deconfinement. We demon-

strate that dissipation could affect the Euclidean heavy-heavy correlation functions calculated in

lattice simulations at temperatures just above deconfinement.
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I. INTRODUCTION

The separation of scales between the masses of the heavy quarks and the QCD energy

scale ΛQCD allows heavy-heavy bound states to be treated with first quantization techniques

[1–3]. At zero temperature, lattice calculations of static color singlets determine a potential

energy which can successfully describe quarkonium spectroscopy. The potential has a non-

trivial temperature dependence which which suggests that quarkonium will dissociate above

Tc. This effect would result in a modification of the yields of quarkonium in heavy-ion

collisions and could be used to measure the temperatures achieved in heavy-ion collisions [4].

Since this seminal work more than twenty years ago, analyses of heavy-ion experiments have

shown that some suppression of J/ψ yields at RHIC is anomalous [5]; however, the pattern

of suppression does not match what would be expected from these first considerations of

changes in the spectrum. It is clear that the dynamics of quarkonium at high temperatures

must also be considered carefully.

One step in this direction was made by Shuryak and one of us [6], where charmonium was

modeled as an interacting heavy-quark pair undergoing Brownian motion, with the heavy

quark spatial diffusion coefficient DH taken to be quite small (or, equivalently, the heavy

quark drag coefficient η taken to be large), as expected from phenomenology of single heavy

quarks [7, 8] and by gauge-gravity duality [9–11]. This demonstrated that the survival of J/ψ

states above Tc cannot be determined just by examining whether or not the temperature-

dependent potentials allow bound states; instead, the dynamics of charm and charmonium

and ultimately, their yields are determined by multiple interactions with the medium. The

time scales of the heavy-ion collisions cannot be neglected.

Also, lattice calculations have examined quarkonium at finite-temperature more directly

[12] by determining Euclidean correlators for local operators related to quarkonium spec-

troscopy, namely, G(τ, T ) =
∫
d3x 〈JH(x, τ)JH(0, 0)〉, where JH(x, τ) = ψ̄(x, τ)Γψ(x, τ) is

a local composite operator related to a given meson. Mocsy and Petreczky compared these

correlation functions, at various temperatures and in different channels, with the results of

two different potential models [13]. In this work, there is a low-frequency contribution to

the spectral densities used to determine the Euclidean correlation functions, which is caused

by the diffusion of heavy quarks [14]; however, for ω � T 2/M , the diffusion of heavy quarks

is assumed not to have any effect on the dynamics of quarkonium. Some effort has also been
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made in understanding heavy quark diffusion with lattice simulations [15].

Only a few others have considered medium effects on heavy quarks and quarkonium at

finite-temperature. Beraudo et al. [16] used the HTL approximation for the heavy quark’s

interaction with light degrees of freedom that are subsequently integrated out of the path

integral. Such considerations should also be taken for quarkonium; also, the medium should

be considered in greater generality, away from any assumptions of weak coupling, and using

the description most appropriate for heavy particles interacting with a heat bath: open

quantum systems. This is the purpose of this paper.

In this paper, we will outline how the imaginary-time propagator with periodicity β = 1/T

can be determined for quarkonium interacting with a heat bath. In Section II, we review

the reduced density matrix and apply the model of Caldeira and Leggett for quantum

Brownian motion in imaginary time, determining an analytic expression for the reduced

density matrix. In Section III, we find an expression for the periodic imaginary-time Green

function commensurate to the Euclidean quarkonium correlation functions calculated in

lattice QCD. Using path-integral Monte Carlo, the Green function is computed and the

effect of diffusion on Euclidean correlation functions is demonstrated.

II. THE REDUCED DENSITY MATRIX OF A DISSIPATIVE SYSTEM

This section follows the approach of Caldeira and Leggett and uses path integrals to

describe quantum Brownian motion; specifically examining quantities that can be calculated

in imaginary-time. First, an expression for the reduced density matrix is determined for a

heavy particle undergoing interactions with a heat bath. As an introductory example, we

find an analytic expression for the reduced density matrix of an “otherwise free” particle.

For an excellent review of the functional integral approach to quantum Brownian motion,

in both imaginary and real time, see [17]. These results are discussed in generality, and

shown to arise from the Schwinger-Keldysh contour integral for a heavy quark’s real-time

partition function, by Son and Teaney [18]. These systems can be studied with approaches

besides the path-integral formulation, and the study of quantum Brownian motion, in terms

of a partial differential equation for the density matrix, has been studied by Hu, Paz, and

Zhang [19, 20].
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A. The reduced density matrix

Consider a system consisting of a heavy particle of mass M minimally coupled to a

harmonic oscillator of mass m.

L = LS + LI ;

LS =
1

2
Mẋ2 − V (x),

LI =
1

2
mṙ2 − 1

2
mω2r2 − Cxr. (1)

In the above expression LS is Lagrangian for the heavy particle (which we call the system)

interacting with potential V (x). The Lagrangian LI includes the kinetic energy of the light

particle (which will make up the heat bath) as well as its interaction with the heavy particle.

Without any loss of generality the above Lagrangian describes a pair of mutually interacting

heavy particles as long as M is treated as the reduced mass of the system and V (x) is the

potential of the two heavy particles in terms of their relative coordinate x. The above

Lagrangian analytically continued to imaginary time τ = it is

SES [x] =

∫ β

0

[
1

2
Mẋ2 + V (x)

]
dτ ,

SEI [x, r] =

∫ β

0

[
1

2
mṙ2 +

1

2
mω2r2 + Cxr

]
dτ . (2)

We can simplify this Lagrangian by a change of variables. We subtract the particular solution

to the classical equations of motion as determined by Eq. 2:

r(τ) ≡ r′(τ) +
C

mω

∫ τ

0

dτ ′x(τ ′) sinh [ω(τ − τ ′)]

≡ r′(τ) + A[x, τ ] (3)

In terms of the shifted coordinate r′ the Euclidean action becomes that of a simple harmonic

oscillator:

SEI [x, r] =

∫ β

0

[
1

2
mṙ′2 +

1

2
mω2r′2 +

1

2
Cx(τ)A[x, τ ]

]
dτ

+mȦ[x, β]

(
r′(β) +

1

2
A[x, β]

)
≡ S ′EI [x, r′]. (4)

As always, the propagator of a system for imaginary time β = 1/T gives matrix elements

of the thermal density operator. In our example, the density matrix has 4 indices; two for
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the heavy particle denoted xi,f and two for the light particle denoted by ri,f where i(f) is

shorthand for the initial (final) position. In the example given above the density matrix is

given as

ρ(xi, ri;xf , rf ; β) ==

∫ x(β)=xf

x(0)=xi

Dx
∫ r′(β)=rf− 1

2
A[x,β]

r′(0)=ri

Dr′ exp
(
−SES [x]− S ′EI [x, r′]

)
. (5)

If we were never interested in measurements of the degree of freedom r, we could take the

trace over the indices corresponding to this degree of freedom, and work with a density

operator with only two indices. With this in mind, we define the reduced density matrix as

ρred(xi, xf , β) ≡
∫
drρ(xi, r;xf , r; β). (6)

This is the only operator practical for calculating thermal averages. For the system defined

by Eq. 1, we can write a path-integral description for the reduced density matrix,

ρred(xi, xf , β) =

∫
dr

∫
Dx Dr′ exp

(
−SES [x]− SEI [x, r′]

)
=

∫
Dx exp

(
−SEx [x]

) ∫
dr

∫
Dr′ exp

(
−S ′E

I [x, r′]
)
, (7)

where we integrate over paths with endpoints x(0) = xi, x(β) = xf , r
′(0) = r, and r′(β) =

r −A[x, β]. Thanks to the change in variables enacted in Eq. 3, the integral over the paths

r′(τ) is Gaussian and can be done easily with the result

ρred(xi, xf , β) =

∫ x(β)=xf

x(0)=xi

Dx

× exp

(
−SES [x] +

∑
k

C2
k

2mωk sinh(ωkβ
2

)

∫ β

0

dτ

∫ τ

0

ds x(τ)x(s) cosh [ωk (τ − s− β/2)]

)
.(8)

The summation over k has been introduced in order to generalize the result to a system

where a heavy particle interacts with a bath of independent simple harmonic oscillators

each having coupling Ck and frequency ωk. Eq. 8 is the path integral form for the reduced

density matrix.

In Eq. 8, the degrees of freedom of the heat bath are arbitrary; the values of Ck and ωk

can take any set of values as long as the integral remains convergent. For a larger number of

light particles, the heat bath can be represented by a density of states ρ(ω) with
∑

k →
∫
dω.
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B. Making a dissipative system

Any finite quantum-mechanical system is reversible and therefore inappropriate for de-

scribing Brownian motion. One might find it intuitive that if the bath of harmonic oscillators

were taken to an infinite limit, it would be “large enough” so that energy from the heavy

particle could dissipate into the system and never return. This intuition was proven to be

true by the authors of [22], who considered the real-time evolution of the density matrix for

our system and showed that when the bath of harmonic oscillators is characterized by the

continuous density of states

C2(ω)ρD(ω) =


2mηω2

π
if ω < Ω

0 if ω > Ω
(9)

the force autocorrelator for the heavy particle is proportional to δ(t−t′) at high temperatures.

In this “white noise” limit, the density matrix describes an ensemble of particles interacting

according to the Langevin equation, which has been used to describe Brownian motion

for over a century. It is a stochastic differential equation, is irreversible, and evolves any

ensemble towards the thermal phase space distribution. Finally, the authors of [22] showed

that η in Eq. 9 corresponds exactly to the drag coefficient η in the Langevin equation;

knowing a transport coefficient, for example the heavy quark drag coefficient, allows this

path integral to be matched with a system whose classical behavior is known.

Using the above density of states the reduced density matrix becomes

ρred(xi, xf , β) =

∫ x(β)=xf

x(0)=xi

Dx

× exp

(
−SES [x] +

η

π

∫ Ω

0

dω

∫ β

0

dτ

∫ τ

0

ds x(τ)x(s)
ω cosh [ω(τ − s− β/2)]

sinh(ωβ
2

)

)
. (10)
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The divergences of this action can be isolated by integrating by parts twice∫ Ω

0

dω

∫ β

0

dτ

∫ τ

0

ds x(τ)x(s)
ω cosh [ω(τ − s− β/2)]

sinh(ωβ
2

)

= Ω

∫ β

0

dτ (x(τ))2 − 1

2
(xi − xf )2 ln(MΩ/η)

cosh(Ωβ/2)− 1

sinh(Ωβ/2)

−1

2
(xi − xf )2

[
γE + ln

(
ηβ

πM

)]
+ (xi − xf )

∫ β

0

dτ ẋ(τ) lnsin

(
πτ

β

)
+

∫ β

0

dτ

∫ τ

0

ds ẋ(τ)ẋ(s) lnsin

(
π(τ − s)

β

)
, (11)

where lnsin(x) ≡ ln [sin (x)] and γE is the Euler-Mascheroni constant. The first two terms on

the right-hand side correspond to a renormalization of the potential for the heavy particle,

always necessary when considering the interaction of a particle with infinitely many addi-

tional degrees of freedom. They are temperature-independent in the limit of large Ω, and

may be renormalized into temperature-independent counter terms in the free Lagrangian.

The final three terms are finite and can be readily evaluated in the Ω→∞ limit,

ρred(xi, xf , β) =

∫ x(β)=xf

x(0)=xi

Dx exp

{
− SES [x]− η

2π
(xi − xf )2

[
γE + ln

(
ηβ

πM

)]
+

η

π
(xi − xf )

∫ β

0

dτ ẋ(τ) lnsin

(
πτ

β

)
+

η

π

∫ β

0

dτ

∫ τ

0

ds ẋ(τ)ẋ(s) lnsin

(
π(τ − s)

β

)}
.(12)

In summary, we have determined an expression for the reduced density matrix of a system

(consisting of a massive particle in a potential or equivalently a pair of mutually interacting

particles) coupled to a heat bath of oscillators. The coupling to the bath is chosen to

reproduce the results of classical Brownian motion in the high temperature limit. We have

taken care to make the term in the exponential finite, by isolating the divergences through

integration by parts. This is important for path integral Monte Carlo simulation to be

possible for this functional integral.

C. Example: The otherwise free particle

The reduced density matrix for a particle interacting with such a bath can be determined

analytically for the otherwise free particle (VR(x) = 0 where VR is the renormalized poten-
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tial). In order to arrive at an analytic result start by writing an arbitrary path in Eq. 12 as

an expansion around the classical solution

x(τ) = xcl(τ) + ξ(τ);

xcl(τ) ≡ xi + (xf − xi)τ/β,

ξ(τ) ≡
∞∑
n=1

cn sin

(
nπτ

β

)
. (13)

After evaluation of the integrals using contour integration along with a change in variables

for the integration over the even Fourier coefficients, we find the reduced density matrix

ρred(xi, xf , β) =

√
M

2πβ
+

η

2π2

[
log(2) + γE + Ψ

(
1 +

ηβ

2πM

)]
× exp

{
−
[
M

2β
+

η

2π

[
log

(
ηβ

2πM

)
−Ψ

(
1 +

ηβ

2πM

)]]
(xi − xf )2

}
,(14)

where Ψ(x) is the digamma function and the overall normalization is determined by analytic

continuation of β and requiring the propagator to conserve probability for purely imaginary

β. A Fourier transform of this density matrix determines an effective mass for a the heavy

particle:

〈
p2
〉

=
Meff

β
, Meff = M +

ηβ

π

[
log

(
ηβ

2πM

)
−Ψ

(
1 +

ηβ

2πM

)]
. (15)

D. PIMC for the reduced density matrix

Obtaining the analytic result for our reduced density matrix was reasonable for the oth-

erwise free particle. For the simple harmonic oscillator, the analytic result exists but has a

rather complicated expression. For the potentials which describe quarkonium spectroscopy

with some precision, analytic work becomes entirely impractical. We would like to use nu-

merical simulation to obtain reliable estimates of reduced density matrices and Euclidean

correlation functions.

The most natural numerical approach for the formalism is path-integral Monte Carlo

(PIMC). For an excellent review of the technique, see D. M. Ceperley [23]. Paths are

either sampled according to a Metropolis algorithm determined by the action of interest,

or sampled from some convenient distribution which samples the entire space of paths with

some weight. For our work with a single degree of freedom, we found that sampling a
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convenient distribution (in our case, the distribution of paths determined by exp(−Sfree[x]))

to be sufficient, which is easily sampled for any discretization of the path with a bisection

method. When sampling the space of paths, the next step is to determine an estimate for

the action of each path. For our case, the primitive action with the simplest integration of

the new dissipative terms is sufficient. Once this is determined, any correlation function can

be calculated by sampling paths and making weighted averages.

III. IMAGINARY-TIME GREEN FUNCTIONS FOR QUARKONIUM: NUMER-

ICAL RESULTS

In order to generate results relevant to the lattice, a different imaginary-time path integral

must be discussed. We will now be interested in the finite-temperature imaginary-time Green

function

G(τ) =
∞∑

n=−∞

〈x = 0; τ + nβ|x = 0; 0〉 , (16)

as it is directly related to the S-channel quarkonium correlation functions calculated on the

lattice [13]. In this section, path-integral Monte Carlo is developed for determining this

Green function for any potential or diffusion coefficient, and numerical results for the n = 0

term in this sum are shown.

For a given channel, the two-point Euclidean correlator for a composite mesonic operator

is given by

G(τ, T ) =

∫
d3x 〈JΩ(x, τ)JΩ(0, 0)〉β ,

JΩ(x, τ) = ψ̄(x, τ)Ωψ(x, τ), (17)

where Ω = 1, γ0, γµ, γ0γµ determine the mesonic channel to be scalar, pseudo-scalar, vector,

or pseudo-vector, respectively.

For now, consider only the vector channel (the following arguments must be modified for

the scalar and pseudo-vector channels). Think of this correlator as being the sum of the ex-

pectation values of an operator over all of the states in the Fock space of N -particle mesonic

systems, with each expectation value entering the sum weighted by the state’s Boltzmann

factor. When MQ � T , ΛQCD, the states containing heavy quarks are weighted by factors

of roughly exp(−2MQ/T ) and are suppressed. Therefore, in this limit, the dominant con-
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tribution to G(τ) comes from the usual vacuum expectation value in imaginary time made

periodic with period β.

Because of the mass of the heavy quark, we ignore spin and consider the Green functions at

finite temperature for a scalar field. The correlation function G(x,x
′
, τ) = 〈φ(x, τ)φ(x, 0)〉β,

for a free non-relativistic field, satisfies the differential equation(
Ĥ(x) +

∂

∂τ

)
G(x,x

′
, τ) = δ3(x− x

′
)δ(τ), (18)

subject to the periodicity condition G(x, x
′
, τ+β) = G(x, x

′
, τ). The solution is analogous to

the method of images: the proper periodicity is obtained by summing over zero-temperature

correlation functions [25]:

〈φ(x, τ)φ(x, 0)〉β =
∞∑

n=−∞

〈φ(x, τ + nβ)φ(x, 0)〉T=0 . (19)

The rest of the argument proceeds as above for the reduced density matrix. We now

focus on the Green functions in imaginary time in this sum, which will be determined

numerically with path-integral Monte Carlo. We consider the same system of one heavy

particle interacting with a light degree of freedom:

S =

∫ τ

0

dτ
′
[

1

2
Mẋ2 + V (x) +

1

2
mṙ2 +

1

2
mω2r2 + Cxr

]
. (20)

The propagator can be expressed as a path integral:

〈xf , rf , τ |xi, ri, 0〉 =

∫
DxDr exp(−S), (21)

where the paths have the endpoints x(0) = xi, x(τ) = xf , r(0) = ri, and r(τ) = rf . The

subscript i(f) is again used to denote the initial (final) position. Note the difference between

the reduced density matrix where the trace over the single variable ri = rf is taken and the

above propagator where ri and rf are independently integrated. As before the path integral

over the light degree of freedom can be performed analytically

〈xf , rf , τ |xi, ri, 0〉 =

∫
Dx exp

(
−
∫ τ

0

dτ
′
[

1

2
Mẋ2 + V (x) +

1

2
Cx(τ

′
)A[x, τ

′
]

]
+

1

2
mȦ[x, τ ]A[x, τ ]

)
×
√

mω

2π sinh(ωτ)
exp(−mȦ[x, τ ]rf )

exp

(
− mω

2 sinh(ωτ)
([r2

i + (rf − A[x, τ ])2] cosh(ωτ)− 2ri(rf − A[x, τ ]))

)
,

(22)
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where A[x, τ ] was given in Eq. 3. We now want to integrate over all values of ri and rf ,

leading to a reduced imaginary-time Green function for the heavy particle. The integrals are

Gaussian and can be performed analytically:

〈xf , τ |xi, 0〉red =

∫ x(β)=xf

x(0)=xi

Dx exp

(
−
∫ τ

0

dτ
′
[

1

2
Mẋ2 + V (x)

]
+
∑
k

C2
k

2mωk sinh(ωkτ)

∫ τ

0

dτ
′
∫ τ

′

0

ds x(τ
′
)x(s) cosh

[
ωk(τ − τ

′
)
]

cosh(ωks)

)
.

(23)

The above expression is completely analogous to the reduced density matrix in Eq. 8 except

with the difference in traces over the bath.

Using the same density of states as given in Eq. 9, the integral over the density of states

can be performed in the above reduced Green function. After taking the Ω → ∞ limit the

result is

Gred(xf , xi, τ, β) =
∞∑

n=−∞

〈xf , |τ + nβ||xi, 0〉red

=
∞∑

n=−∞

∫ x(|τ+nβ|)=xf

x(0)=xi

Dx exp

(
−
∫ |τ+nβ|

0

dτ ′
[

1

2
Mẋ(τ ′)2 + VR(x(τ ′))

− η

2π

∫ τ ′

0

ds ẋ(τ ′)ẋ(s) log

[
sin(π

2
τ ′−s
|τ+nβ|)

sin(π
2

τ ′+s
|τ+nβ|)

]])
.

(24)

In the case of two mutually interacting particles, the above path integrals can be re-

expressed in terms of relative, x, and absolute, X, coordinates as

〈Xf ,xf ; τ |Xi,xi; 0〉 =

∫
DX exp

{
−
∫ τ

0

dτ ′MẊ2 − 2η

π

∫ τ

0

dτ ′
∫ τ ′

0

ds Ẋ(τ ′)Ẋ(s) log

(
sin
(
τ ′+s
τ

)
sin
(
τ ′−s
τ

))}

×
∫
Dx exp

{
−
∫ τ

0

dτ ′
[

1

4
M ẋ2 + V (x)

]
− η

2π

∫ τ

0

dτ ′
∫ τ ′

0

ds ẋ(τ ′)ẋ(s) log

(
sin
(
τ ′+s
τ

)
sin
(
τ ′−s
τ

))} , (25)

where similar to before, X(0) = Xi, X(τ) = Xf , x(0) = xi, and x(τ) = xf . We focus now

on the path integral for the relative coordinate, and for simplicity of presentation, we only

determine and show the first term in this sum; examining only the first term in the sum also

makes deconvolution easy.

11



10-5

10-4

10-3

10-2

10-1

 4.5  5  5.5  6  6.5  7  7.5  8  8.5  9
[GeV-1]

No medium
2 TDc = 5

2 TDc = 2.5

FIG. 1: (Color online) G0(τ) for different diffusion coefficients.

At this point, the potential energy and drag coefficient for heavy quark bound states must

be matched with their calculations from QCD. In the infinite mass limit, the trace over the

light degrees of freedom has been computed on the lattice as the expectation value of two

Polyakov loops [24]. The dissipative effects on this propagator have been studied, as we

noted previously, by gauge-gravity duality. Here, we match the results of this trace, yielding

a potential term and a heavy quark drag coefficient, onto terms in the path integral.

The function

G0(τ) = 〈xf = 0; τ |xi = 0; 0〉 (26)

can be calculated with a path integral Monte Carlo calculation, using the potential and

diffusion coefficient that fits best (or is fitted) from phenomenology of heavy quarks, or

from any other considerations. We use the Cornell potential for the interaction between the

heavy quarks, regularized at x = 0 with a harmonic potential, and set η for the cases of

2πTD =∞, 5, and 2.5. The results of such a calculation are shown in Figure 1.

Dissipative effects have a significant effect on this Green function, which is given by the

Laplace transform of the spectral function for charmonium:

G0(τ) =

∫
dω exp(−ωτ)ρ(ω). (27)
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Although deconvolution of this Green function is difficult, the effect of dissipation can be

read off: the peak corresponding to a bound state or resonance has been shifted up in

energy, and its integral has decreased (indicating a weaker response of the medium to the

charmonium creation operator).

IV. CONCLUSIONS

We have taken the approach of Caldeira and Leggett and determined expressions for quan-

tities calculable in imaginary-time. Path-integral Monte Carlo techniques were developed

and applied to the imaginary-time Green function. Interactions with the QCD medium above

deconfinement clearly affect Euclidean heavy-heavy correlators, and any determination of

these Green functions at finite-temperature must deal with the likely large heavy quark drag

coefficient. These numerical methods are currently the only techniques available that can

deal with large drag coefficients while describing quarkonium quantum-mechanically.

The binding energies and widths of quarkonia in these systems will finally be obtained

when the results in Fig. 1 are deconvolved into spectral functions. G(τ) is the Laplace

transform of the spectral function; deconvolution is non-trivial and often is done with the

maximum entropy method: a procedure that combines data-fitting with information theory

for probability distributions. Forthcoming work will show these results.

Let us argue one last time for treating quarkonium above deconfinement as an open

quantum system: typically in particle physics, the rate for the scattering of an N -particle

state into another is determined from the square of the matrix element whose indices are the

initial and final states, where these states are in the momentum basis. This makes perfect

sense in high-energy experiments, where the incoming and outgoing states are basically

momentum eigenstates and the matrix element can be expanded in terms of a small coupling.

Such an approach, however, seems entirely inappropriate for quarkonium formed in a heavy-

ion collision, whose constituent quarks are localized in position relative to the surrounding

medium and are strongly coupled both to the medium and each other. Non-perturbative

techniques and experiment both suggest that quarkonium rapidly thermalizes and interacts

strongly with the medium. The most reasonable approach for explaining the observables is

to describe quarkonium with a reduced density matrix, whose evolution is determined by a

potential and a drag coefficient which are both treated non-perturbatively.
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