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Abstract

We use diagrammatic many-body perturbation theory in combination with low-momentum in-

teractions derived from chiral effective field theory to construct effective shell-model transition

operators for the neutrinoless double-beta decay of 76Ge and 82Se. We include all unfolded di-

agrams to first- and second-order in the interaction and all singly folded diagrams that can be

constructed from them. The resulting effective operator, which accounts for physics outside the

shell-model space, increases the nuclear matrix element by about 20% in 76Ge and 30% in 82Se.
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I. INTRODUCTION

The experimental discovery of neutrinoless double-beta (0νββ) decay, a nuclear-weak

process that occurs extremely slowly if at all, would have deep implications for particle

physics. Since 0νββ decay can occur only if the neutrino is its own antiparticle, an ob-

servation would at once establish the neutrino as a Majorana particle. Furthermore, from

a measured lifetime we could, in the absence of exotic new physics, determine an average

neutrino mass mν ≡
∑

i Ueim
2
i , where i labels the mass eigenstates, and U is the neutrino

mixing matrix [1]. This mass cannot be extracted from a lifetime, however, without first

knowing the value of a nuclear matrix element that also plays a role in the decay. The en-

tanglement of nuclear and neutrino physics has led to a small but concentrated effort within

the nuclear structure community to calculate the nuclear matrix elements, which are not

themselves observable. While various theoretical approaches agree to within factors of two

or three, — a range many structure theorists might find not unreasonable — the uncertainty

in the effective mass that can be extracted from an observed lifetime is at least that large

as a result. Since large-scale experiments will be reporting results in the coming years, we

need to work quickly to improve the accuracy of the matrix-element calculations.

Of the theoretical methods currently employed, the nuclear shell model is the only ap-

proach that offers an exact treatment of many-body correlations, albeit within a truncated

single-particle (valence) space above some assumed inert core. Though most of the physics

governing double-beta (ββ) decay indeed resides in this valence space, correlations involv-

ing neglected single-particle orbitals may contribute non-negligibly to both the Hamiltonian

and the 0νββ-decay transition operator, each of which is a basic ingredient in any nu-

clear matrix-element calculation. Contributions to the Hamiltonian can be, and have been,

included in the construction of an effective valence-space Hamiltonian, Heff , through dia-

grammatic many-body perturbation theory (MBPT) [2]. But the analogous contributions

to an effective valence-space 0νββ-decay operator, with the exception of a crude renormal-

ization of gA, have thus far been almost completely ignored. The first and only work to

apply MBPT to the 0νββ-decay operator considered only diagrams that were first order in

the interaction (a G-matrix), plus a few selected higher-order contributions [3].

In this article we carry out a much more comprehensive computation, providing the first

steps towards a true first-principles calculation of nuclear matrix elements based on chiral
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nuclear forces [4]. We first define and compute an X̂-box consisting of all diagrams now

to second order in the interaction and in a much larger Hilbert space than used in Ref.

[3]. We then consider contributions of folded diagrams together with state norms, which

must be explicitly computed for effective transition operators (see Eq. (7)). We finally

apply the resulting two-body effective 0νββ-decay operator, together with wavefunctions

from existing shell-model calculations, to obtain corrected nuclear matrix elements in the

pf -shell 0νββ-decay candidates 76Ge and 82Se.

Assessing the accuracy of the perturbative expansion is a central challenge for MBPT.

Although a nonperturbative treatment of core polarization found only modest changes in

Heff [5], the analogous impact on effective ββ-decay operators is unclear, and ultimately

a nonperturbative method that goes beyond core polarization, allowing controlled approx-

imations to both the effective Hamiltonian and transition operators, will be preferable.

Coupled-cluster theory [6, 7] and the in-medium similarity renormalization group [8–10] are

promising nonperturbative methods, but neither has yet been applied to ββ decay. The

situation may be different in a few years, but at present MBPT is still the best method

to investigate microscopic many-body corrections to the shell-model 0νββ-decay operator.

And even within MBPT, as we have noted, there is essentially no work, outside of Ref. [3],

on two-body transition operators, making the topic almost completely unexplored.

The remainder of this paper is structured as follows: Section II describes the ingredients

of our calculation, including definitions of the matrix elements we compute, the framework

for obtaining the nuclear interactions with which we begin, and the details of our many-body

formalism for calculating effective ββ-decay operators. Section III presents our results for

76Ge and 82Se, updating the matrix element for 82Se first reported in Ref. [11]. Finally,

Section IV discusses the significance of the results and outlines steps that will improve their

accuracy.

II. METHODS

A. Decay Operator

In the closure approximation (which is good to at worst 10% or so [12]), the nuclear

matrix element governing 0νββ decay can be represented as the ground-state-to-ground-
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state matrix element of a two-body operator. Neglecting the so-called “tensor term,” the

effect of which is a few percent [13, 14], the matrix element is given by

M0ν =
2R

πg2A

∫ ∞

0

q dq (1)

× 〈f |
∑

a,b

j0(qrab) [hF (q) + hGT (q)~σa · ~σb]

q + E − (Ei + Ef )/2
τ+a τ+b |i〉 ,

where |i〉 and |f〉 are the ground states of the initial and final nuclei, rab ≡ |~ra − ~rb| is the

distance between nucleons a and b, j0 is the usual spherical Bessel function, and the nuclear

radius R is inserted to make the matrix element dimensionless, with a compensating factor

in the phase-space integral that multiplies the matrix element. The “form factors” hF and

hGT are given by

hF (q) ≡ −g2V (q
2) , (2)

hGT (q) ≡ g2A(q
2)−

gA(q
2)gP (q

2)q2

3mp

+
g2P (q

2)q4

12m2
p

+
g2M(q2)q2

6m2
p

,

where

gV (q
2) =

1
(

1 + q2/(0.85GeV2)
)2

, (3)

gA(q
2) =

1.27
(

1 + q2/(1.09Gev2)
)2

,

gP (q
2) =

2mpgA(q
2)

q2 +m2
π

, gM(q2) = 3.70gV (q
2) ,

and mp denotes the proton mass and mπ the pion mass.

The closure approximation is not good for two-neutrino double-beta (2νββ) decay, which

we briefly discuss later. The matrix element governing that process contains a complete set

of intermediate states, viz.:

M2ν ≈
∑

n

〈f |
∑

a ~σaτ
+
a |n〉 〈n|

∑

b ~σbτ
+

b |i〉

En − (Mi +Mf )/2
, (4)

where n denotes states in the intermediate nucleus with energy En, Mi and Mf are the

masses of the initial and final nuclei, and the effects we neglect (e.g., forbidden currents,
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the Fermi matrix element, etc.) are small. We are unable to obtain a complete set of

intermediate states, so we can treat 2νββ decay only in the closure approximation, viz.:

M cl
2ν = 〈f |

∑

ab

~σa · ~σbτ
+
a τ+b |i〉 . (5)

Although the approximation is poor, and we cannot use it to deduce the real 2νββ-decay

matrix element, the closure matrix element and the real one change in a similar way when

correlations are added.

B. Nuclear Interactions

Diagrammatic MBPT was reviewed extensively some years ago [15, 16], but since then,

driven by advances in chiral effective field theory (EFT) [4] and renormalization-group (RG)

methods [17], it has seen something of a revival [18]. Chiral EFT is a systematic expan-

sion of nuclear interactions and electroweak currents in which three- (3N) and higher-body

forces arise naturally. Beginning from the chiral two-nucleon (NN) potential of Ref. [19],

we construct a low-momentum interaction (Vlow k), with cutoff Λ = 2.0 fm−1, via RG evolu-

tion [17, 20], explicitly decoupling high-momentum components from those at the nuclear-

structure scale [21]. Since we neglect 3N interactions for now, we should expect the results

to depend on the cutoff, at least somewhat; here, we choose Λ = 2.0 fm−1 in order to be

consistent with other recent papers [22–26], which use that value. An older program that

employs the G-matrix [16] as a starting point deals with high-momentum modes by particle-

ladder resummation, and does not adequately decouple low- from high-momentum degrees

of freedom. As a result, many-body methods based on Vlow k tend to converge better than

those that use a G-matrix [6]. Recent work with MBPT based on low-momentum NN+3N

interactions has led to the development of non-empirical valence-space Hamiltonians for

proton- and neutron-rich systems [22–26]. Though we neglect 3N forces here, we plan to

include them in our future 0νββ-decay nuclear-matrix-element calculations.

The one drawback of low-momentum interactions in calculations of effective operators is

that high-momentum physics cannot be included explicitly. The effects of high-momentum

(short-range) correlations on the 0νββ-decay operator are both small and now well under-

stood, however, and we include them via an effective Jastrow function that has been fit to

the results of Brueckner-theory calculations [27].
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C. Effective Two-Body Transition Operators

As we have noted, existing work on MBPT contains little about effective two-body op-

erators other than the Hamiltonian, where Refs. [2, 28, 29] provide the most comprehensive

discussion. No matter the two-body operator of interest, however, the starting point is

always the construction of projection operators P̂ and Q̂ that divide the full many-body

Hilbert space into a model space, in which subsequent exact diagonalization is carried out,

and everything else. In our calculations in nuclei with mass near A = 80, the model space

consists of the 0f5/2, 1p3/2, 1p1/2, and 0g9/2 single-particle orbits, for both protons and neu-

trons, above a 56Ni core in a harmonic-oscillator basis of 13 major shells with ~ω = 10.0

MeV.

After specifying the model space, one must define a mapping between eigenstates of the

full Hamiltonian and projections of those eigenstates onto the model space. In MBPT this is

done perturbatively. The result is a set of diagrams with two incoming legs and two outgoing

legs, with each diagram representing a contribution to the two-body matrix elements of the

effective Hamiltonian or effective (two-body) transition operator. The usual Feynman rules

are used to evaluate the diagrams, but to the set of familiar-looking diagrams one must add

“folded” diagrams, which eliminate the energy dependence of the effective operator [15, 16].

One way to organize the sum of all diagrams is by grouping all those without folds into a

“Q̂-box” (for the Hamiltonian) or an “X̂-box” (for the transition operator) and then writing

the complete sum, including folded diagrams, in terms of the Q̂- and X̂-boxes and their

derivatives with respect to unperturbed energies. The first few terms in the Q̂- and X̂-boxes

appear in Figs. 1 and 2.

Folding is significantly more complicated for a two-body transition operator, which com-

bines X̂- and Q̂-boxes, than for the Hamiltonian, where only Q̂-boxes are needed. Effective

model-space operators in the basis of energy eigenstates are always defined (for a bare op-

erator M) via
〈feff|Meff |ieff〉

〈feff|feff〉
1

2 〈ieff|ieff〉
1

2

= 〈f |M |i〉 , (6)

where the states that lie in the model space, |ieff〉 ≡ P̂ |i〉 and |feff〉 ≡ P̂ |f〉, are not in general

normalized. If M is the Hamiltonian, then only diagonal matrix elements are nonzero, and

the denominator is canceled by a similar factor in the numerator. For two-body transition

operators, that is not the case, and state norms must be explicitly computed. Prior authors
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FIG. 1. The Q̂-box to second order in Vlow k (ellipses indicate higher-order terms). The first

line contains one-body contributions and the others two-body contributions. Exchange diagrams,

though not shown, are included in our calculations.

have approached the issue of norms in several ways. References [2] and [29], for instance,

choose to expand the denominators and fold them into the numerators, thus completely

eliminating all disconnected diagrams. The resulting expressions, however, become com-

a
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b

d
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a
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d

M
+
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d

+
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d

+
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dc

+
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dc

+

a

c

b

d

+
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+ . . .

FIG. 2. (Color online) The X̂-box to first order in Vlow k. Solid (red) up- or down-going lines indicate

neutrons and dotted (blue) lines protons. The wavy horizontal lines, as in Fig. 1, represent Vlow k,

and the dashed horizontal lines represent the 0νββ-decay operator in Eq. (1).
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plicated as the number of folds increases, and the approach requires the construction of a

special basis as an intermediate step. For these reasons Ref. [28] advocates keeping the de-

nominator and numerator separate, at the price of introducing disconnected diagrams that

only cancel when the sum is carried out completely. Here, though we evaluate the Q̂-box to

third order and the X̂-box to second order in the interaction, we include only one fold in

each of the three factors on the left hand side of Eq. (6), and so opt to follow Refs. [2, 28]

in expanding the denominator and folding with the numerator. The resulting expression for

the matrix elements of an operator Meff is approximately1

〈cd|Meff |ab〉 = (7)






1 +
1

2

dQ̂(ε)

dε
+

1

2

d2Q̂(ε)

d2ε
Q̂(ε) +

3

8

(

dQ̂(ε)

dε

)2

. . .





×

[

X̂(ε) + Q̂(ε)
∂X̂(εf , ε)

∂εf

∣

∣

∣

∣

εf=ε

+
∂X̂(ε, εi)

∂εi

∣

∣

∣

∣

εi=ε

Q̂(ε) . . .

]

×



1 +
1

2

dQ̂(ε)

dε
+

1

2

d2Q̂(ε)

d2ε
Q̂(ε) +

3

8

(

dQ̂(ε)

dε

)2

. . .









cd,ab

where ε is the unperturbed energy of both the initial and final states (we take the energies

to be the same). Both Q̂ and X̂ are matrices, with indices corresponding to the possible

two-body states in the valence space (e.g., a, b or c, d in Figs. 1 and 2). In this paper we

report results of just the terms explicitly given above, which contain between zero and five

folds (there is a fold at every matrix multiplication). The terms indicated by ellipses are

more complicated and presumably less important; they await future investigation.

D. Evaluation of Q̂- and X̂-Box Diagrams

We turn now to the Q̂- and X̂-boxes themselves, constructed from unfolded diagrams,

that we use in Eq. (7). To construct the Q̂-box, we take all unfolded diagrams to third order

in Vlow k. The diagrams appear in Appendix A.2 of Ref. [16], and the two-body pieces are

reproduced in Fig. 3. Our X̂-box has too many diagrams to display here, so we characterize

the set as follows: we take all two-body Q̂-box diagrams in Fig. 3 and replace one interaction

1 Because off the need for a special basis, this expression is only strictly correct when the terms in square

brackets are diagonal. They are close to diagonal in the calculations presented here.
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Vlow-k

FIG. 3. Diagrams in the expansion of the effective interaction defining the two-body part of

the second- and third-order Q̂-box. The wavy lines represent Vlow k. We obtain the first- and

second-order X̂-box — the set of all unfolded first- and second-order diagrams for the two-body

effective operator (not including norm diagrams) — by replacing one interaction in each of these

diagrams by a ββ-decay operator (in all possible ways) and restricting the sums over nucleons in

the intermediate states to either neutrons or protons, as in the first-order X̂-box diagrams in Fig.

2.

line in each diagram (in all possible ways) by a ββ-decay line. We then determine whether

each intermediate-state nucleon line should be a proton or neutron. The result is three times

as many X̂-box diagrams (at second order in Vlow k) as Q̂-box diagrams in Fig. 3.

We make one nonstandard choice in evaluating the X̂-box: we restrict the particle lines

in the intermediate states to be essentially unoccupied. For example, in the ββ decay of

76Ge, we omit all contributions from intermediate protons in the 1p3/2 orbit and neutrons

in 1p3/2, 1p1/2, or 0f5/2 orbits, ad we multiply the contributions of graphs with intermediate

neutrons in the 0g9/2 orbit by 0.4, its average occupancy. In the decay of 82Se, we omit the
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a

a

a

a

a

FIG. 4. (Color online) A Pauli-forbidden two-body diagram with a spectator neutron and a three-

body diagram, obtained by exchanging two ingoing neutron lines, that cancels it exactly.

same contributions as in 76Ge and multiply the contributions of graphs with intermediate

neutrons in the 0g9/2 orbit by 0.2 and those with intermediate protons in the 0f5/2 orbit by

0.5. The reason for all this is that in a nucleus with more than two valence nucleons, the

diagram on the left of Fig. 4 — a two-body contribution to the ββ-decay operator with a

spectator neutron — would be canceled by the three-body diagram on the right if we were

to include it. By omitting the two-body diagrams with intermediate particles in occupied

orbits we are effectively adding particular three-body diagrams (like those on the right of

Fig. 4) to our calculation. We are not including all three-body diagrams, just those that

cancel Pauli-forbidden two-body diagrams.

We call this approach nonstandard because it is not usually followed in derivations of

effective interactions. The reason is that in excluding some Pauli-forbidden diagrams, one

effectively includes unlinked one- and two-body diagrams (see, e.g., Fig. 10 of Ref. [30])

as well as the exclusion-enforcing three-body diagrams we want. This problem, however,

is more pronounced in the Q̂-box than the X̂-box since the latter has no one-body part

and far fewer ways to unlink diagrams by exchanging lines (the horizontal ββ-decay lines

are restricted to have incoming neutrons and outgoing protons). We therefore effectively

include only very few unlinked diagrams by introducing our restrictions in the X̂-box; the

compensating benefit is a much better account of Pauli exclusion, an important physical

effect. Diagrams such as the one on the left of Fig. 4 result in large contributions that should

not be present in a full calculation. We cancel them with the implicit assumption that the

canceling contribution from the figure on the right-hand side is significantly greater than

that of typical third-order diagrams, which we omit. Eventually, though, this assumption

will have to be tested explicitly.
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76Ge 82Se

Bare matrix element M0ν 3.12 2.73

First-order X̂-box, without 3p-1h 5.44 4.86

Full first-order X̂-box 2.20 2.40

First order folded 3.11 2.79

Full second-order X̂-box 4.14 3.92

Final matrix element 3.77 3.62

CD-Bonn G-matrix 3.62 3.45

N3LO G-matrix 3.48 3.33

TABLE I. The 0νββ-decay matrix elements M0ν for 76Ge and 82Se at various approximations in

our many-body framework.

III. RESULTS

To obtain our final corrected shell-model 0νββ-decay matrix elements, we combine the

individual two-body matrix elements of our effective operator with two-body shell-model

transition densities. Since our aim is a consistent calculation without empirical adjustment,

we really ought to take two-body densities from the diagonalization of a valence-space in-

teraction that is derived directly from NN+3N forces. While work in this direction is in

progress, the computation is not yet possible in nuclei this heavy. Instead we use two-body

densities from existing shell-model calculations, the interactions for which have been tweaked

to fit experimental data in nearby nuclei. For 76Ge we use the calculation of Horoi [31] and

for 82Se that of Ref. [14]; the authors of both have kindly supplied us with their transition

densities.

Table I presents our matrix elements at various levels of X̂-box and folding approxima-

tions, using Vlow k and taking intermediate-state excitations to 18~ω. Despite differences

in the NN interaction and size of the basis space, contributions from first-order diagrams

in both 76Ge and 82Se largely agree with those first identified in Ref. [3]: particle-particle

and hole-hole ladders together enhance the matrix element, while the three-particle one-hole

diagrams cause a dramatic reduction. When folding is included, however, the net correc-

tion from first-order Q̂- and X̂-boxes essentially disappears. Taking the complete set of
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8~ω 10~ω 12~ω 14~ω 16~ω 18~ω

Full 1st order 2.429 2.407 2.403 2.401 2.399 2.399

Full 2nd order 3.908 3.932 3.940 3.931 3.925 3.924

Final 3.489 3.553 3.595 3.611 3.617 3.618

TABLE II. Convergence of 0νββ-decay matrix element in 82Se with respect to allowed intermediate-

state excitations. In all cases we work in a harmonic-oscillator basis of 13 major shells.

second-order diagrams into account, we find a significant enhancement followed by a mod-

est quenching from folding. The final matrix element is approximately 20% percent larger

than the bare matrix element in 76Ge and about 30% larger in 82Se. The primary reason

for the different effects in 82Se and 76Ge is the difference in the omitted intermediate-state

orbits discussed in Section IID. If we include those orbits, as is standard practice in the

construction of effective interactions, the matrix element is reduced by about 10% in 76Ge

and 15% in 82Se. In Ref. [11], which contains a preliminary account of our calculations in

82Se, we obtained 3.56 instead of 3.62. The small difference is due to the inclusion in Ref.

[11] of Q̂-box restrictions and the addition here of a term in the expansion of the norm

denominator. Though the two results are close, we believe that the one reported here is

likely closer to the real matrix element.

Several other aspects of the calculation are robust. As seen in Table II, our Vlow k results

at 18~ω are well converged to 3 or 4 digits. And as Table I shows, changing the interaction

to a G-matrix (in 11 major oscillator shells) in place of Vlow k does not affect the results sub-

stantially. Finally, although we emphasized our procedure of requiring intermediate-particle

lines in X̂-box diagrams to be unoccupied in the nucleus in question, other prescriptions

yield similar results once norms and folding are included: in 82Se, for example, we obtain a

final matrix element of 3.50 if we restrict particle lines in both the Q̂ and X̂ boxes, and 3.03

if we impose no restrictions at all. We should note, however, that at various intermediate

stages of the calculation, the procedures yield quite different results. And other parts of the

calculation leave room for change as more physics is included.

We turn now to a discussion of 2νββ decay. As noted above, we use the closure matrix

element M cl
2ν as a proxy for the full matrix element, a step that limits how much we can

say. Table III shows the matrix element for 76Ge with and without the intermediate-state
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Restricted Unrestricted

Bare matrix element M cl
2ν 0.57 0.57

First-order X̂-box, without 3p-1h 0.99 0.89

Full first-order X̂-box 0.37 -0.60

Full second-order X̂-box 0.79 -0.37

Final matrix element 0.96 0.70

TABLE III. The 2νββ-decay closure matrix M cl
2ν for 76Ge at several levels of approximation, with

and without restrictions on occupied intermediate-particle lines.

restrictions we impose on occupied or partially occupied orbits in calculating M0ν . Imposing

the restrictions here increases the matrix element, as in 0νββ decay; in this case, however,

the result is probably undesirable, given that shell model calculations of 2νββ decay in

76Ge overestimate M2ν . On the other hand, omitting the restrictions increases the negative

contribution of the 3p-1h diagram to such an extent that the matrix element changes sign.

The sign is eventually reversed by higher-order contributions and folding, ultimately yielding

a result that is approximately unchanged from the bare matrix element. It is difficult to

be comfortable, however, with a low-order correction that changes the sign of the matrix

element. The sensitivity of the numbers suggest that terms with more folds, of higher order,

or involving more valence orbitals could also have a significant effect.

Another reason (aside from the sign changes in the right-hand column of Table III) for

preferring to restrict intermediate-sate orbits in the X̂-box is connected to the long-standing

problem of the apparent suppression of the axial-vector coupling constant gA in the nuclear

medium [32]. While the suppression probably has many sources, configurations outside the

valence space are likely to play a key role. Though the bare operator governing weak decay

is one-body, we can simulate the effect of gA suppression in 2νββ decay by including only

closure diagrams that have the form shown in Fig. 5. Such diagrams, in which only a single

2νββ-decay line connects the two nucleons, incorporates only the renormalization of the

one-body weak current.

When we base our calculation of M cl
2ν on only these diagrams and at the same time

account for occupied intermediate-state orbits, we find in 82Se that the full result is smaller

than the bare result by 38%, implying an effective gA of about 1.0, a reasonable value (in
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FIG. 5. (Color online) Schematic representation of diagrams contributing to renormalization of gA

in 2νββ decay.

76Ge the value is about 0.7). On the other hand, when we take no account of occupied

orbits we find (again, with only diagrams of the form in Fig. 5 included) that the closure

matrix element changes sign, something that is impossible through the renormalization of

gA alone. The sign change reflects the same strong effect of the 3p-1h diagrams observed

in Table III. Though these considerations are not conclusive, they do indicate that taking

the Pauli principle into account is a beneficial. Work is currently underway to investigate

gA quenching more directly. By focusing on the one-body operator, we can use analogous

many-body techniques, based again on chiral NN and 3N physics, with the effects of two-

body currents implemented consistently in the bare operator [33] to understand the origin

of gA quenching.

Whatever the outcome of that investigation, it is clear that the 2νββ matrix element is

sensitive to many details in the wavefunctions, much more sensitive than its 0νββ counter-

part. Thus, although the increase of the 2νββ closure matrix element does not bolster the

case for our 0νββ calculation, neither, in our view, does it weaken it much.

IV. DISCUSSION AND OUTLOOK

We have used chiral nuclear forces and many-body perturbation theory to calculate an

effective shell-model 0νββ-decay operator, taking into account corrections to the bare opera-

tor from configurations outside the valence to second order in the interaction. The resulting

nuclear matrix element is approximately 20% larger than the bare matrix element in 76Ge

and about 30% larger in 82Se. These new results represent our current best estimates for

14



the matrix elements but probably do not tell the whole story. We have omitted a number of

effects that could further alter the results. To do better, we must first establish consistency

between the Hamiltonian and our effective operator. This will require the construction of

full non-empirical valence-space interactions in the pf shell from NN and 3N forces; work in

that direction is in progress. A related improvement will be to include the effects of chiral

3N forces in the X̂-box, in addition to the effects of chiral two-body currents in the bare

operator [33].

At the many-body level, the importance of third- and higher-order terms in the X̂-box

and additional folding contributions must be understood. Since we have found the effects

of bubble diagrams to be the most important in our perturbative expansion, it would be

worthwhile to pursue a nonperturbative calculation of the effects of core polarization (which

these diagrams represent), like that done for effective interactions in Ref. [5]. Perhaps the

most significant obstacle to a truly reliable result, however, is the implementation of induced

three-body operators. Recent work [34, 35] indicates that such operators are not negligible,

and even here we have shown that three-body diagrams of the form in Fig. 4 are important.

Unfortunately, the number of induced three-body diagrams is so large that nobody has

computed them even in the construction of effective interactions. We must find a way

to at least estimate their size if we want to pursue perturbation theory to its conclusion.

Controlled nonperturbative approaches [7, 9] are on the horizon, but the inclusion of induced

three-body terms is technically difficult there as well. In none of these approaches is the

problem impossible to overcome, but doing so will require diligence and creativity.
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[27] F. Šimkovic, A. Faessler, H. Müther, V. Rodin, and M. Stauf, Phys. Rev. C 79, 055501

(2009).

[28] E. M. Krenciglowa and T. T. S. Kuo, Nucl. Phys. A 240, 195 (1975).

[29] P. J. Ellis, Lecture notes in Physics 40, 296 (1975).

[30] P. J. Ellis and E. Osnes, Rev. Mod. Phys. 49, 777 (1977).

[31] M. Horoi, Proceedings of the International Summer School for Advanced Studies, ”Dynamics

of Open Nuclear Systems”, J. Phys. Conf. Series (2012), in press.

[32] I. Towner, Phys. Rep. 155, 263 (1987).

[33] J. Menéndez, D. Gazit, and A. Schwenk, Phys. Rev. Lett. 107, 062501 (2011).

[34] D. Shukla, J. Engel, and P. Navrátil, Phys. Rev. C 84, 044316 (2011).
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