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Symmetry energy softening in nuclear matter with non-nucleonic

constituents

Wei-Zhou Jiang∗, Rong-Yao Yang, and Dong-Rui Zhang
Department of Physics, Southeast University, Nanjing 211189, China

We study the trend of the nuclear symmetry energy in relativistic mean-field models with appear-
ance of the hyperon and quark degrees of freedom at high densities. On the pure hadron level, we
focus on the role of Λ hyperons in influencing the symmetry energy both at given fractions and at
charge and chemical equilibriums. The softening of the nuclear symmetry energy is observed with
the inclusion of the Λ hyperons that suppresses the nucleon fraction. In the phase with the admix-
ture of quarks and hadrons, the equation of state is established on the Gibbs conditions. With the
increase of the quark phase fraction in denser and denser matter, the apparent nuclear symmetry
energy decreases till to disappear. This softening would have associations with the observations
which need detailed discriminations in dense matter with the admixture of new degrees of freedom
created by heavy-ion collisions.

PACS numbers: 21.65.Ef, 21.60.Jz, 21.65.Qr, 13.75.Ev

I. INTRODUCTION

The nuclear symmetry energy of isospin asym-
metric nuclear matter is not only important
for understanding the structure of neutron- or
proton-rich nuclei and the reaction dynamics of
heavy-ion collisions, see, e.g., Ref. [1–3], but
also plays a crucial role in a number of impor-
tant issues in astrophysics, see, e.g., Refs. [4–
6]. Recently, appreciable progresses have been
achieved on constraining the symmetry energy
at saturation and subsaturation densities either
through the extraction based on astrophysical
observations or in terms of terrestrial data [7–
12]. However, the density dependence of the
symmetry energy is still poorly known at supra-
normal densities [3, 13–15]. Theoretical mod-
els predict diverse density dependencies of the
symmetry energy at high densities. Noticeably,
similarly diverse density profile of the symme-
try energy can be extracted from analyzing the
FOPI/GSI data on the π−/π+ ratio in relativis-
tic heavy-ion collisions with various transport
models [13–15]. In spite of this inconsistency,
the theoretical uncertainty of high-density sym-
metry energy is regarded to be associated with
the tensor force that originates from the ex-
change terms [16, 17]. In the ladder approxima-
tion, the exchange terms can be well treated in
the Brueckner theory either in the relativistic or
non-relativistic frameworks [18, 19]. In deed, the
vacuum polarizations given by ring diagrams are
absent in the Brueckner theory. The inclusion of
the ring diagrams is however very complicated.
In this work, we do not carry on the tensor force
that appears beyond the Hartree approximation
but consider the non-nucleonic degrees of free-
dom in the Hartree approximation.
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The new degrees of freedom considered here
are hyperons and quarks that may appear in
dense matter roughly around the density 2-4ρ0,
depending on the parametrization of models [20–
24]. Nuclear matter at this density domain can
be produced via heavy-ion collisions, and it usu-
ally includes the admixture of non-nucleonic de-
grees of freedom. In the past, the symmetry
energy effects on these phase transitions have
been found to be very significant [23, 25, 26].
However, the effects of new constituents on the
symmetry energy are seldom investigated. It is
not the aim of this work to resolve the uncer-
tainty of the high-density symmetry energy but
to reveal the variation of the symmetry energy
in phases mixed with these new constituents.
Once the phase transition occurs, the system
goes to the mixed phase that can be theoreti-
cally constructed by virtue of the phase equilib-
rium conditions, namely, the Gibbs conditions
in this work. In the mixed phase, we define the
symmetry energy according to the general ex-
pression of the energy density that is different
from that in pure nuclear matter. The paper is
organized in the following. In Sec.II, we present
necessary formulas for the nuclear symmetry en-
ergy in pure hadron and mixed phases with the
relativistic mean-field (RMF) framework. The
construction of the mixed phase of quarks and
baryons are presented briefly. In Sec. III, the
numerical results and discussion are given. At
last, we give a brief summary.

II. FORMALISM

In the parabolic approximation, the energy
per nucleon in isospin asymmetric nuclear mat-
ter can be written as

E/ρN = E/A = e0(ρN ) + Esym(ρN )δ2, (1)
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where e0(ρN ) is the energy per nucleon in sym-
metric nuclear matter with ρN = ρn + ρp being
the nucleonic number density, the Esym(ρN ) is
the symmetry energy, and δ = (ρn − ρp)/ρN is
the isospin asymmetry. In RMF models, the en-
ergy density can generally be written as
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the effective mass of nucleon, and kF is the
Fermi momentum. Here, the parameters with
asterisks denote the density dependence which
is determined in specific models according to
Brown-Rho scaling [27, 28]. Besides the Brown-
Rho scaling, one can also include in the model
the nonlinear meson self-interaction terms [29].
Note that if the nonlinear vector meson self-
interaction terms are included in the model, the
vector meson masses in Cω and Cρ in the form of
the energy density as in Eq.(2) are modified to
have additional density dependence. The term
Enon is the energy density from the nonlinear
meson self-interaction terms. In usual nonlinear
RMF models, the parameters are not density-
dependent [30–32]. However, if the nonlinear
vector meson terms are included, the vector me-
son masses in Cω and Cρ in Eq.(2) are also
becoming density-dependent. With Eq.(2), the
symmetry energy in the RMF models can be
given as
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For hyperon degrees of freedom, we consider
only the Λ hyperon for simplicity. In this case,
Eq.(1) still holds for hyperonized matter. The
nuclear symmetry energy now reads

Esym =
1

2
C2

ρ

ρ2N
ρB

+
k2F
6E∗

F

ρN
ρB

, (4)

where kF is the nucleon Fermi momentum, ρN
is the number density of nucleons, and ρB =
ρN + ρΛ. The symmetry energy is now sup-
pressed due to the factor ρN/ρB. On the other
hand, as one source term of meson fields, the
Λ hyperon has led to a moderate decrease to
the nucleon effective mass and E∗

F in the kinetic
term. Together with the suppressed nucleon
Fermi momentum in E∗

F , the suppression of the
kinetic term can be partially compensated. Nev-
ertheless, the symmetry energy eventually turns

out to be suppressed in either the baryon-density
or nucleon-density profile. While the formula
(4) applies to the case of the given ratio ρΛ/ρB,
in chemically equilibrated and charge neutral
matter where the particle fractions are obtained
from solving coupled equations, we may calcu-
late the nuclear symmetry energy using the fol-
lowing relation

Esym =
1

4δ
(µn − µp)

ρN
ρB

, (5)

where µn and µp are the neutron and proton
chemical potentials, respectively

µi = E∗
F + Ui − Σ0, i = n, p. (6)

Here, Σ0 is the rearrangement term induced
by the density dependence of model parame-
ters [27], and Ui are the nucleon vector poten-
tials. Note that the symmetry energy given in
Eq.(5) is derived from the parabolic approxima-
tion (1) and thus is also defined at δ = 0. With
Eq.(5), one can obtain the symmetry energy us-
ing the difference of nucleon chemical potentials
in asymmetric matter. As the isospin asymme-
try parameter δ runs to vanishing, the formula
(5) reduces to Eq.(4).
After the hadron-quark phase transition oc-

curs, hadrons and quarks coexist in a mixed
phase. The construction of the mixed phase is
based on the mechanical and chemical equilib-
riums, namely, the Gibbs conditions which are
given as [21]

pH = pQ, µu = µp/3− µe/3,

µd = µs = µn/3 + µe/3. (7)

The pressures of nuclear and quark matter read
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where B is the bag constant of the MIT
model [33]. For convenient narration, we do not
include in above equations the Λ hyperons whose
addition can be referred to Ref. [23]. In ac-
tual calculations, we include the strange meson-
hyperon interactions. In terms of the quark
phase fraction Y , the total baryon density can
be expressed as

ρB =
Y

3
ρQ + (1− Y )ρH , (10)
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where ρH = ρN+ρΛ is the baryon density on the
hadronic level and ρQ is the quark density. Us-
ing Gibbs conditions, one can obtain the quark
phase fraction Y . The total energy density and
isospin asymmetry parameters are written as

E = (1− Y )EH + Y EQ, α = (1− Y )δH + Y δQ,
(11)

with δH = (ρn − ρp)/ρN and δQ = (ρu −

ρd)/(ρu + ρd). The energy density in the mixed
phase thus depends on the Y . In the parabolic
approximation, the energy density can be ex-
pressed as

E/ρB = e0(ρB , Y ) + EH
sym(ρB , Y )δ2H

+EQ
sym(ρB , Y )δ2Q. (12)

Because the quark phase fraction depends on
the isospin asymmetry, we limit the derivation of
the symmetry energyEH

sym in symmetric matter,
namely α = 0. In this way, the nuclear symme-
try energy is defined as EH

sym = 1

2
∂2(E/ρB)/∂δ

2
H

at δH = 0, and the definition of the quark
symmetry energy is similarly given as EQ

sym =
1

2
∂2(E/ρB)/∂δ

2
Q at δQ = 0. Bridged by Gibbs

conditions, the quark phase fraction is model
dependent and relies on the MIT bag constant.
As a result, similar dependencies on the model
and bag constant can be delivered to the sym-
metry energy. As seen from Eqs.(11) and (12),
the nuclear symmetry energy may disappear as
the quark fraction grows to be unity at high den-
sities.

III. NUMERICAL RESULTS AND

DISCUSSIONS

We use the RMF models SLC and SLCd [28]
to investigate the role of hyperons in affecting
the nuclear symmetry energy. These two mod-
els have the same equation of state of symmetric
matter, while the SLCd has a much softer sym-
metry energy than the SLC. We distinguish two
kinds of hyperon interactions: the usual and the
separable ones [24]. In the usual case, the ratios
( XσY , XωY , and XρY ) of meson-hyperon cou-
plings to the meson-nucleon couplings are con-
stants, while in the separable case the in-medium
nucleon and hyperon potentials are treated sep-
arately, leading to the density-dependent ratio
parameters. Thus, the hyperon potential in the
usual case has a similar medium dependence
to the nucleon potential, whereas in the sep-
arable case they are different (for details, see
Ref. [24]). In this work, we just consider the Λ
hyperon which is an isoscalar. In principle, we
can include the isovector components (Σ±,Σ0)
and (Ξ0,Ξ−) and generally introduce in the en-
ergy density the new symmetry energy terms for
these isovector components as in Eq.(12). It
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FIG. 1: The symmetry energy as a function of den-
sity for various Λ fractions in the usual case (For
details, see text). The upper panel is for the re-
sults with the SLC, while the lower panel displays
the results with the SLCd. The label β denotes the
chemically equilibrated and charge neutral matter.
Here, ρ0 = 0.16fm−3 .

would be interesting to analyze the properties
of the hyperon symmetry energies and the ef-
fects on the nuclear symmetry energy. However,
in this work we just focus on the effect of the
isoscalar Λ hyperon by ignoring the complica-
tion of the isovector hyperon components, be-
cause the Λ fraction is usually dominant in nu-
clear matter.

In Fig. 1, it shows in the usual case the den-
sity profile of the symmetry energy for various
Λ fractions. The symmetry energy for various
Λ fractions is calculated in symmetric matter at
δ = 0. It is shown in Fig. 1 that the symmetry
energy is softened clearly with the increase of
the Λ fraction. For chemically equilibrated and
charge neutral matter, we see that the symme-
try energy starts to soften once the Λ hyperons
appear. In this case, the symmetry energy at
lower densities with the SLC is identical with
that obtained with YΛ = 0 in symmetric mat-
ter, while a small difference appears in results
with the SLCd. Shown in Fig. 2 is the sym-
metry energy for various Λ hyperon fractions
with the separable case. Except for the chem-
ically equilibrated and charge neutral case, re-
sults shown in Fig. 1 and 2 are almost identical.
This can be elaborated by Eq.(4) because the
nuclear symmetry energy in hyperonized matter
is dominantly affected by the hyperon fraction.
In the separable case, the hyperon fraction sat-
urates at the certain high density, and the hy-
perons disappear at very high density. Thus,
in the density profile of the symmetry energy, a
concave shape forms. We see that the symme-
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FIG. 2: The same as shown in Fig. 1 but with dif-
ferent density dependencies for the hyperon and nu-
cleon potentials, denoted as the separable case.

try energy obtained in neutron star matter with
the SLCd can deviate from the one calculated
at symmetric matter in the high-density region.
With a smaller isospin asymmetry predicted in
SLC, the similar deviation in the symmetry en-
ergy is accordingly smaller. It implies that the
parabolic approximation (see Eq.(1)) may pro-
duce for highly asymmetric matter some errors
at high densities. Also, the error can be par-
tially related to the lepton fractions in neutron
star matter.
With the increase of density, the hadron-quark

phase transition may occur. In this work, quark
matter, regarded as the free fermion gas with-
out interactions, is described with the MIT bag
model [33]. In quark matter, we include the
up, down and strange quarks. For the hadron
phase, besides the density-dependent RMFmod-
els SLC and SLCd, we also choose a few nonlin-
ear RMF models in the calculation: NL3 [30],
TM1 [31] and NL3w3 [32]. The TM1 parame-
ter set has a much softer vector potential than
the NL3 and NL3w3, while the SLC and SLCd
have additional rearrangement term, see Eq.(6).
Because of these distinctions, these models pro-
duce rather different nucleon chemical potentials
and quite different critical densities according
to Gibbs conditions. Moreover, these models
have differences in the symmetry energy. The
RMF model NL3w3 has a softer symmetry en-
ergy than the NL3. The SLCd and SLC also
have different density profile of the symmetry
energy, as pointed out above. These specific
model factors can affect the occurrence of the
phase transition. The mixed phase consists of
high-density quark matter and low-density nu-
clear matter with the quark phase fraction Y
being determined according to Gibbs conditions.
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FIG. 3: The critical density of the hadron-quark
phase transition vs. the bag constant in symmetric
matter for various RMF models. The model and its
companion in parentheses predict the same critical
density in symmetric matter.

We do not reiterate here the detailed solutions
which can be found in the literature [21]. In
the first step, we deal with the phase transition
without hyperons. Next, we then include the
hyperons.
In Fig. 3, we draw the critical density in sym-

metric matter with respect to the bag constant
for various RMF models. With increasing the
isospin asymmetry, the critical density can be
lowered rather dramatically. While the details of
this issue with the MIT bag model can be found
in the literature [25, 34, 35], we focus herein on
the phase transition in symmetric matter where
we indeed obtain the symmetry energy. It is
however noteworthy to point out that the soft-
ening of the symmetry energy can play a mod-
erate role in increasing the critical density in
asymmetric matter, with the magnitude depend-
ing on the bag constant. We see in Fig. 3 that
the critical density with the SLC and SLCd is
much higher than other models. This is origi-
nated mainly from the density-dependent prop-
erties induced by the Brown-Rho scaling. Com-
pared to other models in the present work, the
SLC and SLCd feature the rearrangement term
and are characteristic of a much smaller nucleon
effective mass [27]. The resulting nucleon chemi-
cal potentials with the SLC and SLCd are clearly
smaller than those with other models. With the
chemical equilibrium according to Gibbs condi-
tions, the difference in the critical densities, as
shown in Fig. 3, can thus be well understood. In
addition, the nonlinear RMF model TM1 has a
larger critical density than the NL3 and NL3w3.
This is also attributed to the smaller nucleon
chemical potential due to the softening of the
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FIG. 4: The nuclear symmetry energy as a func-
tion of density in symmetric matter including the
hadron-quark phase transition at high densities.
The reflection point from rising to dropping corre-
sponds to the critical density for each model.

vector potential in TM1 [31]. As seen in Fig. 3,
the critical density depends rather sensitively on
the bag constant. The rise of the bag constant
reduces the pressure of quark matter and thus
results in larger critical densities. Note that the
critical density with the TM1 and NL3 at α = 0
is consistent with that in Ref. [35] as long as we
exclude the strange quarks.
Because the critical density and quark phase

fraction Y depend on the isospin asymmetry, the
symmetry energy in the mixed phase obtained
in symmetric matter can not simply be used
to predict the properties of asymmetric matter
because the quark phase fraction changes with
the isospin asymmetry in asymmetric matter.
Nevertheless, the symmetry energy obtained in
symmetric matter is instructive to exhibit its
variation trend in the mixed phase. Shown in
Fig. 4 is the nuclear symmetry energy as a func-
tion of baryon density with the bag constant
B = (180MeV )4. Apparent decrease of the sym-
metry energy can be observed after the hadron-
quark phase transition occurs. With the increase
of density, the nucleon phase fraction decreases,
which causes a straightforward reduction of the
nuclear symmetry energy. As the nucleon phase
fraction reduces to zero, the nuclear symmetry
energy vanishes.
For a smaller bag constant, the decrease of the

symmetry energy starts at lower critical densi-
ties for various models. Shown in Fig. 5 is the
symmetry energy with B = (160MeV )4. We see
that the critical density is around 1.6-2ρ0 for the
nonlinear RMF models and the symmetry en-
ergy vanishes at densities below 3ρ0, while these
densities with the SLC and SLCd are also con-
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FIG. 5: The same as shown in Fig. 4 but with B =
(160MeV )4.

siderably smaller than those atB = (180MeV )4.
With the increase of the bag constant, the model
difference in the critical density and the vanish-
ing density of the symmetry energy can grow
significantly. This can be observed by com-
paring Figs. 4 and 5, while it is more appre-
ciable for a much larger bag constant, for in-
stance, B = (200MeV )4. Nevertheless, once the
hadron-quark phase transition occurs, the de-
crease of the symmetry energy is definite.

For the quark phase, the quark symmetry en-
ergy EQ

sym which reflects the cost in deviating
from the flavor symmetric matter starts to have
value above the critical density and increases
with the rise of the quark phase fraction, as
shown in Fig. 6. Here, the quark symmetry en-
ergy is defined for the up and down quarks, see
Eq.(12). After the quark phase fraction develops
soon to be unity that is a value for pure quark
matter, the quark symmetry energy grows quite
slowly with the density, since without interac-
tions only the kinetic energy contributes to the
symmetry energy.

With the inclusion of hyperons, the re-
construction of the chemical equilibrium with
quarks results in a different critical density. In
Fig. 7, it shows the nuclear symmetry energy
in the hadronic and mixed phases for various
fractions of Λ hyperons with RMF models SLC
and SLCd. Here, the bag constant is B =
(160MeV )4. The inclusion of Λ hyperons sup-
presses the symmetry energy in the hadronic
phase, consistent with those shown in Figs. 1 and
2. For other bag constants and RMF models, the
conclusion is qualitatively similar. Namely, the
inclusion of Λ hyperons suppresses the symme-
try energy in hadronic phase, and the decrease
of the symmetry energy starts at a little different
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FIG. 6: The quark symmetry energy as a function
of density for various bag constants and RMF mod-
els. The difference in the symmetry energy exists
in the mixed phase for various RMF models, and it
disappears in pure quark matter at sufficiently high
densities.
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FIG. 7: (Color online) The symmetry energy as a
function of density for different Λ-hyperon fractions
in hyeronized matter with the hadron-quark phase
transition. The RMF models SLC and SLCd are
adopted here and the bag constant is (160MeV )4.

critical density. To save space, these numerical
results are thus not displayed.

We note that the softening of the symmetry
energy in the mixed phase is mostly apparent be-
cause once the quark phase fraction can be iden-
tified at given densities the nuclear symmetry

energy would be extracted appropriately by sin-
gling out the effect of suppression factor (1−Y ).
However, the determination of the Y is strongly
model-dependent and far from experimental fea-
sibility. On the other hand, the decreasing factor
(1−Y ) in the mixed phase largely suppresses the
growth of the nucleonic density with the rise of
the total density. If the hyperons are taken into
account, the situation becomes more compli-
cated. Thus, the extraction of the high-density
symmetry energy for pure nucleonic matter is
not well grounded once the hadron-quark phase
transition occurs. Most likely, the high-density
symmetry energy extracted from the heavy-ion
collisions would be as soft as that presented in
this work as long as a detailed discrimination
or calibration is not ready for dynamically evo-
lutional matter. In deed, the extraction of the
symmetry energy encounters the finite size ef-
fects which can cause the increase of the critical
density [25]. However, the decreasing tendency
of the nuclear symmetry energy above the criti-
cal density will not be altered by the finite size
effects.

At last, it would be interesting to point out
that our results may provide indications to
overcome the difficulty in reproducing the neu-
tron star properties with the EOS featuring a
super-soft symmetry energy, while much atten-
tion has recently been paid to this difficulty
since the super-soft symmetry energy was ex-
tracted [13, 36]. However, it is worth mention-
ing that the appearance of new degrees of free-
dom that is energetically favored usually soft-
ens the equation of state, resulting in a signifi-
cant decrease of the maximum mass of neutron
stars. Recently, the pulsar J1614-2230 was iden-
tified rather accurately through the Shapiro de-
lay to have a mass 2M⊙ [37], which sets up a
lower limit of the maximum mass of neutron
stars. This states that the nuclear equation of
state should not be softened significantly even
with the appearance of new degrees of freedom.
A way out is to consider new forms of interac-
tions for new degrees of freedom [24, 38–42]. For
quark matter, the imposition of interactions can
stiffen the equation of state and hence increase
the maximum mass of neutron stars [40–42]. It
would be interesting to investigate whether the
interactions of quarks have an effect on the nu-
clear symmetry energy. This deserves subse-
quent work and is however beyond the scope of
the present work.

IV. SUMMARY

We have studied the effect of Λ hyperons and
quarks on the nuclear symmetry energy at high
densities with relativistic models. The softening
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of the nuclear symmetry energy is observed ei-
ther in chemically equilibrated matter or matter
with an given Λ fraction. With the inclusion of
quark degrees of freedom, we have constructed
the isospin symmetric mixed phase according to
Gibbs conditions using the RMF models and
MIT bag model. The nuclear symmetry en-
ergy obtained in the mixed phase reduces quickly
with the rise of quark phase fraction. We have
recognized that the specific softening depends
on the parametrizations of models. Especially,
it has a clear dependence on the bag constant of
the MIT bag model. Nevertheless, we conclude
that the effect of phase transitions is important
on the symmetry energy, and for the experimen-

tal extraction of the symmetry energy at high
densities it is significant and necessary to take
into account the effect of phase transitions.
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