
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Large-scale calculations of the double-β decay of
^{76}Ge,^{130}Te,^{136}Xe, and ^{150}Nd in the
deformed self-consistent Skyrme quasiparticle random-

phase approximation
M. T. Mustonen and J. Engel

Phys. Rev. C 87, 064302 — Published  5 June 2013
DOI: 10.1103/PhysRevC.87.064302

http://dx.doi.org/10.1103/PhysRevC.87.064302


CA10330

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Large-Scale Calculations of the Double-Beta Decay of 76Ge, 130Te,

136Xe, and 150Nd in the Deformed Self-Consistent Skyrme

Quasiparticle Random-Phase Approximation

M. T. Mustonen1, 2, ∗ and J. Engel1, †

1Department of Physics and Astronomy, CB 3255,

University of North Carolina, Chapel Hill, NC 27599-3255

2Department of Physics, Central Michigan University, Mount Pleasant, MI 48859

Abstract

We use the axially-deformed Skyrme Quasiparticle Random-Phase Approximation (QRPA) to-

gether with the SkM∗ energy-density functional, both as originally presented and with the time-odd

part adjusted to reproduce the Gamow-Teller resonance energy in 208Pb, to calculate the matrix el-

ements governing the neutrinoless double-beta decay of 76Ge, 130Te, 136Xe, and 150Nd. Our matrix

elements in 130Te and 136Xe are significantly smaller than those of previous QRPA calculations,

primarily because of the difference in pairing or deformation between the initial and final nuclei.

In 76Ge and 150Nd our results are similar to those of less computationally intensive QRPA calcula-

tions. We suspect the 76Ge result, however, because we are forced to use a spherical ground-state,

even though our mean-field theory indicates a deformed minimum.
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I. INTRODUCTION

Neutrinoless (0νββ) double-beta decay can occur if neutrinos are Majorana particles, at

a rate that depends on a weighted average of neutrino masses (see Refs. [1, 2] for reviews).

The experimental search for 0νββ is approaching sensitivity to neutrino masses below 100

meV [3]. Extracting a mass from the results, however, or setting a reliable upper limit, will

require accurate values of the nuclear matrix elements governing the decay, matrix elements

that cannot be measured and must therefore be calculated. A number of theorists have

attempted the calculations, applying several distinct methods. Among the most popular is

the proton-neutron quasiparticle random phase approximation (QRPA).

The QRPA can be carried out at various levels of sophistication. So far, with only a few

exceptions [4–9], the mean-fields on which the QRPA is based have been spherical by fiat;

most of those which allow deformation have restricted themselves to single-beta decay or

two-neutrino double-beta (2νββ) decay. And while many employ a kind of self-consistent

QRPA [10–12], only Ref. [13] has carried out the QRPA without the use of an artificially inert

core, and there again the calculation (which was relativistic) was restricted to 2νββ decay.

In none of the calculations has the residual QRPA interaction ever been fully consistent with

that of an underlying HFB calculation. Finally, even Ref. [13], which treats all the nucleons

as active, forces them to occupy few harmonic-oscillator levels rather than continuum-like

states. Here we overcome all these limitations, allowing axially symmetric deformation,

using a modern and well-tested Skyrme functional for both the Hartree-Fock-Bogoliubov

(HFB) mean-field calculation and the QRPA that is based on it, keeping all the nucleons

active, and placing the nucleus inside a large cylindrical box, so that discretized versions of

continuum states up to high energy are available.

Deformed Skyrme-QRPA calculations of this type have been applied extensively in recent

years to nuclear vibrations (see e.g., [14–18]) and will soon be applied to single-beta decay

[19]. Our implementation, described in detail below, is via a B-spline-based HFB code with

the above-mentioned cylindrical-box boundary conditions followed by the construction and

diagonalization of the QRPA Hamiltonian matrix in the basis of canonical two-quasiparticle

states. The calculations consume enough CPU hours to require a supercomputer, and so

we restrict ourselves here to four isotopes — 76Ge, 130Te, 136Xe and 150Nd — used in the

some of the most promising of current or proposed experiments [20–28]. The deformation
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and pairing in the initial and final nuclei are often quite different and matrix elements can

be suppressed as a result [5]; our numbers depend crucially on the overlap of intermediate-

nucleus states created by exciting the initial ground state with those created by exciting the

final ground state. The QRPA supplies only transition amplitudes and so must be extended

to obtain the overlap. Here we will apply a prescription like that in Ref. [5], while noting

that a well justified and tractable expression is still lacking.

This article is organized as follows: Section II contains a brief overview of the matrix

elements governing double-beta decay and of the Skyrme QRPA. Section III describes the

details of our computational implementation and Sec. IV presents our results. Section V is

a conclusion.

II. DOUBLE-BETA DECAY AND THE QRPA

A. Decay operators

The lifetime for 0νββ decay, if there are no heavy particles mediating the decay, is

[T 0ν
1/2]

−1 = G′0ν 〈mν〉2 |M ′0ν |2 , (1)

where 〈mν〉2 is a weighted average of three neutrino masses, G′0ν is a phase space factor

(recently recomputed in Ref. [29]), and M ′0ν is a nuclear matrix element1. Although the

matrix element contains intermediate states and an energy denominator, it can to good

approximation [31] be represented by one involving only the initial and final ground states.

In this “closure” approximation and neglecting the small tensor term, one can write the

matrix element as

M ′0ν =
2R

π(1.25)2

∫ ∞

0

q dq (2)

× 〈f |
∑

a,b

j0(qrab) [hF (q) + hGT (q)~σa · ~σb]
q + E − (Ei + Ef )/2

τ+a τ
+
b |i〉 ,

where the factor 1.25 is inserted by convention, |i〉 and |f〉 are the ground states of the initial

and final nuclei, rab = |~ra − ~rb| is the distance between nucleons a and b, j0 is the usual

1 This matrix element differs from the unprimed M0ν used elsewhere by a factor of g2
A
/1.252. The two are

equivalent when gA is taken to be 1.25, but differ when it is modified. (Actually [30], gA is closer to 1.27

than 1.25, but we follow tradition here.) The convention we use puts all the gA dependence in the matrix

element and none in the phase-space factor.
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spherical Bessel function, Ē is an average excitation energy to which the matrix element is

insensitive (and for which we use the value 10 MeV), and the nuclear radius R ≡ 1.2A1/3

fm is inserted with a compensating factor in the phase-space function to make the matrix

element dimensionless. The “form factors” hF and hGT are given by

hF (q) ≡ −g2V (q2) (3)

hGT (q) ≡ g2A(q
2)− gA(q

2)gP (q
2)q2

3mp
+
g2P (q

2)q4

12m2
p

+
g2M(q2)q2

6m2
p

,

with

gV (q
2) =

1
(

1 + q2/(0.71 GeV2)
)2 (4)

gA(q
2) =

1.27
(

1 + q2/(1.09 GeV2)
)2

gP (q
2) =

2mpgA(q
2)

q2 +m2
π

gM(q2) = 3.70gV (q
2) .

Here mp and mπ are the proton and pion masses.

The two-neutrino double-beta decay rate, which we will use to fit parameters for our

0νββ calculation, can be written as

[T 2ν
1/2]

−1 = G2ν |M2ν |2. (5)

where G2ν is another phase-space factor (also recomputed in Ref. [29]) and M2ν is a matrix

element. The closure approximation is not good for two-neutrino decay, and the matrix

element must contain intermediate states explicitly:

M2ν ≈
∑

n

〈f |∑a ~σaτ
+
a |n〉 〈n|∑b ~σbτ

+
b |i〉

En − (Mi +Mf )/2
, (6)

where n labels states in the intermediate nucleus with energy En, Mi andMf are the masses

of initial and final nuclei, and the effects we have neglected — forbidden currents, the Fermi

matrix element, etc. — are small [32–34].

Recent study [35, 36] has shown that realistic short-range correlations have only a small

effect on the double-beta matrix elements. Including them here, even approximately, would

complicate our computational procedure considerably and so we omit them altogether.
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B. Deformed Charge-changing QRPA

The self-consistent axially-symmetric Skyrme-HFB-QRPA method for like-particle exci-

tations, on which our code is based, is described thoroughly in Refs. [37], [14], and [15].

We modify the code discussed there in a rather straightforward way to work with charge-

changing modes rather than like-particle modes. Obviously, we must change the basis of

like-two-quasiparticle states to a basis of one-quasiproton-one-quasineutron states. We then

construct the QRPA matrix given in Eqs. (A1) – (A6) of Ref. [37], with the following changes:

a) we remove the Coulomb interaction, and b) we keeping only the terms in the effective

particle-hole Skyrme interaction — displayed in Eq. (B13) of Ref. [37] — that contribute

to the QRPA matrix elements Apn,p′n′ and Bpn,p′n′. We can do this easily by rewriting the

operator ~τ ·~τ ′ in that equation in terms of the operators “1” and Pτ ≡ 1
2
(1+~τ ·~τ ′) and then

keeping only the terms containing Pτ . Finally, we modify the part of the code that treats

pairing so that it can separately produce isovector (S = 0) and isoscalar (S = 1) matrix

elements.

We adopt the Skyrme functional (or effective interaction) SkM∗ [38]; that functional

has been shown to describe nuclear deformation well and reproduces low-lying quadrupole

vibrations in rare-earth nuclei noticeably better than the comparably popular functional

SLy4 [14]. We modify the time-odd particle-hole part of the functional as in [39], which

discussed charge-changing transitions, by setting the parameters (defined in that reference)

CT
1 = 0, C∇s

1 = 0, and Cs
1 [0] = Cs

1 [ρnm] = 100 Mev fm3 (ρnm is nuclear-matter density).

With these modifications, the functional reproduces [19] the location of the Gamow-Teller

resonance and the fraction of observable strength in the resonance. We will report results

with and without the modifications to show their effect.

For the particle-particle part of the functional we use a simple volume (zero-range) pairing

interaction, the strength of which we adjust separately in the isoscalar channel (T = 0) and

in each of the three isovector (T = 1 with Tz = −1, 0, and 1) channels. We describe the

adjustment in more detail in the next section.

Evaluating the 0νββ matrix elements requires a multipole decomposition ofM ′0ν suitable

for cylindrical geometry. The details of that appear in the Appendix.
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III. COMPUTATIONAL IMPLEMENTATION

Only recently have fully self-consistent deformed Skyrme-QRPA calculations entered the

scene. The combination of methods we use here requires many thousands of CPU hours. Our

methodology will at some point be obsolete because of the development of much faster Finite

Amplitude [40] and iterative Arnoldi [41] approaches, which use mean-field codes with time-

independent constraints to solve the QRPA equations. Our method, by contrast, involves

the explicit construction and diagonalization of the QRPA Hamiltonian matrix in a basis

of two-canonical-quasiparticle states. These states are obtained from the HFB calculation

mentioned previously.

To solve the initial HFB equations we use the Vanderbilt deformed HFB code [42], which

represents wave functions in a basis of B-splines. Our cylindrical box has dimensions rmax =

zmax = 20 fm, about three times as large as the radius of the heaviest nucleus studied here

and a number found suitable in Ref. [42]. Our mesh spacing is 0.7 fm and the energy cutoff

of the HFB solutions is 60 MeV. We do not restrict the deformation (except to be axially

symmetric) but rather allow the mean field to evolve freely to the nearest local binding-

energy minimum. Using a range of quadrupole deformation parameters β2 as initial guesses,

we find one or more local minima and select the most bound solution as the mean field

on which we base the QRPA. In 76Ge, however, we do not use the most bound solution;

we discuss the reasons for this exception in the next section. To obtain the strength of the

proton-proton and neutron-neutron (T = 1, Tz = ±1) pairing interaction we match the HFB

pairing gaps with the experimental pairing gaps obtained from a three-point interpolation

formula, with separation energies from the ENSDF [43] database.

The computational requirements for running our charge-changing QRPA code are signif-

icantly less than those for the like-particle code on which it is based because a) the proton-

neutron two-quasiparticle basis is only about half the size of the like-two-quasiparticle basis,

and b) the removal of the Coulomb interaction relieves us of a large computational bur-

den. For a given multipole, our charge-changing code typically runs much faster than the

like-particle code. That speedup, however, still leaves us with runs that consume many

thousands of CPU hours per multipole in each nucleus.

We cannot include all one-quasiproton-one-quasineutron states in our QRPA basis and

so truncate the same way as in Ref. [14]. The truncation is controlled by two parameters
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vppcut and v
ph
cut. The first allows us to remove two-quasiparticle states with almost completely

two-particle or two-hole nature (i.e. states that primarily lie in the A ± 2 neighbors of the

reference nucleus instead of the in intermediate double-beta nucleus), and the second lets us

cut out states in which one of the particles is far below the Fermi surface and the other far

above it. Such excitations have very high energy and do not mix significantly with lower-

energy states. In practice 15,000 two-quasiparticle states for the lowest multipoles, out of a

total of about half a million, are enough to approximate the exact answer very well, making

the construction and diagonalization of the QRPA matrix tractable on a supercomputer.

After diagonalizing the QRPA Hamiltonian, we need to determine the double-beta-decay

matrix elements. For 0νββ decay, the matrix element can be written as

M ′0ν =
2R

(1.25)2π

∑

pn

〈0+f |c†−pcn|N〉
∑

NN ′

〈N |N ′〉 (7)

×
∑

p′n′

〈N ′|c†p′c−n′|0+i 〉
(

KF
pn,p′n′ +KGT

pn,p′n′

)

,

where c†k are particle-creation operators, the indices with p refer to protons and those with

n to neutrons, each index stands for the set of quantum numbers p = {jzp , πp, kp} (angular-

momentum along on the intrinsic axis, parity, and an additional enumerating index), a minus

sign in front of an index means that the sign of the jz quantum number is reversed, and

KF
pn,p′n′ =

∫ ∞

0

q dq 〈pp′| j0(qr12)hF (q)

q + E − (Ei + Ef)/2
τ+1 τ

+
2 |nn′〉 (8)

KGT
pn,p′n′ =

∫ ∞

0

q dq 〈pp′| j0(qr12)hGT (q)~σ1 · ~σ2
q + E − (Ei + Ef)/2

τ+1 τ
+
2 |nn′〉 .

The two-particle states in Eq. (8) are antisymmetrized. We use a multipole expansion,

detailed in the Appendix, to evaluate the two-body matrix elements in Eq. (8) with B-spline

integration. The coding for the two-neutrino two-body matrix elements, which we use to

evaluate the matrix element in Eq. (6), requires no Bessel function expansion.

Two-neutrino decay is simpler for another reason as well; only states with angular mo-

mentum and parity Jπ = 1+ contribute to the matrix element. In our deformed calculation

we follow the usual procedure [4, 44] of representing laboratory states in a rigid-rotor ap-

proximation as combinations of a) Wigner functions DJ
MK and DJ

M−K of Euler angles, and

b) an intrinsic QRPA state with a well-defined projection K along the symmetry axis of

the angular momentum ~J . M2ν thus gets contributions only from states with |K| ≤ 1. In
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FIG. 1. (Color online.) The cumulative 76Ge 0νββ matrix element (using SkM∗ and gA = 1.0) as

the number of intermediate-state multipoles Kπ is increased. Convergence is reached by |K| = 10.

Both positive and negative parities are included, as are both Fermi and Gamow-Teller contributions.

neutrinoless decay, on the other hand, states with any Kπ contribute. The contributions

get progressively smaller as K gets larger. Including state with |K| ≤ 10 is enough to

approximate the matrix element accurately, as Fig. 1 shows.

One interesting feature of Eq. (7) is the presence of the overlap 〈N |N ′〉. The QRPA is a

small-amplitude approximation and although it provides transition densities from a ground

state to excited states, it can’t, without extension, provide excited state wave functions. The

excited states |N〉 and |N ′〉 are based on different quasiparticle vacua and the quasiboson

approximation that is inherent in the QRPA erases the information necessary to relate the

two vacua. Two expressions for the overlap have been given in the past few years: one, from

Ref. [5], neglects “scattering terms” even though they cannot be shown to be small and the

other, laid out in Ref. [45], uses the form of the boson vacuum but replaces the bosons with

the fermion pairs from which they stem. Unfortunately, this last idea leads to expressions

that can only be evaluated perturbatively; these become unwieldy after the lowest couple

of orders in the expansion, the convergence of which may not be fast. Here we simply

evaluate the overlap in the quasi-Tamm-Dancoff approximation (neglecting the QRPA “Y”

amplitudes); in this limit of the QRPA, excited states are well-defined two-quasiparticle

excitations of HFB vacua and require no bosonization. The results are not very different

from those obtained in the scheme proposed in Ref. [5]. We provide more details in the

Appendix.

As is typical in QRPA calculations, we use the measured values of two-neutrino decay
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rates to fit proton-neutron pairing strengths (which have no effect in the HFB part of the

calculation because of the significant neutron excess). Following a suggestion in Ref. [46],

we adjust the isovector (T = 1, Tz = 0) strength so that the Fermi 2νββ matrix element

vanishes, as it should (almost) because the ground state of the final nucleus has a different

isospin than the double-isobar-analog state of the initial nucleus. If instead we fix the proton-

neutron isovector pairing strength at the average of the proton-proton and neutron-neutron

pairing strengths, we find a nearly identical result. The isoscalar pairing strength, which we

call V0 here, is the parameter typically called gpp in other QRPA calculations. We adjust it

so as to reproduce the experimental two-neutrino matrix element, with both an unquenched

(gA = 1.25, see the footnote) and quenched (gA = 1.0) axial-vector coupling constant. We

then use the resulting pairing strengths in computing the 0νββ matrix elements, once for

each value of gA. For
130Te and 136Xe, we compute the neutrinoless double-beta-decay matrix

element with the unmodified SkM∗ over a range of isoscalar pairing values V0 to assess its

sensitivity to the fit. Some other authors (see, e.g., Ref. [47]) renormalize the QRPA so

that the effects of proton-neutron pairing are weakened; that procedure would spoil the

self-consistency of the HFB-QRPA framework and we do not adopt it here.

IV. RESULTS AND DISCUSSION

We start by comparing the quadrupole deformation parameters β2 obtained from our HFB

calculation to other theoretical and experimental values in Tab. I. With the exception of 76Se,

where our Skyrme-HFB computation fails to converge to a prolate solution, our quadrupole

deformations are similar to those obtained using Sk3 and SG2 Skyrme interactions in Ref. [9].

The failure to converge is most likely due to a very flat bottom of the binding energy curve

with respect to deformation in 76Se.

In 76Ge, the minimum energy occurs at a prolate deformation of β2 = 0.18. This defor-

mation is so different from that of 76Se, however, that our predicted two-neutrino matrix

element is smaller than the measured value no matter what we use for gA or V0. We therefore

choose to use the local near-spherical minimum (β2 = −0.025) for 76Ge instead. As we shall

see, this gives us a result that is not too different from other QRPA numbers, including

those of Ref. [6], which presents both spherical-spherical and prolate-prolate calculations. It

also indicates, however, that the QRPA is inadequate in this system. The soft surfaces with
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Ref. [9] Exp.

this work Sk3 SG2 Ref. [48] Ref. [49]

76Ge 0.184a 0.161 0.157 0.095(30) 0.2623(9)

76Se -0.018 -0.181 -0.191 0.163(33) 0.3090(37)

130Te 0.01 -0.076 -0.039 0.035(23) 0.1184(14)

130Xe 0.13 0.108 0.161 - 0.1837(49)

136Xe 0.004 0.001 0.016 - 0.122(10)

136Ba -0.021 0.009 0.070 - 0.1258(12)

150Nd 0.27 0.266 0.271 0.367(86) 0.2853(21)

150Sm 0.22 0.207 0.203 0.230(30) 0.1931(21)

a -0.025 used

TABLE I. The quadrupole deformations β2 of the initial and final nuclei in our work, compared

with the values obtained in [9] and experimental values from [48, 49]

.

multiple minima require a formulation that mixes mean fields, e.g. the generator-coordinate

method (often referred to as energy-density functional (EDF) theory) of Ref. [50], or an

extension thereof.

In the daughter nucleus 130Xe we get a prolate solution, making ours the first QRPA

calculation to take the deformation into account in the decay of 130Te. The study in Ref. [51],

using HFB with the Gogny interaction, finds a second minimum with oblate deformation

and a barrier of only 1 MeV or so separating the two minima. As in 76Se, therefore, the use

of a single mean-field in the construction of the 130Xe ground state is somewhat suspect.

We don’t reproduce experimental Q-values as well as deformations, in part because the

errors in the binding energies of the nuclei add in quadrature. But for the record, our

HFB calculation produces Q = 4.84 MeV (vs. the experimental value of 2.04 MeV) in 76Ge,

Q = 4.22 MeV (vs. the experimental value of 2.53 MeV) in 130Te, Q = 5.60 MeV (vs.

2.46 MeV) in 136Xe, and Q = 2.35 MeV (vs 3.371 MeV) in 150Nd. Other calculations with

different Skyrme functionals produce discrepancies of the same order [52].

We turn now to the matrix elements themselves. Figure 2 displays the dependence of the
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SkM∗, gA = 1.25
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mod., gA = 1.25
mod., gA = 1.0

FIG. 2. (Color online.) The dependence of two-neutrino double-beta decay matrix elements on

V0, the isoscalar pairing strength. The thick solid and dashed (red) curves are produced by the

original SkM∗ interaction and the dotted and thin (blue) curves by the modified interaction. The

thick solid and dotted curves are computed with gA = 1.25, the dashed and thin solid curves with

the quenched value gA = 1.0.

2νββ matrix element on the isoscalar pairing strength V0 in the four systems we study. We

use the recent evaluation of the phase-space factors in Ref. [29] to extract the experimental

matrix elements. Because M2ν for 136Xe was just measured for the first time by the EXO-

200 [53] and KamLAND-Zen [24] experiments, ours is the first QRPA double beta decay

computation to use an experimentally obtained value rather than an upper limit to determine

the strength of isoscalar pairing.

Figure 3 illustrates the dependence of the 0νββ decay matrix element on V0. The neu-

trinoless matrix element is less sensitive to this pairing mode than the two-neutrino matrix

element. We collect our final results for the 0νββ matrix elements with both gA = 1.25 and

gA = 1.0 in Table II. The modification of SkM∗ usually suppresses the 0νββ matrix element,

by up to 15%. It actually seems to increase the matrix element in 130Te by 17% for gA = 1.0,

but as Fig. 2 shows, the fitting procedure for V0 with gA = 1.0 gives an anomalously small

value, and so that result must be taken with a grain of salt. In Table III we compare our
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FIG. 3. (Color online.) The dependence of M ′0ν in 136Xe and 130Te on the V0 produced by the

unmodified SkM∗ interaction. The solid curve represents the results with gA = 1.0 and the dashed

curve represents the results with gA = 1.25.

values with the modified SkM∗ and gA = 1.25 with earlier theoretical results. Our matrix

elements for 76Ge and 150Nd are in a good agreement with the spherical result for Ge and

the deformed one for Nd in Ref. [6]. For 136Xe and 130Te we get noticeably smaller matrix

elements than obtained in prior work, all of which was carried out in the spherical QRPA.

Figure 4 displays the same information as the table graphically.

The suppression we see in 130Te can be attributed to the deformation of the daughter

SkM∗ modified SkM∗

gA = 1.0 gA = 1.25 gA = 1.0 gA = 1.25

76Ge 4.40 5.53 4.12 5.09

130Te 1.13 1.38 1.32 1.37

136Xe 1.26 1.68 1.18 1.55

150Nd 2.52 3.14 2.14 2.71

TABLE II. The 0νββ matrix elements in our Skyrme-HFB-QRPA calculation, with both the func-

tional SkM∗ and a modified version of it, and with both a quenched and unquenched axial-vector

coupling constant gA.
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present QRPA/T QRPA/J ISM IBM-2 PHFB EDF

76Ge 5.09 5.30, 4.69∗ 5.355 2.96 5.465 — 4.60

130Te 1.37 4.92 4.221 2.81 4.059 4.66 5.13

136Xe 1.55 3.11 2.802 2.32 2.220 — 4.20

150Nd 2.71 3.34∗ — — 2.321 3.24 1.71

TABLE III. Comparison of our 0νββ matrix elements, from the modified SkM∗ functional and

gA = 1.25, with those obtained from the interacting shell model (ISM, [54]), QRPA calculations by

the Tübingen group [6, 35] (QRPA/T) and Jyväskylä group [55] (QRPA/J), the energy-density-

functional method [50] (EDF), projected HFB [56] (PHFB) and the interacting boson model [57]

(IBM-2). Prior results that include deformation are indicated by a star.

nucleus. Previous QRPA calculations for 130Te [35, 55] have assumed spherical symmetry.

We’ve already mentioned, however, that a single minimum may not be adequate to represent

the ground state of 130Xe. We suspect that the complete neglect of deformation in previous

work leads to a matrix element that is too large, but it may also be that our sharp prolate

Xe ground state yields one that is too small.

The other decay in which we disagree significantly with previous QRPA calculations is

that of 136Xe. Our significantly smaller result here is not caused by deformation difference,

nor does it come from the availability of new two-neutrino decay data. Instead, it can be

traced to the overlap between the initial and final HFB mean fields. This overlap usually

reflects the difference in deformation between the mother and daughter nuclei, and for that

reason, has been completely neglected in previous QRPA calculations for the decay of 136Xe,

where both the initial and final nuclei are spherical. We find here, however, that differences

in pairing structure in the neutron mean fields lead to a small overlap: 〈HFBf |HFBi〉 = 0.47.

The suppression is related to the N = 82 shell closure, which produces a sharp Fermi surface

that smooths measurably with the addition of two neutrons. We see no reason to completely

neglect the overlap, but the situation may be analogous to that in the decay of 130Te. A

more realistic representation of pairing than is offered by the HFB mean field might make the

difference in structure between the initial and final nuclei a little less dramatic. Interestingly,

a recent shell-model [58] calculation finds that increasing the model-space size produces the

smallest matrix element yet for this decay: 1.46.
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FIG. 4. (Color online.) The results of Table III for gA = 1.25. The dashed (red) arrow points to

the new shell-model result of Ref. [58] in 136Xe.

All the substantial differences between our QRPA calculations and others can be traced

to deformation or pairing effects that were neglected in previous work. Our use of a self-

consistent QRPA with all nucleons treated as active participants, the continuum accounted

for, etc., doesn’t, in itself, change results dramatically. That finding is not altogether sur-

prising. Self-consistency is important in the QRPA partly because it eliminates spurious

strength. In the charge changing QRPA, however, the absence of proton-neutron mixing in

the HFB and the explicit breaking of isospin mean that there is no spurious strength even

in non-self-consistent calculations. More importantly, it is already well known [59] that dif-

ferences between variants of the QRPA largely disappear when the strength of the isoscalar

pairing interaction is adjusted so that each variant reproduces the measured two-neutrino

rate. Our variant does not escape this fate; that one parameter is a like a broad and coarse

brush that paints over any sophistication in the underlying method.
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V. CONCLUSIONS

We have performed large-scale Skyrme-HFB-QRPA computations for four important

double-beta emitters. We have allowed for axial deformation of the initial and final nuclei.

Our implementation increases the scale of the computation to the limits of contemporary

technology.

For 76Ge and the very deformed 150Nd, our results are in line with the earlier results of

Ref. [6]. We note, however, that the assumption both here and elsewhere that the 76Ge and

76Se ground states are spherical probably results in a matrix element that is too large.

In 130Te we improved on the ground state used in previous QRPA calculations by taking

into account the deformation of the final nucleus. Shape coexistence in the daughter 130Xe

is beyond the scope of the QRPA, however; if present, it could further modify the value of

the matrix element.

Our 136Xe matrix element is the first QRPA result obtained from the new two-neutrino-

decay measurements. It is also the first to take into account the overlap of the two sets of

QRPA intermediate states. The overlap is smaller than one might expect because of the

sharp neutron Fermi surface in the initial nucleus. In reality, the Fermi surface cannot be

perfectly sharp, and the true matrix element is probably not suppressed quite this much. The

recent shell-model result for this matrix element [58], however, imply that past computations

may have overestimated the 136Xe double beta decay rate.

Our computation demonstrates that there is little to be gained by further increasing the

size and sophistication of QRPA calculations. Any straightforward alterations to the QRPA,

other than the development of a better energy-density functional, are unlikely to improve

the results substantially. We have reached the point at which shortcomings of the QRPA

itself restrict improvement. The inability to treat shape coexistence is an issue at least for

the daughter nuclei 76Se and 130Xe. The mean-field treatment of pairing may be a problem

in nuclei such as 136Xe that have closed shells. We can address these issues only by moving

beyond the QRPA.
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Appendix: Neutrinoless double beta decay matrix elements in the cylindrical box

Equation (7) is in essence a trace of a product of four large square matrices. The transition

densities in that equation are

〈0+f |c†−pcn|N〉 = spvpunX
N
pn + upsnvnY

N
−p−n , (A.1)

and

〈N ′|c†p′c−n′|0+i 〉 = −up′sn′vn′XN ′

p′n′ − sp′vp′un′Y N ′

p′n′ . (A.2)

Here the indices p and p′ indicate protons, and n and n′ neutrons, as discussed in the main

text; c†p is a proton creation operator, and up and spvp are the proton occupation amplitudes

in the canonical basis, in the notation of Ref. [44]. XN
pn and Y N

−p−n are forward-going and

backward-going QRPA amplitudes.

To reduce the number of nested numerical integrals in the 0νββ matrix elements in Eq.

(7), we take advantage of the following expansion for the spherical Bessel function in Eq.

(8):

j0(qrab) = 4π

∞
∑

l=0

jl(qra)jl(qrb)

l
∑

m=−l

Y ∗
lm(r̂a)Ylm(r̂b) . (A.3)
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This allows us to separate the integrals over coordinates of the two nucleons:

KF
pn,p′n′ =

∫ ∞

0

dq
qhF(q

2)

q + Eave

∞
∑

l=K

(2l + 1)
(l −K)!

(l +K)!

× I lK−pn(q)I
lK
p′−n′(q) , (A.4)

and

KGT
pn,p′n′ =

∫ ∞

0

dq
qhGT(q

2)

q + Eave

1
∑

µ=−1

(−1)µ

×
∞
∑

l=max(0,K−µ)

(2l + 1)
(l − (K − µ))!

(l + (K − µ))!

× I l,K−µ,−µ
−pn (q)I l,K−µ,µ

p′−n′ (q) , (A.5)

where Eave = Ē− (Ei+Ef )/2. Naturally, the infinite summations over l must be truncated.

For most values of the neutrino energy q, not many terms are needed for convergence. In

the program we truncate the expansion dynamically by requiring a preset accuracy in the

quadrature for each value of q.

The axial symmetry of the normalized canonical single-particle wave functions means

that they can be written in the form

Ψa(~r) =
1√
2π

∑

s=±1/2

ψa(s; ρ, z)e
i(jz

a
−s)φχs , (A.6)

where s is the spin projection, χs is a standard two-component spinor, and jza the angular-

momentum projection onto the intrinsic axis. The integrations over the azimuthal angle φ

are trivial and the integrals I lmab (q) and I
lmν
ab (q) are therefore only two-dimensional:

I lmab (q) =

∫ ∞

−∞

dz

∫ ∞

0

dρ ρ ψ†
a(ρ, z)ψb(ρ, z)

× jl(q
√

ρ2 + z2)Pm
l

(

z
√

ρ2 + z2

)

,

(A.7)

and

I lmν
ab (q) =

∫ ∞

−∞

dz

∫ ∞

0

dρ ρ ψ†
a(ρ, z)σνψb(ρ, z)

× jl(q
√

ρ2 + z2)Pm
l

(

z
√

ρ2 + z2

)

.

(A.8)
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Here the Pm
l (x) are the usual associated Legendre polynomials, σν are the Pauli matrices in

the spherical vector basis and

ψa(ρ, z) =





ψa(+1/2; ρ, z)

ψa(−1/2; ρ, z)



 . (A.9)

As discussed in the main body of the text, we also need to evaluate the overlaps 〈N |N ′〉
between the QRPA states stemming from different mean fields. A satisfactory expression

for these is lacking, but the chief ingredient in any such expression will be the overlap of

two HFB vacua. The generalized Thouless theorem [44] relating the two non-orthogonal

quasiparticle vacua |HFBi〉 (initial state) and |HFBf〉 (final state) to each other is:

|HFBi〉 = N−1 exp

(

∑

kl

Dkla
(f)†
k a

(f)†
l

)

|HFBf〉 , (A.10)

where the a
(f)†
k are quasiparticle creation operators in the final nucleus. The normalization

factor is related to the transformation coefficients Dkl via the Onishi formula:

N = 〈HFBf |HFBi〉−1 =
√

det(1 +D†D) . (A.11)

Because the canonical-basis wave functions form a complete set, there exists a linear trans-

formation between the two HFB solutions:

a
(f)†
k =

∑

n

(Rkna
(i)†
n + Sk,−na

(i)
−n) , (A.12)

where

Rkn = 〈n|k〉(ukun + skvksnvn) , (A.13)

and

Sk,−n = 〈n|k〉(uksnvn − skvkun) . (A.14)

Substituting Eq. (A.10) and (A.12) into the definition of the quasiparticle vacuum

a
(f)
−k |HFBf 〉 = 0 , (A.15)

expanding the exponential, and comparing the terms containing one quasiparticle creation

operator, we get the matrix equation

R∗D = −S∗ , (A.16)
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from which we can obtain the transformation coefficients Dkl.

As mentioned earlier, we approximate the QRPA overlaps states by QTDA overlaps, i.e.

by neglecting the Y ’s. This leads finally to the expression

〈N |N ′〉 = N−1
∑

pn

∑

p′n′

XN∗
pn X

N ′

p′n′

(

Rp′p +
∑

p′′

Sp′p′′Dp′′p

)(

Rn′n +
∑

n′′

Sn′n′′Dn′′n

)

.

(A.17)

This formula differs slightly from the one presented in Ref. [5] and used in most QRPA

double-beta-decay calculations. Our overlap differs in that we keep the transformation

between the two HFB bases accurate and neglect the usually tiny term proportional to

two Y amplitudes. In test calculations we find the numerical difference between the two

prescriptions to be negligible, as the common leading term is already a good approximation.

A more consistent evaluation of these overlaps that includes ground-state correlations can

easily get both very complicated and computationally demanding, as evidenced by recent

work in the like-particle QRPA in Ref. [45].
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