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The hyperfine structure and isotope shifts of Sr-isotopes, both even-even and odd-even nuclei,
are studied in the covariant density functional theory (DFT) with the new parameter set DD-PC1.
Pairing correlation is treated by using the Bogoliubov with a separable form of the pairing inter-
action. Spin-parity, charge radii, two-neutron separation energies, and pairing energies of ground
states are calculated and compared with experimental data. We find a shape transition at N ≈ 60
in charge radii and spin-parity, which are consistent to each other, and generally agree with experi-
ments. Although the nuclear masses are not very sensitive to these shape changes, odd-even mass
different and pairing effect are very important to study the shape transition and shape coexistence
phenomena in Sr-isotopes.

PACS numbers: 21.30.Fe, 21.60.Jz, 24.30.Cz, 24.30.Gd

With new generations of radioactive beam facilities in
many countries around the world, experimental and theo-
retical studies on the properties of the nuclear shape evo-
lution as the number of neutron changes is nowadays one
of the most active and fruitful research in nuclear physics.
In recent decades, several measurements on isotopes with
Z = 36− 40 [1–5] have found a sudden shape transition
at N ≈ 60, but the nature of this transition remains dis-
puted. On the theoretical side, both phenomenological
models [6, 7] and microscopical models [8–11] have been
used to study these isotopes. Most of these models can
identify the shape evolution around N ≈ 60 correspond
to the competition between the prolate and oblate mini-
mum, the ground states depend on the details of calcula-
tions. One of the major goals of the current manuscript
is to try to understand to how the uncertainties in the
extrapolation of the pairing strength towards shape co-
existence.

Strontium isotope, with 38 protons, belong to the
Z=40 sub-shell closure which have a rapid variation of
nuclear ground state properties as a function of the
neutron number towards both sides of the line of β-
stability [5, 12]. The charge radius decreases smoothly
form the neutron-deficient side N ≈ Z = 38 to the neu-
tron shell closure N = 50, then an almost linear increase
is followed by a strong discontinuity at N = 59 − 60.
It means that the ground states of Sr-isotopes with N
ranging around the magic number N = 50 are weakly
deformed, but they undergo two shape transition from
nearly spherical to well deformed deformation at both
neutron deficient and rich side.

At present, covariant Density Functional Theory
(DFT) based on the mean-field theory provides a very
reasonable concept for a universal description of nuclei
all over the periodic table [13, 14]. Relativistic mod-
els incorporate Lorentz invariance, connecting in a con-
sistent way the spin and spatial degrees of freedom of
the nucleus, and provide thus a relatively simple phe-
nomenological description for many nuclear properties
using only a few phenomenological parameters. In this

framework, there are several popular parameter sets, in-
cluding NL3 [15], PK1 [16] for the nonlinear RMF model,
DD-ME2 [17], PKDD [16] for density-dependent RMF
model, DD-PC1 [18], PC-PK1 [19] for the point-coupling
RMF model. Among these parameter sets, the DD-
PC1 was proposed very recently by additional fitting to
the masses of 64 axially deformed nuclei. Comparing
with the available data, DD-PC1 provide a very good
agreement to the properties of spherical and deformed
medium-heavy and heavy nuclei, including binding ener-
gies, charge radii, deformation parameters, neutron skin
thickness, and excitation energies of giant multipole res-
onances.

In most calculations of DFT, the pairings have often
been taken into account in a very phenomenological way
in the BCS model with the monopole pairing force, ad-
justed to the experimental odd-even mass differences. In
many cases, however, this approach presents only a poor
approximation. The physics of weakly bound nuclei, in
particular, necessitates a unified and self-consistent treat-
ment of mean-field and pairing correlations. This has
led to the formulation and development of the relativis-
tic Hartree-Bogoliubov (RHB) model, which represents a
relativistic extension of the conventional Hartree- Fock-
Bogoliubov framework. In most applications of the RHB
model simple phenomenological pairing forces such as the
monopole force taking into account pairing correlations
only in the J = 0 channel or density dependent δ inter-
action(DDDI) [20–22] where additional simplifying as-
sumptions have to be introduced as for instance a pair-
ing window. Gogny forces [23–25] with finite range are
considered to provide the best phenomenological descrip-
tion of pairing correlations in nuclei. However, because
of their numerical complexity, they are applied only by a
rather limited number of groups in the literature.

Recently, we have introduced a separable form of the
pairing force for RHB calculations in finite nuclei [26–30].
The force is separable in momentum space, and is deter-
mined by two parameters that are adjusted to reproduce
the pairing gap of the Gogny force in symmetric nuclear
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matter. Using the Talmi-Moshinsky techniques [31–33],
it can be represented as a series of separable terms in
a harmonic oscillator basis. Although different from the
Gogny force, the corresponding effective pairing interac-
tion has been shown to reproduce with high accuracy
pairing gaps and energies calculated with the original
Gogny force, both in spherical and deformed nuclei. In
particular, this approach retains the basic advantage of
the finite-range Gogny force, and the numerical calcula-
tion is much simpler. Therefore, in this work, we study
the ground states properties of Sr-isotope in the frame-
work of the self-consistent RHB approximation based on
the DD-PC1 parameter set together with the separable
pairing force.
In the framework of covariant DFT, the energy func-

tional of RHB model depends not only on the density
matrix ρ̂ and the meson fields φm, but in addition also
on the pairing tensor:

ERHB [ρ̂, φm, κ̂] = ERMF [ρ̂, φm] + Epair [κ̂] (1)

where ERMF [ρ̂, φm] is the RMF-functional based on
the density dependent point-coupling interaction DD-
PC1 [18], and the pairing energy Epair [κ̂] is given by

Epair[κ̂] =
1

4
Tr[κ̂∗V ppκ̂] (2)

V pp denotes the two-body pairing interaction. Here we
use the separable form of the pairing force

〈k|V
1S0

sep |k′〉 = −Gp(k)p(k′) (3)

A simple Gaussian ansatz p(k) = e−a2k2

is assumed. In
ref. [28] the two parameters G and a have been fitted
to the density dependence of the gap ∆(kF ) of Gogny
D1S [34] in nuclear matter. The obtained values for the
parameters are G = 728 MeVfm3 and a = 0.644 fm.
The odd-A nuclei can be considered as an even-even

core plus an unpaired nucleon (or quasiparticle). Us-
ing the equal filling approximation (EFA) [35, 36], the
unpaired nucleon is treated in an equal footing with its
time-reversed state by sitting half a nucleon in a given
orbital and the other half in the time-reversed partner.
For the axially deformed nuclei, the spin is simply the
projection of the angular momentum along the symme-
try axis for the last occupied proton or neutron level,
when this level is occupied by a single nucleon. For the
spherical nuclei with degenerate levels, the nuclear spin
is defined as the maximum value of jz, which is |j|.
The mean-square charge radius is calculated as [37, 38]:

r2c =
1

Z

∫

r2d3np(r) + r2p +
N

Z
r2n − r2c.m., (4)

where np(r) is the point-proton density and r2p = 0.63 fm2

and r2n = −0.12 fm2 are the rms proton and neutron
charge radii, respectively. The center-of-mass correc-
tion is computed as r2c.m. = 3~/2mωA fm2, with ω =

A N Exp.[40] spherical oblate prolate

83 45 7/2+(9/2+) g9/2

85 47 9/2+ g9/2

87 49 9/2+ g9/2

89 51 5/2+ d5/2

91 53 5/2+ d5/2

93 55 5/2+ d5/2 3 + [402] 3 + [422]

95 57 1/2+ 1 + [400] 3− [541]

97 59 1/2+ 1 + [400] 9 + [404]

99 61 3/2+ 3 + [411]

101 63 5/2- 5− [532]

103 65 5 + [413]

TABLE I: Experimental spin-parity assignments [40] com-
pared with RHB-EFA results for one-quasiparticle states in
odd-A Sr-isotopes.

1.85+ 35.5/A1/3 MeV. We show in Fig.1 the comparison
of calculated and experimental charge radii, plotted as
δ〈r2c 〉

50,N = 〈r2c 〉
N − 〈r2c 〉

50.
The potential energy surface (PES) in the plane of de-

formation variables is obtained by imposing a quadratic
constraint on the mass quadrupole moments

〈H〉+ C20(Q20 − q20)
2 (5)

Where 〈H〉 is the total energy, and q20 is a constrained
value of the quadrupole moments, and C20 is the cor-
responding stiffness constant [39]. The quadrupole Q20

moments for neutrons and protons are calculated using
the expressions

Q20 = 〈2r2P2(cosθ)〉n,p = 〈2z2 − x2 − y2〉 (6)

The conventional deformation parameter β is obtained
from the calculated quadrupole moments through

Q20 =

√

16π

5

3

4π
AR2

0β (7)

with R0 = 1.2A1/3 (fm).
In this letter, we also calculate the 3-point neutron

pairing energy (∆3
n) and two-neutron separation energy

(S2n) of the Sr-isotope, which can be easily obtained from
the binding energies (BE),

∆3
n(N,Z) =

1

2
(BE(N−1, Z)−2BE(N,Z)+BE(N+1, Z)

(8)

S2n(N,Z) = BE(N − 2, Z)−BE(N,Z) (9)

The ground state properties of Sr-isotope from N=44
to N=66 with both even-even and even-odd nuclei have
been calculated with RHB theory with DD-PC1 [18] and
the separable pairing force [27].
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FIG. 1: (Color on line) Calculated δ〈r2c〉 in Sr isotopes com-
pared to experimental data from Ref. [41]. Results for oblate,
prolate and spherical minima are displayed with different sym-
bols (see legend). Open circles and squares correspond to
ground-state results with different pairing strength.

The experimental spin-parity assignments in odd-A Sr-
isotopes [40] are shown in the second column of Tablet.I.
They are compared to the one-quasiparticle states calcu-
lated by the RHB-EFA. In our calculations, Sr isotopes
evolve from spherical shapes in 83−91Sr around N = 50
with the spherical g9/2 and d5/2 shells involved, to slightly

deformed shapes in 93Sr, and finally to shape coexistence
in 95−103Sr. In the lighter isotopes the two spherical
shells give the same ground states as the experimental.
For slightly deformed nuclei, the experimental ground
states are 5/2+ in 93Sr. In 93Sr, the potential energy
surface (PES) is very flat. Although the oblate minimum
(β ≈ −0.2) with 3+ [402] is slightly deeper, the spherical
minimum with d5/2 is very close and it consistences with
the measurement. For the N ≥ 57 Sr-isotopes, these are
two minimums for oblate and prolate shape. The compe-
tition between these two minimums are very sensitive to
the calculations. In our work, the oblate ground state in
95,97Sr is 1+[400], and the prolate ground state is 3−[541]
and 9+ [404] respectively. Comparing with the measure-
ments, these two nuclei should be oblate deformed. But
our results prefer the prolate ground state, since N = 58
is a sub-shell structure in prolate side for our calculation.
For the higher isotopes, the prolate ground state with
3 + [411] in 99Sr and 5− [532] in 101,103Sr are agreement
with the experiment.

Fig.1 displays the evolution of the nuclear charge radii
in Sr isotopes, where the experimental [41] and the cal-
culated charge radii corresponding to the oblate, prolate
and spherical including both even-even and odd-A iso-
topes are plotted as functions of neutron number. The
charge radii decrease until the shell closure at N = 50.
After that, an almost linear increase is followed by a
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FIG. 2: (Color on line) Calculated S2n (a) and ∆3 (b) com-
pared to experimental data from Ref. [42]. The open squares
are the results of S2n and ∆3 with larger pairing strength.

strong discontinuity at N = 59− 60.

For 44 ≤ N ≤ 55, our calculation predict that these
nuclei are soft against deformation. The softness, or the
width of the PES around β = 0, increase as one departs
from the shell closure at N = 50. Thus, the actual charge
radius of our calculation will slightly increases and very
closes to the experimental data if we take account the
contributions of deformed configuration for the ground
state.

For neutron rich (N ≥ 56) nuclei, the axial symmet-
ric calculation provides two minimum in both the prolate
and the oblate region. The binding energy differences be-
tween the lowest oblate and prolate minima is less than
1 MeV for these nuclei. We indicate a sudden rising of
charge radius fromN = 56 to N = 57, which corresponds
to the transition from the oblate β = −0.2 (94Sr) to the
prolate shape β = 0.5 (95Sr). As we see from fig.1 the
jump of experiment is observed between N = 59 − 60.
However, we do not think this discrepancy is significant
since it is related to the subtle competition between pro-
late and oblate shapes.

In fig.2 we can see the results of two neutron separa-
tion energy S2n and 3-points neutron pairing energy ∆3

are shown as a function of the neutron number for both
even and odd. In general, we reproduce the experimental
data reasonably well, which is taken from the mass ta-
ble [42]. Between N = 52 and N = 54, the S2n energies
are underestimated by the calculations, which are also
found by ref. [10]. In our calculations a change in the
tendency is observed from N = 56 to N = 57, and the
3-points neutron pairing energies from N = 56 to N = 59
are slightly smaller than the experimental data.

In general, our calculations for Sr-isotope follow the
measurements very well expect the nuclei aroundN = 58.
Since the effective mass of DD-PC1 is a little small, a sub-
shell structure has been found in prolate ground state of
the nuclei around N = 58 for our calculations. This spe-
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FIG. 3: (Color on line) The potential energy surfaces in 96Sr
obtained in different pairing schemes (see legend) with DD-
PC1 parameterization of the RMF Lagrangian.

N β BE δ〈r2c 〉 BE(15%) δ〈r2c 〉(15%) δ〈r2c〉(exp)

57 obl -810.320 1.075 -811.911 1.018 1.003

pro -811.294 1.971 -811.192 1.693

58 obl -816.909 1.214 -818.917 1.128 1.213

pro -817.764 2.137 -818.385 1.965

59 obl -821.918 1.431 -822.975 1.378 1.312

pro -822.750 2.086 -822.906 2.071

TABLE II: The binding energy and charge radii of nuclei
around N = 58 subshell with different pairing interaction.

cial structure makes N = 58 as a ’magic’ number at the
prolate side, and become more stable than other mini-
mums. However, the experiment spin-parity and charge
radii have shown us that the oblate minimum of these
nuclei are the real ground state. The basic idea to solve
this problem is to use another parameter set with large
effective mass, such as Skyrme(SkM*) or Gogny D1S in-
teraction, which we will discuss in the future.
Seen from Fig.2(b), the calculated ∆3 is smaller than

the experimental data after N = 55. So here we slightly
increase the pairing strength (15%) to fit the experi-
mental results (open square line in Fig.2 (b)) and study

how the pairing effect on shape coexistence. As we can
see from Fig.1 and Fig.2, the calculated δ〈r2c 〉 and two
neutron separation energy with larger pairing are much
closer to the experimental results, especially for the nu-
clei around N = 58. In Fig.3 we display the potential en-
ergy surfaces of 96Sr obtained from self-consistent RHB
calculation based on the parameter set DD-PC1 using
the separable pairing with 100%(black) and 115%(red)
strength in the pairing channel. And we find the ground
state of 96Sr jump from the prolate to oblate. In table.II,
we compare the ground state properties of the nuclei
around N = 58 with different pairing strength. Com-
pare with the experimental δ〈r2c 〉 and spin-parity results
in Sec. III.A, the oblate minimum should be the ground
state for these three nuclei. The separable pairing inter-
action is introduced by reproducing the pairing proper-
ties of Gogny D1S in nuclear matter. And we have proved
that the separable pairing interaction can give the same
pairing properties as Gogny D1S in both spherical and
deformed nuclei [26–30]. Compare the experimental ∆3,
Gogny D1S is obviously too small for these nuclei. And
the same problem happens in the HFB calculation with
Gogny D1S, they cannot reproduce the experimental for
these three nuclei too [43]. In this manuscript, by in-
creasing a litter bit of the pairing strength, we not only
reproduce the experimental ∆3, but other ground states
of nuclei around N = 58, such as: charge radii, two neu-
tron separation energy and spin-parity properties of the
odd-A nuclei.

In summary we have studied the ground states proper-
ties of Sr-isotopes in the neutron-rich side. We have ana-
lyzed various sensitive nuclear observables, such as charge
radii, two-neutron separation energy, neutron pairing en-
ergy and the spin-parity of the ground states in a search
for signatures of shape transitions. We have found that
the charge radii and the spin-parity are very sensitive to
the shape changes. In addition, although the pairing can
not change the level density, the effect is very important,
and should be treated very carefully.
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M. de Saint Simon, H. T. Duong, P. Jacquinot, P. Juncar,
S. Liberman, P. Pillet, et al., Phys. Rev. C 23, 2720
(1981),

[2] P. Campbell, H. L. Thayer, J. Billowes, P. Dendooven,
K. T. Flanagan, D. H. Forest, J. A. R. Griffith, J. Huikari,
A. Jokinen, R. Moore, et al., Phys. Rev. Lett. 89, 082501
(2002),

[3] R. Meyer, E. Monnand, J. Pinston, F. Schussler, I. Rag-
narsson, B. Pfeiffer, H. Lawin, G. Lhersonneau, T. Seo,

and K. Sistemich, Nuclear Physics A 439, 510 (1985),
ISSN 0375-9474,

[4] H. Mach, F. Wohn, G. Molnr, K. Sistemich, J. C. Hill,
M. Moszyski, R. Gill, W. Krips, and D. Brenner, Nuclear
Physics A 523, 197 (1991), ISSN 0375-9474,

[5] F. Buchinger, E. B. Ramsay, E. Arnold, W. Neu, R. Neu-
gart, K. Wendt, R. E. Silverans, P. Lievens, L. Ver-
meeren, D. Berdichevsky, et al., Phys. Rev. C 41, 2883
(1990),

[6] A. Kumar and M. R. Gunye, Phys. Rev. C 32, 2116



5

(1985),
[7] F. R. Xu, P. M. Walker, and R. Wyss, Phys. Rev. C 65,

021303 (2002),
[8] M. Bender, G. F. Bertsch, and P.-H. Heenen, Phys. Rev.

C 73, 034322 (2006),
[9] M. Bender, G. F. Bertsch, and P.-H. Heenen, Phys. Rev.

C 78, 054312 (2008),
[10] R. Rodrguez-Guzmn, P. Sarriguren, L. M. Robledob, and

S. Perez-Martin, Phys. Lett. B 691, 202 (2010).
[11] J. Xiang, Z. Li, Z. Li, J. Yao, and J. Meng, Nuclear

Physics A 873, 1 (2012), ISSN 0375-9474,
[12] P. Lievens, L. Vermeeren, R. E. Silverans, E. Arnold,

R. Neugart, K. Wendt, and F. Buchinger, Phys. Rev. C
46, 797 (1992),

[13] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod.
Phys. 75, 121 (2003),

[14] D. Vretenar, A. Afanasjev, G. Lalazissis, and P. Ring,
Physics Reports 409, 101 (2005), ISSN 0370-1573,

[15] G. A. Lalazissis, J. König, and P. Ring, Phys. Rev. C 55,
540 (1997),

[16] W. Long, J. Meng, N. V. Giai, and S.-G. Zhou, Phys.
Rev. C 69, 034319 (2004),

[17] G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring,
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[30] T. Nikšić, P. Ring, D. Vretenar, Y. Tian, and Z.-y. Ma,

Phys. Rev. C 81, 054318 (2010),
[31] I. Talmi, Helvetica Physica Acta 25, 185 (1952).
[32] M. Moshinsky, Nuclear Physics 13, 104 (1959), ISSN

0029-5582,
[33] T. Brody, G. Jacob, and M. Moshinsky, Nuclear Physics

17, 16 (1960), ISSN 0029-5582,
[34] J. Berger, M. Girod, and D. Gogny, Comput. Phys. Com-

mun. 63, 365 (1991), ISSN 0010-4655,
[35] S. Perez-Martin and L. M. Robledo, Phys. Rev. C 78,

014304 (2008),
[36] N. Schunck, J. Dobaczewski, J. McDonnell, J. Moré,
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