
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Neutrinoless double-positron decay and positron-emitting
electron capture in the interacting boson model

J. Barea, J. Kotila, and F. Iachello
Phys. Rev. C 87, 057301 — Published  7 May 2013

DOI: 10.1103/PhysRevC.87.057301

http://dx.doi.org/10.1103/PhysRevC.87.057301


CCJ1046

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Neutrinoless double positron decay and positron emitting electron capture in the

interacting boson model

J. Barea,1, ∗ J. Kotila,2, † and F. Iachello2, ‡

1Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción, Chile
2Center for Theoretical Physics, Sloane Physics Laboratory,

Yale University, New Haven, Connecticut 06520-8120, USA

Neutrinoless double-β decay is of fundamental importance for determining the neutrino mass.
Although double electron (β−β−) decay is the most promising mode, in very recent years interest
in double positron (β+β+) decay, positron emitting electron capture (ECβ+), and double electron
capture (ECEC) has been renewed. We present here results of a calculation of nuclear matrix
elements for neutrinoless double-β+ decay and positron emitting electron capture within the frame-
work of the microscopic interacting boson model (IBM-2) for 58Ni, 64Zn, 78Kr, 96Ru, 106Cd, 124Xe,
130Ba, and 136Ce decay. By combining these with a calculation of phase space factors we calculate
expected half-lives.

PACS numbers: 23.40.Hc,21.60.Fw,27.50.+e,27.60.+j

I. INTRODUCTION

Double-β decay is a process in which a nucleus (A,Z)
decays to a nucleus (A,Z ± 2) by emitting two electrons
or positrons and, usually, other light particles

(A,Z) → (A,Z ± 2) + 2e∓ + anything. (1)

Double-β decay can be classified in various modes ac-
cording to the various types of particles emitted in the
decay. The processes where two neutrinos are emitted
are predicted by the standard model, and 2νβ−β− decay
has been observed in several nuclei. For processes not al-
lowed by the standard model, i.e. the neutrinoless modes:
0νββ, 0νβEC, 0νECEC, the half-life can be factorized
as

[

τ0ν1/2

]−1

= G0ν |M0ν |
2 |f(mi, Uei)|

2
, (2)

where G0ν is a phase space factor, M0ν is the nuclear ma-
trix element, and f(mi, Uei) contains physics beyond the
standard model through the masses mi and mixing ma-
trix elements Uei of neutrino species. For all processes,
two crucial ingredients are the phase space factors (PSFs)
and the nuclear matrix elements (NMEs). Recently, we
have initiated a program for the evaluation of both quan-
tities and presented results for β−β− decay [1–7]. This
is the most promising mode for the possible detection of
neutrinoless double-β decay and thus of a measurement
of the absolute neutrino mass scale. However, in very re-
cent years, interest in the double positron decay, β+β+,
positron emitting electron capture, ECβ+, and double
electron capture ECEC, has been renewed. This is due
to the fact that positron emitting processes have interest-
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ing signatures that could be detected experimentally [8].
In a previous article [9] we initiated a systematic study
of β+β+, ECβ+, and ECEC processes and presented
a calculation of phase space factors (PSF) for 2νβ+β+,
2νECβ+, 2νECEC and 0νβ+β+, 2νECβ+. The process
0νECEC cannot occur to the order of approximation
used in [9], since the emission of additional particles, γγ
or others, is needed to conserve energy and momentum.
In this article, we focus on calculation of neutrinoless de-
cay nuclear matrix elements (NME), which are common
to all three modes, and half-life predictions for 0νβ+β+

and 0νECβ+ modes. Results of our calculations are re-
ported for nuclei listed in Table I.

II. RESULTS

A. Nuclear matrix elements

The theory of 0νββ decay was first formulated by
Furry [14] and further developed by Primakoff and Rosen
[15], Molina and Pascual [16], Doi et al. [17], Haxton and
Stephenson [18], and, more recently, by Tomoda [19] and
Šimkovic et al. [20]. All these formulations often dif-
fer by factors of 2, by the number of terms retained in
the non-relativistic expansion of the current and by their
contribution. In order to have a standard set of calcula-
tions to be compared with the QRPA and the ISM, we
adopt in this article the formulation of Šimkovic et al.

[20]. A detailed discussion of involved operators can also
be found in Ref. [4].

We consider the decay of a nucleus A
ZXN into a nu-

cleus A
Z−2YN+2. An example is shown in Fig. 1. If the

decay proceeds through an s-wave, with two leptons in
the final state, we cannot form an angular momentum
greater than one. We therefore calculate, in this article,
only 0νββ matrix elements to final 0+ states, the ground
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TABLE I. Double-β decays considered in this article, the mass difference between neutral mother and daughter atoms, M(A,Z)−
M(A,Z − 2), and their isotopic abundances.

transition M(A,Z)−M(A,Z − 2)(keV)a P (%)
58
28Ni30 →58

26Fe32 1926.3± 0.3 68.077± 0.009
64
30Zn34 →64

28Ni36 1094.8± 0.7 49.17± 0.75
78
36Kr42 →78

34Se44 2846.3± 0.7 0.355± 0.003
96
44Ru52 →96

42Mo54 2714.51± 0.13b 5.54± 0.14
106
48 Cd58 →106

46 Pd60 2775.39± 0.10c 1.25± 0.06
124
54 Xe70 →124

52 Te72 2865.4± 2.2 0.0952± 0.0003
130
56 Ba74 →130

54 Xe76 2619± 3 0.106± 0.001
136
58 Ce78 →136

56 Ba80 2378.53± 0.27d 0.185± 0.002

a Ref. [10]
b Ref. [11]
c Ref. [12]
d Ref. [13]
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FIG. 1. The decay 48
106Cd58 →46

106Pd60, an example of double-
β+ decay.

state 0+1 , for which, in a previous article [9] we have cal-
culated the phase space factors, and to the first excited
state 0+2 .

In order to evaluate the matrix elements we make use
of the microscopic interacting boson model (IBM-2) [23].
The method of evaluation is discussed in detail in Ref. [1]
for double electron decay (β−β−). For double positron
decay (β+β+) and positron emitting electron capture
(ECβ+) the same method applies except for the inter-
change π → ν in Eq. (5) of [1] and in the mapped boson
operators of Eq. (18) of [1]. The matrix elements of the
mapped operators are evaluated with realistic wave func-
tions, taken either from the literature, when available, or
obtained from a fit to the observed energies and other
properties (B(E2) values, quadrupole moments, B(M1)
values, magnetic moments, etc.). The values of the pa-
rameters used in the calculation are given in Appendix
A.

Here, we present our calculated NME for the decays

of Table I. The NMEs depend on many assumptions,
in particular on the treatment of the short-range corre-
lations (SRC). In Table II, we show the results of our
calculation of the matrix elements to the ground state,
0+1 , and to the first excited state, 0+2 , using the Miller-
Spencer (MS) parametrization of SRC, and broken down
into GT, F and T contributions and their sum as

M0ν = g2AM
(0ν),

M (0ν) = M
(0ν)
GT −

(

gV

gA

)2

M
(0ν)
F +M

(0ν)
T .

(3)

We note that we have two classes of nuclei, those in
which protons and neutrons occupy the same major shell
(A = 64, 78, 124, 128, 130, 136) and those in which they
occupy different major shells (A = 58, 96, 106). The mag-
nitude of the Fermi matrix element, which is related to
the overlap of the proton and neutron wave functions,
is therefore different in these two classes of nuclei, be-
ing large in the former and small in the latter case. This
implies a considerable amount of isospin violation for nu-
clei in the first class. This problem has been discussed
in detail in Ref. [4] and will form a subject of subsequent
investigation. It is common to most calculations of NME
and has been addressed recently within the framework of
QRPA in Refs. [24, 25]. Here we take it into account by
assigning a large error to the calculation of the Fermi ma-
trix elements. In the same Ref. [4] it is also shown that
the NME depend on the short range correlations (SRC),
and that use of Argonne/CD-Bonn SRC increases the
NME by a factor of 1.1-1.2. The same situation occurs
for β+β+ decay. In order to take into account the sen-
sitivity of the calculation to parameter changes, model
assumptions and operator assumptions [4], we list in Ta-
ble III IBM-2 NMEs with an estimate of the error. The
values of the 0+1 matrix elements vary between 2.3−6.1,
the matrix element for the 64Zn→64Ni transition being
notably the largest. They are therefore of the same order
of magnitude than the nuclear matrix elements for β−β−
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TABLE II. IBM-2 nuclear matrix elements M (0ν) (dimensionless) for neutrinoless β+β+/ECβ+/ECEC decay with Jastrow
M-S SRC and gV /gA = 1/1.269.

Nucleus 0+1 0+2

M
(0ν)
GT M

(0ν)
F M

(0ν)
T M (0ν) M

(0ν)
GT M

(0ν)
F M

(0ν)
T M (0ν)

58Ni 2.072 -0.152 0.144 2.310 2.042 -0.153 0.101 2.237
64Zn 4.762 -2.449 -0.156 6.127 0.633 -0.360 -0.019 0.837
78Kr 3.384 -2.146 -0.238 4.478 0.771 -0.479 -0.055 1.014
96Ru 2.204 -0.269 0.112 2.483 0.036 -0.012 0.001 0.045
106Cd 2.757 -0.255 0.191 3.106 1.395 -0.110 0.074 1.537
124Xe 3.967 -2.224 -0.192 5.156 0.647 -0.359 -0.032 0.839
130Ba 3.911 -2.108 -0.176 5.043 0.285 -0.152 -0.014 0.366
136Ce 3.815 -2.007 -0.161 4.901 0.318 -0.167 -0.014 0.408

decay, 2.0-5.4.
In the same Table III we also compare our results with

the available QRPA calculations from Ref. [26] with the
addition of some more recent calculations from Refs. [27,
28]. The QRPA [26] NMEs are calculated taking into
account GT and F contributions, and using the value
gA = 1.25. As in the case of β−β− decay, QRPA tend
to give larger values than IBM-2 and these two methods
seem to be in a rather good correspondence with each
other.

TABLE III. IBM-2 matrix elements with M-S SRC and error
estimate compared with available QRPA calculations.

Decay 0+1 0+2

IBM-2 QRPAa IBM-2 QRPA
58Ni 2.31(37) 1.55 2.24(36)
64Zn 6.13(116) 0.84(16)
78Kr 4.48(85) 4.19 1.01(19)
96Ru 2.48(40) 3.25 3.22-5.83b 0.05(1) 1.28-2.26b

106Cd 3.11(50) 4.12 5.94-9.08c 1.54(25) 0.66-0.91c

124Xe 5.16(98) 4.78 0.84(16)
130Ba 5.04(96) 4.98 0.37(7)
136Ce 4.90(93) 3.09 0.41(8)

a Reference [26].
b Reference [27].
c Reference [28].

B. Predicted half-lives for 0+1 → 0+1 transitions

The calculation of nuclear matrix elements in IBM-2
can now be combined with the phase space factors cal-
culated in [9] to produce our final results for half-lives
for light neutrino exchange in Table IV and Fig. 2. The
half-lives are calculated using the formula

[τ0ν1/2]
−1 = Gi

0ν |M0ν |
2

∣

∣

∣

∣

〈mν〉

me

∣

∣

∣

∣

2

, (4)

where i = β+β+, ECβ+. The values in Table IV and
Fig. 2 are for 〈mν〉 = 1eV. They scale with 〈mν〉

2 for
other values.

TABLE IV. Calculated half-lives in IBM-2 M-S SRC for neu-
trinoless double-β+ decay and positron emitting electron cap-
ture for 〈mν〉 = 1 eV and gA = 1.269.

T1/2(1027yr)
Nucleus β+β+ ECβ+

58Ni 213
64Zn 52.9
78Kr 2.01 0.79
96Ru 19.3 1.70
106Cd 10.8 0.80
124Xe 3.32 0.19
130Ba 15.4 0.23
136Ce 174 0.27
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FIG. 2. (Color online) Expected half-lives for 〈mν〉 = 1 eV,
gA = 1.269. The figure is in semilogarithmic scale.

Comparing the half-life predictions listed in Table IV
to the ones reported in Ref. [4] for 0νβ−β− we can see
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that values reported here are much larger. This is due
to the fact that in cases studied here the available ki-
netic energy is much smaller compared to β−β− decay.
Furthermore, the Coulomb repulsion on positrons from
the nucleus gives a smaller decay rate. As concluded also
in Refs. [21, 22], the 124Xe 0νECβ+decay is expected to
have the shortest half-live. In case of the neutrinoless
double electron capture process, 0νECEC, the available
kinetic energy is larger and Coulomb repulsion does not
play a role. However, this decay mode cannot occur to
the order of approximation we are considering, since it
must be accompanied by the emission of one or two par-
ticles in order to conserve energy, momentum and angular
momentum.

III. CONCLUSIONS

In this article we have presented evaluation of nuclear
matrix elements in 0νβ+β+/0νECβ+/0νECEC within
the framework of IBM-2 in the closure approximation.
The closure approximation is expected to be good for
these decays since the virtual neutrino momentum is of
order 100 MeV/c and thus much larger than the scale of
nuclear excitations. By using these matrix elements and

the phase space factors of Ref. [9], we have calculated
the expected 0νβ+β+/0νECβ+ half-lives in all nuclei of
interest with gA = 1.269 and gV = 1, given in Table IV
and Fig. 2.
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IV. APPENDIX A

A detailed description of the IBM-2 Hamiltonian is
given in [23] and [29]. For most nuclei, the Hamilto-
nian parameters are taken from the literature [30–36].
The values of the Hamiltonian parameters, as well as the
references from which they were taken, are given in Ta-
ble V. The quality of the description can be seen from
these references and ranges from very good to excellent.
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TABLE V. Hamiltonian parameters employed in the IBM-2 calculation of the final wave functions along with their references.

Nucleus ǫdν
ǫdπ

κ χν χπ ξ1 ξ2 ξ3 c
(0)
ν c

(2)
ν c

(4)
ν c

(0)
π c

(2)
π c

(4)
π

58Nia 1.454
58Fe a 0.98 0.98 -0.26 0.00 -0.40 0.80 0.80 0.80
64Zn [30] 1.20 1.20 -0.22 -0.25 -0.75 -0.18 0.24 -0.18 -0.30 -0.50 0.30 -0.30 -0.50 0.30
64Ni a 1.346 -0.415 0.082
78Kr [31] 0.96 0.96 -0.18 -0.495 -1.127 -0.10 -0.10
78Se [32] 0.99 0.99 -0.21 0.71 -0.90 -0.10
96Ru a 1.08 1.08 -0.21 0.80 0.40 0.25 0.25 0.25 0.30 0.10 -0.50
96Mo [33] 0.73 1.10 -0.09 -1.20 0.40 -0.10 0.10 -0.10 -0.50 0.10
106Cd [34] 1.05 1.05 -0.325 1.25 0.00 -0.18 0.24 -0.18 0.20 0.15 0.00
106Pd [35] 0.760 0.844 -0.160 -0.22 -0.30 0.20 0.05 0.00 -0.45 -0.20 0.01
124Xe [36] 0.70 0.70 -0.14 0.00 -0.80 -0.18 0.24 -0.18 0.05 -0.16
124Te [34] 0.82 0.82 -0.15 0.00 -1.20 -0.18 0.24 -0.18 0.10
130Ba [36] 0.70 0.70 -0.175 0.32 -0.90 -0.18 0.24 -0.18 0.26
130Xe [36] 0.76 0.76 -0.19 0.50 -0.80 -0.18 0.24 -0.18 0.30 0.22
136Ce [36] 0.90 0.90 -0.21 0.79 -1.00 -0.18 0.24 -0.18 0.26 -0.11
136Ba [36] 1.03 1.03 -0.23 1.00 -0.90 -0.18 0.24 -0.18 0.30 0.10

a Parameters fitted to reproduce the spectroscopic data of the
low lying energy states.


