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ABSTRACT — The rate of muon capture in a muonic hydrogen atom is calculated

in heavy-nucleon chiral perturbation theory up to next-to-next-to leading order. To

this order, we present the systematic evaluation of all the corrections due to the

QED and electroweak radiative corrections and the proton-size effect. Since the

low-energy constants involved can be determined from other independent sources

of information, the theory has predictive power. For the hyperfine-singlet µp capture

rate Γ0, our calculation gives Γ0 = 712 ± 5 s−1, which is in excellent agreement

with the experimental value obtained in a recent high-precision measurement by the

MuCap Collaboration.
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I. INTRODUCTION

In a recent MuCap Collaboration experiment [1], the rate Γ0 of muon capture from

the hyperfine-singlet state of a µp atom was measured to 1 % precision. The reported

experimental value is

Γexp
0 (µ−p→ νµn) = 714.9± 5.4(stat)± 5.1(syst) sec−1 . (1)

As is well known [2], the µp capture process is the primary source of information on

the pseudoscalar form factor, GP (q
2), which appears in the nucleon matrix element

of the axial-vector weak current (see Eq.(6)); for recent reviews, see [3, 4]. To be

more specific, µp capture is sensitive to the quantity gP ≡ GP (q
2=−0.88m2

µ), where

q2 is the four-momentum transfer squared relevant to µp capture (mµ is the muon

mass). Bernard et al. [5] used heavy baryon chiral perturbation theory (HBχPT) to

calculate GP (q
2); their results essentially reproduce those obtained earlier by Adler

and Dothan [6] based on PCAC, and by Wolfenstein [7] with the use of the dispersion

relations. It is to be emphasized, however, that the systematic expansion scheme

of HBχPT allows us to conclude that the corrections to the expression for GP (q
2)

obtained by Bernard et al. are very small [8]. The value of gP derived from HBχPT

is gP = 8.26 ± 0.23 [5]. Meanwhile, the empirical value of gP extracted from Γexp
0

with the use of the theoretical framework provided in Ref.[9] is gexpP =8.06± 0.55 [1],

which is consistent with the theoretical value.

It is to be noted that a theoretical treatment of µp capture that matches the

1 % experimental accuracy requires a rigorous treatment of the radiative corrections

(RCs) of order α. Czarnecki et al. [9] calculated the relevant RCs within the theo-

retical framework developed by Sirlin and Marciano [10, 11]. In this approach (to be

referred to as the S-M approach), the RCs of order α are decomposed into so-called

“outer” and “inner” corrections. The outer correction is a universal function of the

lepton velocity and is model-independent, whereas the inner correction is affected

by the short-distance physics and hadron structure. The inner corrections arising

from photon and weak-boson loop diagrams are divided into high-momentum and

low-momentum contributions. The former is evaluated in the current-quark picture,

while the latter is estimated with the use of the phenomenological electroweak nucleon

form factors. The expression for Γ0 including the RCs of order α due to Czarnecki et

2



al. [9] was used by the MuCap Group in deducing the above-mentioned value of gexpP

from Γexp
0 . We remark that, although the estimates of inner corrections in the S-M

approach are considered to be reliable to the level of accuracy quoted in the literature,

the possibility that these estimates may contain some degree of model dependence is

not totally excluded. This motivates us to present here a calculation of the RCs of

order α based on model-independent effective field theory (EFT).

In this note we evaluate the RCs for µp capture based on HBχPT, which is an

effective low-energy field theory of QCD, see e.g., Refs. [12–14]. In HBχPT, the short-

distance hadronic and electroweak processes are subsumed into a well-defined set of

low-energy constants (LECs), which means that the LECs should systematically pa-

rameterize the inner corrections. Therefore, provided that there are sufficient sources

of information to fix these LECs, the HBχPT approach gives model-independent re-

sults with the possibility to estimate higher-order corrections. In two of the earlier

publications we used the same EFT approach to evaluate RCs to order α for the

neutron β-decay [15], and for the inverse β-decay reaction, ν̄ep → e+n, at low en-

ergies [16]. It is to be noted that the EFT treatments of the µp capture process,

neutron β-decay and the ν̄ep→ e+n reaction involve the same LECs. Therefore, if we

can determine these LECs with the use of experimental information for one process,

we can make model-independent predictions for observables for the other reactions.

The remainder of this article is organized as follows. In Section II we explain the

basic ingredients that enter into the HBχPT calculation of the µp capture rate. We

describe in Section III the evaluation of the RCs to order α, and give in Section IV

the numerical results for the µp capture rate including the RCs. Finally, Section V

is dedicated to discussion and conclusions.

II. HBχPT CALCULATION OF THE µp CAPTURE RATE

The theoretical framework is essentially the same as the one employed in Ref. [15].

We therefore present here only a brief recapitulation of our formalism, relegating

details to Ref. [15]. HBχPT assumes that the characteristic four-momentum for the

process, Q ≪ Λχ ≃ 1 GeV, where Λχ is the chiral scale. This theory contains two

perturbative expansions, one in terms of the expansion parameter Q/Λχ ≪ 1 and
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the other in terms of Q/mN ≪ 1, where mN is the nucleon mass. Since mN ≃ Λχ,

the two expansions are considered simultaneously. When we include RCs in our

considerations, a third expansion parameter α enters the theory. Our concern here is

to carry out a HBχPT calculation up to next-to-next-to-leading order (NNLO), i.e.,

to order (Q/Λχ)
2 ≃ α ≃ 1/137. In what follows, we first describe the contributions

that arise from the expansions in Q/Λχ and Q/mN . This part is based on the previous

HBχPT results that can be found in Refs. [17–19]. (We follow the notations used in

Ref. [17].) We then proceed to explain our calculation of RCs.

Muon capture being a low-energy process, the relevant weak interaction can be

expressed as the local current-current interaction, and the transition amplitude for

the ordinary muon capture (OMC) process in hydrogen, µ−p→ νµn , is given by

Mfi =
Gβ√
2
〈nνµ|l̂αĵα|(µ−p)atom〉 ≈

Gβ√
2

√
mµ+mN

2mµmN

Ψµp(0)〈nνµ|l̂0ĵ0− l̂· ĵ|µp〉

≡ NrelGβ

2

√
mµ+mN

2mµmN

Ψµp(0)TNR . (2)

In the above, Gβ ≡ GFVud, where GF is the Fermi coupling constant determined from

the muon decay rate, and the Vud is the CKMmatrix element given in Ref. [23]. Ψµp(0)

is the µp-atomic wave function at r=0. The normalization factor Nrel, which arises

from “matching” between the standard relativistic normalization of spinors and the

corresponding non-relativistic normalizations is given by Nrel = 4mN

√
mµEν , where

Eν =
(mµ+mp)

2−m2
n

2(mµ+mp)
= 99.149MeV . (3)

The non-relativistic transition amplitude, TNR, in Eq.(2) is written as

TNR = χ†
nχ

†
ν M̂χµχp , (4)

where χp,n and χµ,ν are the nucleon and lepton two-spinors, respectively; the explicit

expression for the operator M̂ will be given in what follows.

The matrix element of the leptonic weak current operator, l̂α in Eq.(2) is given by

lα ≡ 〈ν|l̂α|µ〉 = uνγα(1−γ5)uµ , which in the present case takes the form

l0 =
1√
2
χ†
ν(1−~σ · ν̂)χµ , l =

−1√
2
χ†
ν(1−~σ · ν̂)~σχµ , (5)
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where ν̂ is the unit vector in the direction of the neutrino momentum. The matrix

elements of the nucleon weak current operator, ĵα= ĵαv −ĵαa , are given by[30]

〈n(p′)|ĵαv |p(p)〉 ≡ jαv = un(p
′)

[
F v
1 (q

2)γα+F v
2 (q

2)
iσαβqβ
2mN

]
up(p)

〈n(p′)|ĵαa |p(p)〉 ≡ jαa = un(p
′)

[
GA(q

2)γαγ5+GP (q
2)
qβ
mµ

γ5

]
up(p) , (6)

where F v
1 (q

2), F v
2 (q

2), GA(q
2) and GP (q

2) are the vector, weak-magnetism, axial-

vector and pseudoscalar form factors, respectively, and where the mN is the average

nucleon mass, mN = 1
2
(mp + mn). In the rest frame of the initial proton, the non-

relativistic nucleon currents in HBχPT are given by[31]

jαv = Nn n̄v(p
′)

{[
2mN

E ′+mN
F v
1 (q

2)− E ′−mN

E ′+mN
F v
2 (q

2)

]
vα

×
[

1

E ′+mN

(F v
1 (q

2)+F v
2 (q

2))− 1

2mN

F v
2 (q

2)

]
qα

+
2

E ′+mN
[Sα, S ·q ](F v

1 (q
2)+F v

2 (q
2))

}
pv(0) ,

jαa =Nn n̄v(p
′)

{
GA(q

2)

[
2Sα−

2(S ·q) vα
E ′+mN

]

+GP (q
2)

2(S ·q) qα
mµ(E ′+mN)

}
pv(0) , (7)

with the heavy nucleon spinors, nv(r
′) and pv(0) defined as [12]

nv(p
′) =

√
2mN

E ′+mN

1

2
(1+v/)un(p

′) , pv(0) =
1

2
(1+v/)up(p) . (8)

The kinematics in the rest-frame of the proton is as follows. The four-momenta

of the initial proton and the outgoing neutron are p = (mN , 0) and p′ = (E ′,p′),

respectively, where E ′=
√
m2

N+p′2 and p′ =−pν . The four-momentum transfer in

the OMC process is q = p′−p = (q0,q), with q0 = E ′−mN = p
2
ν

2mN
+O(m−2

N ) and

q =−pν . Expanding the proton and neutron spinors in Eq.(7) up to O(m−2
N ) leads

to

j0(q)=χ†
n [f

v
1 (q) + (~σ · ν̂)fa

3 (q)]χp ,

j(q) =−χ†
n [i(~σ × ν̂)f v

2 (q) + ν̂f v
3 (q) + ~σfa

1 (q) + ν̂(~σ · ν̂)fa
2 (q)]χp , (9)

where the non-relativistic polar-vector form factors are related to the standard Lorentz

covariant form factors in the proton rest frame via

f v
1 (q) = F v

1 (q
2)

(
1− q2

8m2
N

)
+

q2

4m2
N

F v
2 (q

2) ,
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f v
2 (q) =

|q|
2mN

[
F v
1 (q

2)+F v
2 (q

2)
]
, f v

3 (q) =
|q|
2mN

F v
1 (q

2) , (10)

while the non-relativistic axial-vector form factors are related to the covariant axial

form factors via

fa
1 (q) = GA(q

2)

(
1− q2

8m2
N

)
, fa

2 (q) = − |q|2
2mµmN

(
1 +

q2

8m2
N

)
GP (q

2) , (11)

fa
3 (q) =

|q|
2mN

(
GA(q

2) +
q2

2mµmN

GP (q
2)

)
. (12)

The non-relativistic form factors appearing in Eqs. (10), (11) and (12) have been

calculated in Refs. [17, 18, 20, 21], up to next-to-next-to leading order (NNLO) or

O((Q/Λχ)
3), in HBχPT. In the proton rest-frame, they are given by

f v
1 (q) = 1 + κV

q2

4m2
N

− 1

(4πfπ)2

{
q2
(
2

3
g2A + 2B

(r)
10

)
+ q2

(
5

3
g2A +

1

3

)
ln

[
Mπ

λ

]

−
∫ 1

0

dz
[
M2

π(3g
2
A+1)− q2z(1−z)(5g2A+1)

]
ln

[
1− z(1−z) q

2

M2
π

]}
,

f v
2 (q) =

|q|
2mN

{
1 + κV + g2A

4πmNMπ

(4πfπ)2

∫ 1

0

dz

[
1−
√
1−z(1−z) q

2

M2
π

]}
,

f v
3 (q) =

|q|
2mN

,

fa
1 (q) = gA

(
1− q2

8m2
N

)
+

q2

(4πfπ)2
B̃3 ,

fa
2 (q) =

|q|2
q2−M2

π

{
gA

(
1+

q2

8m2
N

)
− 2M2

π

(4πfπ)2
B̃2

}
+

|q|2
(4πfπ)2

B̃3 ,

f v
3 (q) =

|q|
2mN

gA

(
1− q2

q2−M2
π

)
. (13)

In terms of the quantities derived above, the operator M̂ [see Eq.(2)] is written as

M̂ = (1−~σl ·ν̂) [ f v
1 (q)− i~σl ·(~σN×ν̂)f v

2 (q)− (~σl ·ν̂)f v
3 (q)

−(~σl ·~σN)fa
1 (q)− (~σl · ν̂)(~σN ·ν̂)fa

2 (q) + (~σN ·ν̂)fa
3 (q) ] , (14)

where ~σl and ~σN are the spin matrices acting on the lepton and nucleon spinors,

respectively. We may choose the direction of the emitted neutrino as our z-axis, i.e.,
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ν̂ ≡ ẑ. In the helicity basis, the amplitude TNR appearing in Eqs.(2) and (4) is given

as

TNR ≡ M̃(h;S, Sz) =
∑

Sp
z ,S

µ
z

〈1
2
Sp
z ;
1

2
Sµ
z | 1

2

1

2
;SSz〉 〈

1

2
Sn
z ;

1

2
,
−1

2
|M̂|1

2
Sp
z ;
1

2
Sµ
z 〉 (15)

where h=L (h=R) corresponds to the positive (negative) helicity state of the final-

state neutron, and S=0 (S=1) represents the hyperfine-singlet (triplet) state of the

muonic hydrogen atom [32]. The constraint, Sz = Sn
z − 1

2
, reduces the eight possible

helicity amplitudes in Eq.(15) to the following three:

M̃(L; 0, 0) =
√
2 (f v

1 + 2f v
2 + f v

3 + 3fa
1 + fa

2 + fa
3 ) ,

M̃(L; 1, 0) =
√
2 (f v

1 − 2f v
2 + f v

3 − fa
1 + fa

2 + fa
3 ) ,

M̃(R; 1,−1) = 2 (f v
1 + f v

3 − fa
1 − fa

2 − fa
3 ) . (16)

Finally, since the binding energy of the muonic hydrogen atom can safely be ignored,

the total OMC rate in a hyperfine state S is given as

ΓS =
1

2(mµ+mN)
· 1

2S+1

∫
d3p′

(2π)32E ′
d3pν

(2π)32Eν
(2π)4δ4(PI − p′ − pν) |Mfi|2

=
G2

βN 2
rel

16mµmN

· 1

2S+1
|Ψµp(0)|2

∫
d3p′

(2π)32E ′
d3pν

(2π)32Eν

(2π)4δ4(PI−p′−pν)
∑

Sz ,h

∣∣∣M̃(h;S, Sz)
∣∣∣
2

=
G2

βN 2
rel

2S+1
· |Ψµp(0)|2
64πmµmN

(
Eν

Eν+
√
m2

N+E2
ν

)∑

Sz ,h

∣∣∣M̃(h;S, Sz)
∣∣∣
2

, (17)

where PI is the initial total four-momentum. If we ignore radiative corrections and

identify Ψµp(0) with the lowest-order 1s-state Coulomb wave function, Φ1s(0) =

(α3µ3
µp/π)

1/2 with µµp ≡mµmp/(mµ+mp), then the last line in Eq.(17) agrees with

Eq.(26) in Ref. [17]. In the present work, however, we do include radiative correc-

tions, and it turns out that, at O(α) under consideration, there appear two types of

significant radiative corrections to Φ1s(0), and these corrections will be discussed in

the following section.

We now evaluate the form factors in Eq.(13), which determine the helicity am-

plitudes in Eq.(16). Table I shows the numerical values of the nucleon weak

form factors and helicity amplitudes calculated for the four-momentum transfer,

q2 = q2∗ ≡ −0.88m2
µ, relevant to OMC. These numerical values were obtained with
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the use of the following input parameters: gA = 1.266, κV = 3.706, fπ = 92.42 MeV,

Mπ = 139.57 MeV, and mN = 938.919 MeV. The LECs appearing in Eq.(13) are

determined following Refs. [12, 20]. First, B̃2 is fixed from the Goldberger-Treiman

(G-T) discrepancy relation,

2M2
π

(4πfπ)2 gA
B̃2 =

gAmN

gπNNfπ
− 1 . (18)

For gπNN = 13.40 and gA = 1.266 (see, e.g., PDG2002 [22]), this relation leads to

B̃2 = −0.176. The values of gA and gπNN have been slightly changing over the years;

if we use the latest values gπNN =13.05 and gA =1.270 (taken from PDG2012 [23]),

we obtain B̃2 = −0.498. To what extent the existing uncertainties in gA and gπNN

affect the calculated µp capture rate will be discussed in the last section. The LEC,

B̃3, is fixed from the nucleon axial radius,

B̃3 =
gA
2

(4πfπ)
2 〈r2A〉

3
.

The value of the iso-vector axial radius 〈r2A〉1/2 has large uncertainty, see e.g., Ref. [12].
From the empirical axial form factor GA(t) = gA/(1− t/m2

A)
2, we find 〈r2A〉1/2 =

√
12/mA = 0.62 fm (0.57 fm) for mA =1100 MeV (1200 MeV). We adopt the value

〈r2A〉1/2 = 0.65 fm cited in Ref. [20] to find B̃3 = 3.08. The last of the LECs in Eq.(13),

B̃
(r)
10 , is related to the nucleon iso-vector form factor [20]

1

6
〈r2V 〉 = −2B̃

(r)
10(Λχ)

(4πfπ)2
− 1+7g2A

6(4πfπ)2
− 5g2A+1

3(4πfπ)2
ln

(
Mπ

Λχ

)
.

From the measured value of 〈r2V 〉 we obtain B̃(r)
10 = 0.63 for Λχ = 1 GeV. These values

of the LECs were used in obtaining the numerical results given in Table I.

TABLE I: The OMC form factors Eq.(13) and helicity amplitudes Eq.(16) at q2∗ = −0.88m2
µ,

obtained for gA = 1.266 and gπNN = 13.40.

f v1 (q∗) f v2 (q∗) f v3 (q∗) fa1 (q∗) fa2 (q∗) fa3 (q∗) M̃(L; 0, 0) M̃(L; 1, 0) M̃(L; 1,−1)

0.971 0.244 0.053 1.245 -0.419 0.044 3.447 -0.766 0.153
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III. RADIATIVE CORRECTIONS

In this section we consider radiative corrections to OMC, which consist of the

usual QED loop corrections and loop corrections involving a weak-interaction vertex.

Relegating the discussion of the latter to the end of the section, we first discuss the

QED loop corrections.

The initial state in µ−p capture is a charge-neutral µ−p-atom, and the final state

involves only electrically neutral particles. Therefore, to the order in HBχPT under

consideration, the bremsstrahlung process does not contribute to the “standard” ra-

diative corrections (we ignore the higher order, i.e., O(α/mN) corrections which are

negligible.) There are, however, two QED loop corrections to the initial state wave

function which must be considered: the vacuum polarization correction, δψVP
1s (0), and

the correction due to the finite proton size, δψFS
1s (0). Inclusion of these corrections

changes the lowest-order muonic atomic wave function, Φ1s(0), into Ψ1s(0):

Ψ1s(0) = Φ1s(0)
[
1 + δψVP

1s (0) + δψFS
1s (0)

]
. (19)

Eiras and Soto [24] calculated δψVP
1s (0) to order O(α), while Friar [25] discussed O(α)

contributions to δψFS
1s (0).

The analytic expression for δψVP
1s (0) derived by Eiras and Soto [24] reads

δψVP
1s (0) = −α

π

[{
5

9
− π

4
ξ +

1

3
ξ2 − π

6
ξ3 +

1

3
(ξ4+ξ2−2)F1(ξ)

}

γ/

+

{
11

18
− 2

3
ξ2 +

2π

3
ξ3 − 12ξ4+ξ2+2

6
F1(ξ)−

4ξ4+ξ2−2

6(ξ2−1)
[1− ξ2F1(ξ)]

}

pole

+

{
2

3
+
π

4
ξ − 1

9
ξ2 +

13π

18
ξ3 − 1

9
(13ξ4− 11ξ2−11)F1(ξ)

−1

3
(4ξ3+3ξ)F2(ξ)+

1

3
(4ξ4+ξ2−2)F3(ξ)+

1

3

(
4ξ2+

11

3

)
ln
ξ

2

}

multi−γ

]
(20)

where ξ ≡ me/(αµµp)∼O(1); the expressions for the functions Fi(ξ) (i = 1, 2, 3) in

Eq.(20) can be found in Ref. [24]. As explained in Ref. [24], the first curly bracket

in Eq. (20) corresponds to zero photon exchange contributions, the second bracket

corresponds to Coulomb pole subtraction terms, and the third bracket represents the

multi-photon exchange contributions. Thus δψVP
1s (0) consists of three parts:

δψVP
1s (0) = [δψVP

1s (0)]γ/ + [δψVP
1s (0)]pole + [δψVP

1s (0)]multi−γ. (21)
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We denote by Γ
(0)
S the µp capture rate for the hyperfine-state S (S = 0 or 1), obtained

by using Φ1s(0) for Ψµp(0) in Eq.(17). The use of Φ1s(0)
[
1+δψVP

1s (0)
]
for Ψµp(0) in

Eq.(17) changes Γ
(0)
S into

Γ
(0)
S + δΓVP

S ≡ Γ
(0)
S [1+ 2δψVP

1s (0)]. (22)

Table II shows the numerical results for (δΓS)
VP/Γ

(0)
S = 2δψVP

1s . The first three columns

show the individual contributions of the three terms in Eq.(21), while the fourth

column gives 2δψVP
1s , which is the sum of these three contributions. For comparison,

in the fifth and sixth columns, we quote the values of 2δψVP
1s (in our notation) obtained

in Refs. [9, 26]. Our result for 2 δψVP
1s (0) agrees with the value given by Czarnecki

TABLE II: Corrections from vacuum polarization (VP) effects, (δΓS)
VP/Γ

(0)
S = 2δψVP

1s (0).

The last two columns give the values of 2δψVP
1s (0) in Refs. [9, 26] for comparison.

Zero photon Coulomb pole Multi-photon Total VP Czarnecki,

exchange subtraction exchange contribution Marciano, Goldman

2[δψVP
1s (0)]γ/ 2[δψVP

1s (0)]pole 2[δψVP
1s (0)]multi−γ 2 δψVP

1s (0) & Sirlin [9] [26]

1.045α
π 0.358α

π 0.250α
π 1.654α

π 1.73α
π 2.95α

π

et al. [9] within ∼5%. Since the size of the 2δψVP
1s correction itself is about 0.4%,

we can say this part of QED corrections is controlled with sufficient accuracy for our

purpose.

The proton finite-size correction up to O(α) is given as [25]

δψFS
1s (0) = −αµµp〈r〉p . (23)

where 〈r〉p is the first moment of the proton charge distribution, ρp(r). Unfortunately,

〈r〉p cannot be measured directly, whereas the second moment, 〈r2〉p, can be extracted

from experimental data. In order to evaluate 〈r〉p, we assume a certain functional

form of the proton charge distribution, ρp(r), involving a single parameter, and after

determining this parameter from the measured value of 〈r2〉p, we deduce 〈r〉p from the

assumed ρp(r). Table III gives 〈r〉p and 〈r2〉p calculated for three different functional

10



forms of ρp(r). The results for the exponential form, ρp(r)=1/(8πr30)e
−(r/r0), are given

in the fourth column; the exponential form corresponds to a dipole-type proton form

factor (in momentum space), which reproduces very well the elastic electron-proton

scattering data. We also present the results for two other commonly used forms

for ρp(r), the uniform distribution (second column), and the Gaussian form (third

column); these results have been extracted from Ref. [25]. The last row in table III

TABLE III: First and second moments of the proton charge distribution calculated for

various forms of ρp(r) characterized by a single parameter.

Uniform Gaussian Exponential

ρp(r)
3

4πR3 θ(R− r)
(

1√
πr0

)3
e−(r/r0)2 1

8πr3
0

e−(r/r0)

〈r〉p 3R/4 2r0/
√
π 3r0

〈r2〉p 3R2/5 3r20/2 12 r20

〈r〉p/
√

〈r2〉p
√
15/4 = 0.968 2

√
2/3π = 0.931

√
3/2 = 0.866

shows the ratio 〈rp〉/
√
〈r2〉

p
for each assumed form of ρp(r). By taking the average of

the results for these three cases, we deduce 〈r〉p = (0.916± 0.051)
√
〈r2〉

p
; the “error

estimate” here has been obtained by interpreting the scatter of the results in table III

as a measure of uncertainty. Then, with the use of the experimental value of the

proton r.m.s. radius,
√

〈r2〉
p
= 0.862 fm [27][33], we find 〈r〉p = 0.790 ± 0.044 fm.

Using this value in Eq.(23) leads to δψFS
1s (0) ≃ −0.00275(1±0.056). Correspondingly,

the finite-proton-size correction to the capture rate ΓS in Eq.(17) is found to be

2 δψFS
1s (0) = −0.0055(1 ± 0.06). This result is essentially the same as that given in

Eq.(8) of Ref. [9]. Thus, the finite-proton-size correction is of the same order as the

vacuum polarization correction shown in Table II.

In addition to the two QED corrections discussed above, we need to consider the

“standard” radiative corrections involving a weak-interaction vertex. It is to be noted

that part of these corrections are already included in GF , if one uses (as we do here)

the value of GF determined from the measured muon lifetime. In the following, what

we simply call the “electroweak loop corrections” refer to those electroweak loop

11



corrections that have not been accounted for by the use of the GF derived from the

muon lifetime. We remark that, to the order in HBχPT under consideration, the

electroweak loop corrections are identical for µp capture and neutron beta-decay. We

can therefore utilize the results obtained for neutron beta-decay in, e.g., Refs. [15, 29].

Since the muon velocity, β, in the initial µp-atomic state is essentially zero, we can

take the limit of β → 0 in the previous evaluations of the radiative corrections to

the neutron beta-decay rate [15, 29], (In applying the results obtained for neutron

β-decay to the µp capture case, we must drop the bremsstrahlung contributions, since

both the initial and final states in µp capture contain only charge-neutral particles.)

Then the electroweak radiative loop correction to the µp capture rate is obtained as

Γ
(0)
S → Γ

(0)
S (1 +RCEW ) , (24)

with

RCEW =
α

2π

{
ẽRV (mN) + 3 ln

[
mN

mµ

]
− 27

4

}
(25)

In this expression the electroweak LEC, ẽRV (mN ), subsumes short-distance physics not

probed in the low-energy muon capture reaction. The value of this LEC at the scale,

λ =mN , has been determined in Refs. [15, 16] by comparing with the expressions

for the short-distance radiative corrections derived by Sirlin and Marciano [10, 11]

for the electroweak processes. The result is ẽRV (mN ) = 19.5. In the next section we

discuss the numerical consequences of our evaluation of the O(α) radiative and finite

proton-size corrections discussed in this section.

IV. NUMERICAL RESULTS FOR THE CAPTURE RATES, Γ0 AND Γ1

As explained earlier, Γ
(0)
0 (Γ

(0)
1 ) denotes the hyperfine-singlet (hyperfine-triplet)

capture rate calculated without including radiative corrections; viz., Γ
(0)
0 and Γ

(0)
1 are

obtained by identifying Ψµp(0) in Eq.(17) with Φ1s(0). Using the inputs listed in

Table I, we obtain

Γ
(0)
0 = 694 s−1 and Γ

(0)
1 = 11.9 s−1 , (26)

corresponding to the use of gA=1.266 and gπNN =13.40. The inclusion of the radiative

corrections discussed in Section III modifies Γ
(0)
S (S = 0, 1) to ΓS as

ΓS = Γ
(0)
S (1 +RCQED +RCEW) ; S = 0, 1. (27)

12



Here RCQED represents the corrections arising from the change in the atomic µp

wave function due to the vacuum-polarization and finite-proton-size effects, while, as

explained earlier, RCEW is the electroweak radiative correction:

RCQED = 2δψVP
1s (0) + 2δψFS

1s (0) (28)

RCEW =
α

2π

{
ẽRV (mN ) + 3 ln

[
mN

mµ

]
− 27

4

}
. (29)

We remark that, since the last two terms in Eq.(29) almost cancel each other, RCEW

has a pronounced dependence on the LEC, ẽRV (mN ), which characterizes the short-

distance processes.

The numerical consequences of including the radiative corrections are displayed

in Table IV, where ΓS (S =0, 1) are shown along with Γ
(0)
S and the changes due to

the individual contributions of RCQED and RCEW. Again, these results have been

obtained with the use of gA =1.266 and gπNN = 13.40. Table IV demonstrates that

the largest radiative correction to the OMC rate comes from RCEW, in conformity

with the results reported in Ref. [9]. In particular, for the hyperfine-singlet OMC

rate, which is of our main concern, RCEW changes Γ
(0)
0 by ∼2 %.

TABLE IV: The hyperfine-singlet and -triplet OMC rates, Γ0 and Γ1 (in units of s−1),

calculated with and without radiative corrections (the proton-finite-size effect is included

as part of RCQED) corresponding to gπNN =13.40 and gA=1.266.

Γ
(0)
0 Γ

(0)
0 (1+RCQED) Γ

(0)
0 (1+RCEW) Γ0 = Γ

(0)
0 (1+RCQED+RCEW)

694.4 693.2 709.9 708.7

Γ
(0)
1 Γ

(0)
1 (1+RCQED) Γ

(0)
1 (1+RCEW) Γ1 = Γ

(0)
1 (1+RCQED+RCEW)

11.9 11.9 12.2 12.1
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V. DISCUSSION AND CONCLUSIONS

In the previous section we have presented our numerical results obtained with the

use of representative values for the relevant input parameters. We now discuss to what

extent the uncertainties in these input parameters affect the calculated values of the

µp capture rates, ΓS (S=0, 1). We shall chiefly concentrate on the hyperfine-singlet

rate Γ0, a quantity of primary concern for most µp capture experiments.

As mentioned, the LEC, B̃2, is determined from the G-T discrepancy [see Eq.(18)],

and the fact that the current precision of the values of gA and gπNN is somewhat

limited leads to rather significant uncertainty in B̃2. The results in Table IV were

obtained for B̃2 = −0.176, which corresponds to gπNN =13.40 and gA=1.266 taken

from PDG2002 [22]. If we adopt gπNN = 13.05 and gA = 1.270 (values given in

PDG2012 [23]), then we obtain B̃2 = −0.498 and, correspondingly, Γ
(0)
0 = 701 s−1

and Γ
(0)
1 = 11.7 s−1. Thus, the uncertainty in B̃2 changes Γ

(0)
0 by 7 s−1 (about 1%

increase), and Γ
(0)
1 by 0.2 s−1 (about 2 % decrease). If we take into account (in the

last column in Table IV) the mentioned variation in Γ
(0)
0 , the corresponding change

in Γ0 ranges from 708.7 s−1 to 716.7 s−1; thus

Γ0 = 712.7×(1± 0.005) s−1, (30)

where the relative error was deduced from the 1 % difference between the above-

quoted two values of Γ
(0)
0 .

We next consider the uncertainty in the proton axial radius, (〈r2A〉)1/2, discussed
in Section II. The results shown in Table IV were obtained for (〈r2A〉)1/2 = 0.65 fm.

If we instead use (〈r2A〉)1/2 = 0.57 fm, corresponding to mA = 1200 MeV, we find

Γ
(0)
0 = 697.3s−1, an increase of 2.9 s−1 (or ∼ 0.5%). Again, if we consider (in the last

column in Table IV) the scatter in the value of Γ
(0)
0 , then the corresponding change

in Γ0 ranges from 708.7 s−1 to 712.9 s−1, i.e.,

Γ0 = 710.8×(1± 0.0025) s−1 (31)

where the relative error was deduced from the 0.5 % variation in Γ
(0)
0 . Taking the

average of the values in Eqs.(30) and (31), we arrive at

Γ0 = 712×(1± 0.006) s−1 , (32)
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where the error has been deduced from the quadratic sum of the errors in Eqs.(30)

and (31).

In connection with Table IV we have pointed out that, of all the corrections of

O(α), the electroweak loop correction, RCEW, is largest; it increases Γ
(0)
0 by as much

as ∼2 %. So, if RCEW is not evaluated with sufficient accuracy, the theoretical error

in Γ0 can be larger than indicated by Eq.(32). As already mentioned, RCEW is a

sensitive function of the LEC, ẽRV (MN), as the last two terms in Eq.(29) nearly cancel

each other. In the present work, following Ref.[15], we have determined ẽRV (MN ) by

comparing our HBχPT results with those obtained in the S-M method [10, 11]. Since

this method is generally considered to be highly reliable, we believe that ẽRV (MN )

is known with sufficient accuracy to make the uncertainty in Γ0 related to RCEW

much smaller than 0.6 %, the error arising from the other sources [see Eq.(32)]. We

remark that the same LEC, ẽRV (mN ), also appears in neutron beta decay [15] and the

inverse beta decay process, ν̄e+p → e++n [16]. It is therefore, in principle, possible

to use either the neutron β-decay or the µp capture to control ẽRV (mN) and make

predictions for the other processes involving the same LEC. This would allow us to

deduce ẽRV (mN ) without using the result of the S-M method.

In conclusion, the present HBχPT calculation of the hyperfine-singlet µp capture

rate Γ0, including radiative and proton finite-size corrections of O(α), gives

Γ0 = 712± 5 s−1 . (33)

This is in excellent agreement with the experimental value quoted in Eq.(1). The

0.6 % theoretical error in Eq.(33) is dominated by the uncertainties in the input

values of gA and gπNN that enter into the G-T discrepancy.
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