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Abstract

Background: Two important parametrizations of momentum-dependent nucleonic fields, pro-

posed for the simulations of central heavy-ion collisions, one by Gale et al. and the other by Welke

et al., suffer from practical limitations. The first gives rise to mean fields isotropic in momentum,

even when underlying momentum distributions are anisotropic, making descriptions of early non-

equilibrium stages of collisions unrealistic. The second parametrization gives rise to anisotropic

mean fields, but is computationally expensive, since the mean field has to be computed separately

for every location of a nucleon in phase-space, through folding.

Purpose: Here, we construct a parametrization of the nucleonic mean field, that yields an

anisotropic mean field for an anisotropic momentum distribution and is inexpensive computa-

tionally. To demonstrate the versatility of our parametrization, we take the case of results from

the parametrization by Welke et al. and attempt to approximate them.

Method: In arriving at a suitable anisotropic mean field potential, we draw, on one hand, from

the idea behind the parametrization of Gale et al., of a separable expansion of the potential energy,

and, on the other, from the idea of a parallel expansion of the energy and mean field, in anisotropy.

Results: We show that using our novel parametrization we can qualitatively and partially quan-

titatively reproduce the features of the mean-field parametrization of Welke et al..

Conclusions: This opens up the possibility of exploring the effects of mean-field anisotropy in

collisions, without the penalty of computational cost behind the folding parametrization.
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I. INTRODUCTION

Heavy-ion collisions are complex events on account of many physical effects competing

in the dynamics. To effectively simulate the collisions, simplifying assumptions and ap-

proximations need to be adopted. Fortunately, excessive details are likely not essential for

overall outcomes of those simulations, given superposition of the effects over space and re-

action history and the fact that reaction observables tend to exhibit smooth variations with

characteristics of the reactions and measurement criteria.

Complexity and effective averaging over space and history in the collisions make it tempt-

ing to simplify calculations at the level of numerical decisions. However, this type of simplifi-

cations have led to the commonplace for the collision simulations, where simulations with the

same or similar physical assumptions yield1 different predictions for observables [1]. Indeed,

it is difficult to judge the quality of approximations, if an exact limit cannot be approached.

With this, it can be beneficial to adopt simplifications at the level of the theory for the

collisions, in such a fashion that, on one hand, any sought interesting physical effects can be

captured and, on the other, the exact solution may be approached in a systematic manner.

The limit of exact solution can then serve to validate the approximations, in addition to

the conservation laws [2]. In this context, we address here the formulation of momentum

dependence within the transport theory for heavy-ion collisions.

To provide the background, the heavy-ion collisions are commonly described in simu-

lations in terms of phase-space Wigner distributions f , for nucleons and other particles,

that follow the Boltzmann-Uehling-Uhlenbeck (BUU) [3] equation with nucleon optical po-

tential U . An efficient way of solving the equation involves representing f in terms of

test-particles [4], Nt per physical nucleon, with exact solution to the equations approached

for Nt → ∞. The collisions offer, in particular, a unique opportunity of studying U at

supranormal densities [5]. The interplay of the momentum dependence of the nucleon opti-

cal potential U and collision observables turned to be of utmost importance in the heavy-ion

collision theory. Not only does momentum dependence play a significant role in generation

of collective flow, according to the transport calculations [6], but it is also crucial for par-

ticle production [7]. In particular, in order to properly constrain the nuclear compression

1 Community meetings have been dedicated to the issue, in particular at ECT* Trento in 2003 [1] and 2006.
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modulus K, defined as

K = p2F
d2(E/A)

dp2F
, (1)

where pF is the Fermi momentum and E/A the binding energy per nucleon, one must take

the momentum dependence of nucleon-nucleon interactions into account. In 1976, Blaizot et

al. [8] showed that K could be inferred by measuring the energy of the isoscalar monopole

resonance in medium and heavy nuclei, and arrived at the value of K = 210±30 MeV. Flow

data, however, for quite some time seemed to be describable by both a momentum-dependent

“soft” eos (K ≈ 210 MeV) or a momentum-independent “hard” eos (K ≈ 380 MeV) [9, 10].

Eventually, though, it became possible to decide on the momentum dependence with heavy-

ion observables. Pan and Danielewicz [6] demonstrated that the best agreement between

sideward flow data and the results from transport calculations could be obtained when

applying a momentum-dependent “soft” eos.

Several approaches to the momentum dependence of the optical potential have been

put forward in the literature (see [11] for a review article). The particularly well-known

parametrizations, utilized directly or indirectly in BUU calculations, are the early parametri-

zation by Gogny [12], the ansatz by Gale, Bertsch and Das Gupta [10] and the one by Welke

et al. [13]. In Sec. II, the latter two parametrizations are discussed in more detail, and

the results by Welke et al. serve as a reference for our calculations. Following Landau

quasiparticle theory [14], inherent in these approaches are functional expressions for the

potential energy density V and for its functional derivative with respect to the single-particle

phase-space density f(r,p),

U =
δV

δf

∣

∣

∣

∣

p

, (2)

namely the nucleonic mean field (or optical potential) U .

The important aspect of the formulation of Gale et al. [10], of the momentum-dependent

potential, is that the effort in integrating [2] the mean-field part of the BUU equation grows

linearly with the test-particle number Nt, paralleling the case of momentum-independent U ,

making it easy to approach the limit of an exact solution. On the other hand, the effort

in integrating the equation with the potential from Welke et al. [13] grows as N2
t . The

calculational convenience of [10] comes, though, at a price in that the optical potential U ends

up being isotropic in momentum space. However, if the phase-space density f is anisotropic

in momentum space, one may expect U to be anisotropic as well. The deficiency of the
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formulation by Gale et al. [10] is likely to get more and more serious the higher the energy

of the collision and especially at the early stages of the collision when f is most anisotropic.

Here, we show that it is possible to extend the formulation [10] to arrive at U anisotropic

in momentum, without scaling up the calculational effort as in [13]. To demonstrate the

flexibility of the new formulation for U , we take on the formulation by Welke et al. and

attempt to reproduce its results for f representing typical situations in heavy-ion collisions.

Our work is based on the M.Sc. Thesis [15]. In our strategy, for the sake of intrinsic

consistency, we start out by considering the potential energy V of a system anisotropic in

momentum and derive U from V (2). We parametrize V taking into account, on one hand,

general physical expectations and, on the other, the need to carry out efficiently BUU trans-

port calculations, such as within the code by Danielewicz [5], while ensuring the capability

to explore different anisotropies of U . The construction of V involves introducing separa-

ble interactions in p-space where different terms can represent different spherical harmonics

through which the anisotropy explicitly enters the mean field. We attempt to make our

approach suitable for different stages of a heavy-ion collision. In comparing our results to

those of Welke et al., for partially equilibrated f , we describe the anisotropy of f in terms

of an axial anisotropy parameter ε. In addressing the first stages of collisions, we consider

the situation of two separated Fermi spheres in momentum space, for projectile and tar-

get. Several efforts in the literature [16–18], with the goal of coping with the early-stage

momentum-anisotropies, specifically consider the latter type of superposition.

The work is organized as follows. In Sec. II, we present the models by Gale, Bertsch, Das

Gupta (GBD) and by Welke et al. (WPKDG). The WPKDG model, requiring the deter-

mination of a 3-dimensional integral for every relevant phase-space location, at every time

step of a BUU calculation, is computationally very costly. By contrast, GBD requires the

determination of integrals only for every relevant spatial location. In that section we also

introduce our own ansatz for V and U , based on a spherical harmonics expansion (SHE).

That ansatz also requires the determination of integrals only for every relevant spatial loca-

tion. Our SHE results for ground-state, excited-state and collision scenarios are represented

in Sec. III, and our approach is tested there against the WPKDG parametrization. The

benefits of SHE for BUU calculations, in terms of increased computational efficiency and

reduced Monte-Carlo noise, which are disadvantages of WPKDG, are outlined in Sec. IV.
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II. THEORETICAL CONSIDERATIONS

A. Implicit anisotropy in mean fields

The special feature of GBD is that it is formulated in the local frame where the average

nucleonic momentum 〈p〉 vanishes. Alternatively, the nucleonic momenta may be specified

relative to 〈p〉 in another frame. This may be contrasted with WPKDG. Both models are

based on Skyrme-type interactions [19] for the density-dependent part of the energy density

and the mean field. In the case of GBD, the potential energy density can be written as [10]

VGBD(ρ(r)) =
A

2

ρ2(r)

ρ0
+

B

σ + 1

ρσ+1(r)

ρσ0

+ C
ρ(r)

ρ0

∫

d3p′
f(r,p′)

1 +
[

p′−〈p〉
Λ

]2 . (3)

Accordingly, following (2), one obtains the nucleonic mean field

UGBD(ρ(r),p) = A

(

ρ(r)

ρ0

)

+ B

(

ρ(r)

ρ0

)σ

+
C

ρ0

∫

d3p′
f(r,p′)

1 +
[

p′−〈p〉
Λ

]2

+
C

ρ0

ρ(r)

1 +
[

p−〈p〉
Λ

]2 . (4)

Note that f – where not otherwise stated – represents the single-particle phase-space density,

normalized according to ρ(r) =
∫

d3p′ f(r,p′).

Within WPKDG, the energy density is parametrized as [13]

VWPKDG(ρ(r)) =
A

2

ρ2(r)

ρ0
+

B

σ + 1

ρσ+1(r)

ρσ0

+
C

ρ0

∫ ∫

d3p d3p′
f(r,p)f(r,p′)

1 +
[

p−p′

Λ

]2 . (5)

This leads to the mean field of the form

UWPKDG(ρ(r),p) = A

(

ρ(r)

ρ0

)

+ B

(

ρ(r)

ρ0

)σ

+ 2
C

ρ0

∫

d3p′
f(r,p′)

1 +
[

p−p′

Λ

]2 . (6)

Inherent in both models are the 5 parameters A, B, σ, C and Λ. From those parameters, σ is

particularly strongly tied to the incompressibility K, while Λ determines the high-p behavior
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of U . To constrain the parameters, a demand is placed that the energy per nucleon minimizes

with E/A = −16 MeV at the saturation density ρ0 = 0.16 fm−3. For both parametrizations,

GBD and WPKDG, the incompressibility is chosen equal to K ≃ 215 MeV, and the effective

mass ratio at saturation momentum is m∗/m ≃ 0.7. For WPKDG, specific values of the

potential at ρ0 are U(ρ0, p = 0) ≃ −75 MeV and U(ρ0, p
2/2m ≃ 300 MeV) = 0. The GBD

parametrization may be considered an approximation to WPKDG, and this issue has been

explored to a degree in [13]. With SHE we want to develop a qualitatively better approxi-

mation to WPKDG, while still keeping the method computationally inexpensive, as GBD.

B. Explicit anisotropy in mean fields

The essential idea of SHE, borrowed from GBD [10], is that of a separable representation

for the energy functional. A separable representation, with a limited number of terms,

could be adjusted to represent results from microscopic theory, obtained for different non-

equilibrium situations, such as Dirac-Brueckner [20]. In lieu of a microscopic theory, we

take the intuitively appealing WPKDG parametrization and examine to what extent we

can reproduce its results with SHE. If we can be successful here, we may be successful

with a microscopic theory as well. Otherwise, following a phenomenological strategy, as

common in heavy-ion collisions, we may use SHE as the starting point and see whether

collision observables can constrain the energy functional constructed within SHE. Besides

the separable part of the energy, generating momentum dependence of U , we employ a ρ-

dependent part of the Skyrme form, such as in GBD or WPKDG. When aiming at a minimal

number of terms in the separable expansion, while retaining the capability of describing

mean fields anisotropic in momentum, our energy functional in SHE consists of Skyrme and

separable scalar and tensorial quadrupole terms:

VSHE(ρ(r)) =
A

2

ρ2(r)

ρ0
+

B

σ + 1

ρσ+1(r)

ρσ0

+
C

ρ0













∫

d3p′
f(r,p′)

1 +
[

p′

Λiso

]2







2

+
∑

α,β

T αβ(r) T αβ(r)

]

. (7)
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We do not include a dipole separable term, which we expect to be small in the center of mass.

A dipole term is accounted for in the relativistic approach of Reference [21]. To demonstrate

the robustness of such a representation we will attempt to show that the results from the

folding model WPKDG can be well approximated within our separable model, including the

reproduction of anisotropies of U . For simplicity, we take both the scalar and the tensor term

as symmetric in two single-particle quantities, presuming dominance of 2-body interactions.

Inclusion of a tensor term makes our parametrization different from GBD, scalar in our

terminology. However, we take the form of the single-particle factor to be the same as in

GBD [10]. In the above, T αβ is a second-rank Cartesian tensor [22, 23]:

T αβ(r) ≡

∫

d3p′ c(p′) f(r,p′) (p′αp′β −
1

3
p′2δαβ) . (8)

An important feature is its tracelessness,

T xx + T yy + T zz = 0 . (9)

For the functional form of c(p) in (8) we choose

c(p) =
1

p2 + Λ2
aniso

. (10)

Note the parameters Λiso in the scalar part of (7) and Λaniso in the tensorial part, which we

introduced in addition to the ones inherited from GBD and WPKDG.

According to (2), the optical potential is found by taking the functional derivative of (7)

with respect to f . Due to the directionality involved and approximate axial symmetry of the

phase-space density in heavy-ion collisions, the off-diagonal elements of (8) are negligible in

practice, reducing the summation over α, β to diagonal elements only. Here the traceless-

ness (9) of the tensor comes into play, allowing us to express all elements in terms of T zz

when dependence on transverse direction is weak. Upon taking a functional derivative of (7)

and transforming to spherical coordinates we get

USHE(ρ(r),p) = A

(

ρ(r)

ρ0

)

+ B

(

ρ(r)

ρ0

)σ

+
C

ρ0

[

2

1 +
[

p

Λiso

]2

∫

d3p′
f(r,p′)

1 +
[

p′

Λiso

]2

+

√

16π

5
c(p) p2 Y20(ϑ) T zz(r)

]

. (11)
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Here we used the definition of the spherical harmonic of degree 2 and order 0,

Y20(ϑ) =

√

5

16π

(

3 cos2(ϑ) − 1
)

. (12)

Therewith, the SHE optical potential (11) depends on anisotropy explicitly. The decisive

last term vanishes for isotropic f since T zz is zero for such cases by construction.

III. RESULTS

A. Ground-state properties

As in GBD and WPKDG, we demand that E/A for SHE minimizes at ρ0 = 0.16 fm−3 with

the value of E/A = −16 MeV. For consistency with the other parametrizations, we further

demand that K ≃ 215 MeV, and m∗/m ≃ 0.7 at the Fermi momentum of p
(0)
F = 263 MeV/c

at ρ0. Otherwise, it would be natural to require that SHE reproduced the momentum

dependence of WPKDG for the ground-state phase-space density

f(r,p) =
g

(2π~)3
θ(p

(0)
F − |p|) , (13)

where the degeneracy factor is g = 4. In fact, by adjusting the parameters of SHE the mo-

mentum dependencies at ρ0 can be made nearly indistinguishable. However, then differences

between SHE and WPKDG may be excessive in some non-equilibrium situations. Corre-

spondingly we adopt a compromise choosing parameters so that the results have a similar

appearance under different circumstances, but can exhibit quantitative discrepancies.

At zero temperature, calculations of energy and optical potential can be largely done

analytically. A couple of integrals useful for the purpose are provided in the Appendix.

With spatial density of kinetic energy given by
〈

p2

2m

〉

=

∫

d3p′
p′2

2m
f(r,p′) , (14)

the energy per nucleon is

E/A =

∫

d3r

[〈

p2

2m

〉

+ V [f ]

]

/A . (15)

From the energy, the incompressibility K is calculated and, from U , the effective mass ratio

is determined,
m∗

m
=

p

m

(

d

dp

[

p2

2m
+ U(ρ(r),p)

])−1

. (16)
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The parameters for SHE, as well as GBD and WPKDG are provided in Table I. Figure 1

shows the potential energy density for the three interaction parametrizations and Fig. 2

displays the energy per nucleon. Next, Fig. 3 shows the incompressibility as a function

of density ρ and Fig. 4 shows the effective mass ratio at ρ0, as a function of momentum.

Finally, Fig. 5 shows the optical potential as a function of momentum at the normal density.

As we stated, by adjusting the parameters in SHE, we could obtain an excellent agreement

between SHE and WPKDG in Figs. 4 and 5, but that at the cost of poorer agreement in

other situations.

B. Excited nuclear matter

To study suitability of SHE for describing situations in excited but not fully equilibrated

matter, we consider results from SHE and WPKDG for a phase-space density which has the

form of an anisotropic Gaussian in momentum:

f(r,p) =
ρ(r)

(2πσ2
g)3/2

exp

[

−
1

2σ2
g

(

p2⊥(1 + ε) +
p2‖

(1 + ε)2

)]

. (17)

Here, ε is a parameter that regulates anisotropy of the momentum distribution that is axially

symmetric about the longitudinal axis. Changes in ε simultaneously change the longitudinal

and transverse widths in such a manner that the density ρ associated with f does not change.

Physically allowed values are ε > −1 and increasing ε makes the distribution more prolate.

One needs to relate the parameters ε and σg to other, e.g. such as temperature, in order

to determine interesting parameter ranges. We refer to the kinetic energy density (14) to

advance in our considerations. While an isotropic Gaussian (ε = 0) yields the density

〈

p2

2m

〉

= 3
σ2
g

2m
ρ , (18)

for an anisotropic Gaussian (ε 6= 0) one obtains

〈

p2

2m

〉

=
σ2
g

2m

[

2

(1 + ε)
+ (1 + ε)2

]

ρ . (19)

Recalling the Boltzmann model, Gaussian standard deviation σ (for one direction) and

temperature T are connected via

σ2 = mNT , (20)
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where mN is the nucleon mass. Effective temperatures between 15 MeV ≤ T ≤ 170 MeV

are of interest in heavy-ion collisions. We assume that, on approach to equilibrium, the

distributions are not more narrow than representing T = 15 MeV and not much more spread

out than representing T = 170 MeV. With this, we arrive at the anisotropy range −0.6 . ε .

1.5. In the results that follow for ρ = 2ρ0, we use the relatively low σg = 150 MeV/c, which

allows for relatively strong momentum dependencies in U , at low momenta. The subsequent

Figs. 6–10 show the obtained values of optical potential both in the SHE and WPKDG

parametrizations, at different momenta p (in multiples of ground-state p
(0)
F , Sec. III A) in ρ =

2ρ0 matter with different momentum anisotropies, as a function of angle relative to the

symmetry axis of the distribution. In the figures, we can see rather good correspondence

between the results for the two parametrizations. While the SHE parametrization explicitly

follows the shape of Y20, it is approximately also the case for WPKDG. Apparently higher

multipolarity terms in a separable expansion for WPKDG are negligible. This is likely

helped by the smoothness of the momentum distribution. Notably in heavy-ion collisions

the momentum distributions tend to evolve to a smooth form rather quickly, making the

close correspondence between the results likely in practice.

C. Idealized collision scenario

The final test situation that we consider, potentially the most challenging for a description

such as SHE, is the early stage of a heavy-ion collision, where interpenetration of the opposing

nuclei has started but no equilibration has yet occurred. To represent such a situation, Welke

et al. took a momentum distribution with two Fermi spheres, each representing the ground-

state of saturated matter

f(r,p) =
g

(2π~)3
θ(p

(0)
F − |p∓ p0/2|) , (21)

separated by p0 = 800 MeV/c in momentum space. The scenario is sketched in Fig. 11.

To account for relativistic effects in this colliding nuclear matter scenario, one would rather

consider Fermi ellipsoids than spheres [16–18]. Such a Lorentz covariant treatment goes

beyond the goals of the present paper. The optical potentials U (cf. Fig. 12) associated

with it are plotted as functions of the polar angle ϑ (defined in Fig. 11) for different momenta.

The vector momenta p are taken with reference to the center of one sphere, with the angle
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relative to the symmetry axis of the system. The mean fields vary not only in overall

offset, but also in dependence on angle. As a point of view additional to that in Welke et

al. [13], presented above, we further consider the mean-field potential at different p relative

to the c.m., as a function of angle ϑ about the c.m. (defined in Fig. 13). The SHE, WPKDG

and GBD potentials are compared in this fashion in Fig. 14. Significant deviations can

be seen between the potentials at lower momenta p, but lesser at the highest momentum

towards the region where the nucleons are. By construction, the GBD potential is isotropic

in this representation. The discrepancies at low momenta in Fig. 14 show limitations of

the SHE approach. While we chose another phenomenological approach as reference here,

rather than a microscopic theory for which sparse non-equilibrium results exist, we expect

a difficulty for SHE, with just a couple of separable terms, to be universal when momentum

distributions change abruptly with momentum. Fortunately, in heavy-ion collisions the

distributions quickly evolve to a smooth form.

IV. DISCUSSION AND CONCLUSIONS

A. Application to transport simulations

Beyond the scope of this article is the actual application of the anisotropic mean field

parametrization to reaction simulations, namely BUU calculations. However, in order to

stress the practical relevance of our work, we will provide a brief prescription how to employ

our results in reactions and name the benefits one should gain then.

The foundation of BUU methodology is the Boltzmann transport equation [4, 5] for the

single-particle distribution function f(p, r, t). In order to determine the state of the system

one needs to solve the BUU equation for f in every time step t:

∂f

∂t
+

∂ǫ

∂p

∂f

∂r
−

∂ǫ

∂r

∂f

∂p
= Icoll(f) . (22)

The collision integral on the r.h.s. of (22) accounts for the time evolution of the single-

particle phase-space density f evoked by two-body collisions. The mean field U enters the

Boltzmann equation on the l.h.s. which takes the motion of particles in the field into account.

In order to find the single-particle energies ǫ one has to take the functional derivative of the
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system’s net energy E with respect to the phase-space density f :

ǫ =
δE

δf
=

p2

2m
+

δV

δf
=

p2

2m
+ U . (23)

If the p-dependent part of the mean field is parametrized in terms of an integral

U(r,p) ∝

∫

d3p′
f(r,p′)

1 +
[

p−p′

Λ

]2 , (24)

as in the model by Welke et al., one has to determine a different 3-dimensional integral for

every momentum p and position r. When f is represented in terms of test-particles [4],

Nt per nucleon, the integration is replaced by summation over the test-particles. With the

need to calculate an integral at the phase-space position of every test-particle, the overall

effort in calculating the mean field scales as N2
t , forcing compromises at large Nt countering

this rapid growth. On the other hand, in the framework of our SHE model, one would have

to evaluate the integrals in the isotropic term and in T zz once per time step for a given

spatial location. With this, the effort in calculating the mean field would scale as Nt, just

as for the GBD parametrization or p-independent U . The calculational effort reduced by a

factor of the order of Nt, for the same accuracy, represents a significant advantage of our

model over the WPKDG parametrization.

B. Summary

We developed a parametrization for the nucleonic mean field U , which explicitly exhibits

an anisotropic behavior for anisotropic phase-space densities f , and that can significantly

reduce computational effort and statistical noise in transport simulations, compared to cur-

rent practice. On that account, we made the nuclear energy functional separable in momen-

tum space, with different terms corresponding to different multipolarity in spherical angle.

As reference and guideline during the process of setting up our model, the parametrization

by Welke et al. [13] was used. We step by step evolved the elements of our model by breaking

up the original – and in comparison to our parametrization very costly – convolution within

the potential energy density, substituting it with separable scalar and tensorial terms, both

symmetric in the single-particle properties, and by taking the functional derivative of V with

respect to f to obtain U in a simple form. In addition to the Skyrme-type parameters in

the ρ-dependent part, our model comprises two exclusive parameters, one of them – Λiso –
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mainly relevant in isotropic scenarios, the other one – Λaniso – important for characterizing

the anisotropy of the mean field. The latter phenomenological parameters represent range

and are physically expected to be similar. In the framework of our SHE model we can

reasonably well describe cold nuclear matter properties, obtain excellent results for equili-

brated scenarios and find a good practical agreement for early stages of a colliding system.

The latter situation has been dealt with in the literature [13]. We showed that our ansatz

is generally applicable even when momentum population for the system changes abruptly.

To conclude, we presented a simple way of describing the potential energy density V and

associated anisotropic momentum dependent mean field U in heavy-ion collisions. Flexibility

in coping with interactions for anisotropic momentum distributions is important since local

momentum anisotropies persist until late in the dynamics of heavy-ion collisions. Explo-

ration of consequences of the anisotropies, however, should not be stacked against inabilities

to carry out collision calculations, poor statistics or noise in the calculations. With the

proposed approach, we believe, we resolve these issues.
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Appendix: Analytical expressions for ground-state quantities

When dealing with Fermi spheres in cold matter scenarios one can find analytical results

for the integrals over a Yukawa interaction kernel, appearing in (5), (6) and (11), for instance.

Thus, one can circumvent many-dimensional numerical integrations. This obviously does

not help in carrying out collision simulations, as the distributions quickly depart from the

Fermi spheres. Particularly useful are the following identities:
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∫ pF

0

∫ pF

0

d3p d3p′
1

1 +
[

p−p′

Λ

]2 =
32π2

3
p4FΛ2

[

3

8
−

Λ

2pF
arctan

2pF
Λ

−
Λ2

16p2F

+

(

3

16
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p2F
+
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ln
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,(A.1)

∫ pF

0

d3p′
1

1 +
[

p−p′

Λ

]2 = πΛ3
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p2F + Λ2 − p2

2pΛ
ln
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(
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p− pF
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]

. (A.2)
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FIG. 1. Ground-state potential energy density as function of density of matter.
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FIG. 2. Ground-state energy per nucleon as function of density of matter.
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FIG. 3. Ground-state compressibility as function of density of matter.
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FIG. 4. Ground-state effective mass ratio as function of momentum, at normal density ρ0.
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FIG. 6. Optical potential for an anisotropic momentum distribution (17) with ε = −0.5 at ρ = 2ρ0,

in the local c.m., for different indicated momenta p.
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different indicated momenta p.
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FIG. 8. Optical potential for an anisotropic momentum distribution with ε = 0.5 at ρ = 2ρ0, in

the local c.m., for different indicated momenta p.
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FIG. 9. Optical potential for an anisotropic momentum distribution with ε = 1.0 at ρ = 2ρ0, in

the local c.m., for different indicated momenta p.

20



−60

−50

−40

−30

−20

−10

−1 −0.5 0 0.5 1

U
(p
,c
o
s
ϑ
)
[M

eV
]

cosϑ

p
(0)
F

p
(0)
F /2

p = 0

σg = 150MeV/c

ε = 1.5

SHE

WPKDG

FIG. 10. Optical potential for an anisotropic momentum distribution with ε = 1.5 at ρ = 2ρ0, in

the local c.m., for different indicated momenta p.
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FIG. 11. Situation within the local rest frame of two Fermi spheres separated by p0 in momentum

space. The center of the left sphere serves as point of origin in the first examination of U for that

situation.
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parametrizations of the potential.
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FIG. 13. Situation within the local rest frame of two Fermi spheres separated by p0 in momentum

space. The center of mass serves as point of origin in the second examination of U for that situation.
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FIG. 14. Optical potential for the situation represented in Fig. 13, for different momenta relative to

the local center of mass, as a function of angle about the center, for the different parametrizations

of the potential.

TABLES

TABLE I. Parameters in GBD, WPKDG and SHE models.

Model A [MeV] B [MeV] C [MeV] σ Λ Λiso Λaniso

GBD −144.9 203.3 −75.0 7/6 1.5 p
(0)
F — —

WPKDG −110.44 140.9 −64.95 1.24 1.58 p
(0)
F — —

SHE −110.63 132.17 −53.04 1.27 — 1.98 p
(0)
F 1.41 p

(0)
F
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