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We present updated predictions of effective elastic nucleon-nucleon cross sections intended for
use in nucleus-nucleus reactions. A novel characteristic of the present approach combines all micro-
scopic medium effects included in the Dirac-Brueckner-Hartree-Fock G-matrix with a Pauli blocking
mechanism which is more appropriate for applications in ion-ion reaction models as compared to
a previous approach. The effective in-medium cross section is found to be quite sensitive to the
description of Pauli blocking in the final configurations.
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I. INTRODUCTION

The investigation of the effective nucleon-nucleon (NN) interaction in dense hadronic matter is a topic of fundamental
importance for nuclear reactions at intermediate energies (20 MeV/nucleon <∼ Elab <∼ 300 MeV/nucleon) and for
nuclear structure in general. The relevant literature is very vast. Reference [1] is just a representative example of
the traditional microscopic approach where two-nucleon correlations in nuclear systems are introduced through the
G-matrix. Moreover, the effective NN interaction is the main ingredient of microscopic predictions of the nuclear
equation of state (EoS) and thus impacts the properties of compact stars. Dense hadronic matter can also be created
in the laboratory in energetic heavy-ion (HI) collisions. Simulations of HI collisions are typically based on transport
equations and describe the evolution of a non-equilibrium system of strongly interacting hadrons undergoing two-
body collisions in the presence of a mean field. The Boltzmann-Uehling-Uhlenbeck equation [2, 3] and quantum
molecular dynamics [4], along with their relativistic counterparts [5–7], have been typically employed to describe
intermediate-energy HI reactions. In-medium two-body cross sections are therefore an important component of such
simulations.

In direct reactions at intermediate energies the NN cross sections are often used as input to obtain quantum refractive
and diffractive effects, replacing the role of optical potentials commonly used in low energy reactions [8]. Examples
such as knockout (stripping and diffraction dissociation) reactions, elastic scattering, charge-exchange, and excitation
of giant resonances, are often carried out using reaction mechanisms based on the construction of scattering matrices
built from the underlying NN scattering. Reaction calculations at intermediate to high energy are often conducted
within the framework of the Glauber approximation [9] and have been a frequent tool for testing nuclear models and
constraining nuclear sizes. In fact, the description of complex nuclear reactions at intermediate energies based on
individual NN collisions has a long tradition. In the framework of the Glauber model, the reaction cross section is
written in terms of the “thickness function”, which is the product of the averaged NN cross section and the overlap
integral of the target and projectile local densities.

In-medium NN cross sections have been calculated with a variety of methods. In semi-phenomenological approaches,
one makes the assumption that the transition matrix in the medium is approximately the same as the one in vacuum
and that medium effects come in only through the use of effective masses in the phase space factor [10–12]. Then, the
in-medium cross section is scaled (relative to its value in vacuum) as the square of the ratio of the (reduced) masses.
Phenomenological formulas, such as the one in Ref. [13], have been developed for practical purposes and combine the
energy dependence of empirical free-space NN cross sections with the density dependence of some microscopic models.

Microscopic predictions based on a medium-modified collision matrix were reported, for instance, in Ref. [14],
where Dirac-Brueckner-Hartree-Fock (DBHF) medium effects were applied to obtain a medium-modified K-matrix,
and in Ref. [15], where the predictions are based on the Brueckner-Hatree-Fock scheme together with the Paris poten-
tial. More recent microscopic calculations applied DBHF medium effects to produce a complex G-matrix including
consideration of isospin dependence in asymmetric nuclear matter [16].

It is the purpose of this paper to present our updated predictions of microscopic in-medium elastic NN cross
sections with an improved description of Pauli blocking. The main objective is to produce two-body cross sections
which include, microscopically, all important medium effects and are suitable for realistic applications in nucleus-
nucleus scattering at intermediate energies including direct and central collisions. As explained in Section II, we
start from a one-boson-exchange NN potential, which describes well the elastic part of the NN interaction up to high
energy. Thus, as long as we are not interested in pion production, which is negligible up to, at least, several hundreds
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of MeV, it is reasonable to use NN elastic cross sections as input to the reaction model. Of course, the elastic part of
the NN interaction can and does generate inelastic nucleus-nucleus scattering.

In Section II, we describe the details of the calculation and highlight the differences with our previous approach.
We then present a selection of results (Section III) followed by our conclusions and outlook (Section IV).

II. DESCRIPTION OF THE CALCULATION

A. The Dirac-Brueckner-Hartree-Fock G-matrix

The starting point of our calculation is a realistic NN interaction which is applied in the nuclear medium without
any additional free parameters. We use relativistic meson theory, which we find to be an appropriate framework to
deal with the high momenta encountered in dense matter. In particular, the one-boson-exchange (OBE) model has
proven very successful in describing NN data in free space and has a good theoretical foundation.

The OBE potential is defined as a sum of one-particle-exchange amplitudes of certain bosons with given mass and
coupling. In general, six non-strange bosons with masses below 1 GeV/c2 are used. Thus,

V =
∑

α=π,η,ρ,ω,δ,σ

V OBEα , (1)

with π and η pseudoscalar, σ and δ scalar, and ρ and ω vector particles. For more details, see Ref. [17]. Among the
many available OBE potentials, some being part of the “high-precision generation” [18, 19], we seek a momentum-
space potential developed within a relativistic scattering equation, such as the one obtained through the Thompson
[20] three-dimensional reduction of the Bethe-Salpeter equation [21].

First, a self-consistent calculation of (symmetric or asymmetric) nuclear matter is performed within the DBHF
approach [22]. This step yields, along with the EoS, the self-consistent nuclear matter potential, which is conveniently
parametrized in terms of nucleon effective masses (see Ref. [22] for details). Then, the Thompson equation is solved for
two nucleons scattering at some positive energy in the presence of a mean field due to the medium. The presence of the
medium is accounted for through the (previously calculated) effective masses (applied in the two-nucleon propagator
and also in the Dirac spinors representing the nucleons, consistent with the DBHF philosophy) and the presence of
the (angle-averaged) Pauli operator to account for Pauli blocking of the intermediate states.

In the usual free-space scattering scenario, the two-body cross section is typically represented as a function of
the incident laboratory energy, uniquely related to the nucleon momentum in the two-body center-of-mass frame, q,
through relativistic invariants which yield the well-known relation Elab = 2q2/m. In nuclear matter, though, the Pauli
operator depends also on the total momentum of the two nucleons in the nuclear matter rest frame. For simplicity,
in the past we have used in-vacuum kinematics to define the total momentum of the two-nucleon system (that is, we
assumed that the target nucleon is at rest, on the average). Schematically, the effect of Pauli principle on intermediate
states arises in the G-matrix through the in-medium scattering equation [23]:

〈k|G(p)|q0〉 = 〈q|V|q0〉 −
∫

d3q′

(2π)3
〈q|V|q′〉Q(q′,p)〈q′|G(p)|q0〉

E(p,q′)− E0 − iε
, (2)

with q0, q, and q′ the initial, final, and intermediate relative momenta of the NN pair in their center of mass, and p
their total momentum. E is the energy of the two-nucleon system in the center-of-mass, and E0 is the same quantity
on-shell.

The medium effects we include in the G-matrix are: Pauli blocking of the intermediate (virtual) states via the
angle-averaged Pauli operator; modification of the single-particle energies to include the presence of the nuclear matter
potential; density-dependent nucleon spinors in the OBE potential through the use of nucleon effective masses. The
first two effects are typically applied in all conventional Brueckner-Hartree-Fock calculations, whereas the third one
is characteristic of the Dirac-Brueckner approach.

To account for Pauli blocking of the final state, we define the total elastic cross section as

σ̄NN (q) =

∫ ( dσ
dΩ

)DBHF
Q(q, p, θ, ρ) dΩ , (3)

where (dσ/dΩ)DBHF is the elastic differential cross section obtained from the G-matrix amplitudes as described above.
θ is the scattering angle and kF the Fermi momentum. The presence of the Pauli operator in Eq. (3) signifies that
the integration domain is restricted by [16]

k2F − p2 − q2

2pq
≤ cos θ ≤ p2 + q2 − k2F

2pq
. (4)
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FIG. 1: Geometrical representation of Pauli blocking.

Setting Q = 1 in Eq. (3) amounts to ignoring Pauli blocking of the final state. (The virtual intermediate states
are always subjected to Pauli blocking during the G-matrix calculation which produces the amplitudes contained in
(dσ/dΩ)DBHF .) Additional simplifications result from the assumption that the differential cross section is isotropic.

B. The average in-medium cross section and Pauli blocking effects

The cross section defined in Eq. (3) refers to an idealized scenario where a projectile nucleon, with some momentum
above the bottom of the Fermi sea, strikes a target nucleon while both embedded in an infinite medium. For application
to a realistic nucleus-nucleus scattering scenario, it is best to consider the situation depicted in Fig. 1, where the two
Fermi spheres represent the local densities of the target and projectile ions. k is the incident momentum (the
momentum of the colliding nuclei relative to each other), whereas k1 and k2 are the momenta of any two nucleons.
That is, k1 and k2 + k are the momenta of the two nucleons with respect to the same point. Then, the relative
momentum 2q and the total momentum 2p are given by 2q = k2 + k− k1, and 2p = k1 + k2 + k, respectively. The
larger circle in the figure is centered at p while |q| is the radius of the scattering sphere. The vector 2q can rotate
around the scattering sphere while maintaining constant magnitude due to energy-momentum conservation.

Notice that, with the definitions given above, relative momenta which are off the symmetry axis of the two Fermi
spheres (the k direction) are allowed, which is not the case with the assumptions made in Eq. (3). That is, the two
interacting nucleons can have momenta in arbitrary directions. In turn, this impacts the solid angle allowed by Pauli
blocking, as shown below. (For completeness, we provide a detailed derivation of the allowed solid angle in the next
subsection.)

In preparation for the nucleus-nucleus calculation, it is shown in Refs. [24, 25] that the average NN cross section
(assuming isotropy of the NN differential cross section) can be written as

σ̄NN (k) =
1

VF1VF2

∫
dk1dk2

2q

k
σNN (q)

∫
Pauli

dΩ , (5)

where k1 and k2 are smaller than kF1 and kF2, respectively, and the angular integrations extend over all possible
directions of k1 and k2 allowed by Pauli blocking. Often, the empirical free-space NN cross section is used in
the integral. In our case, σNN (q) = σDBHF (q) is the (microscopic) NN cross section which contains additional
medium effects as described in the previous subsection. VF1 and VF2 are the volumes of the two (in general different)
Fermi spheres. Because of azimuthal asymmetry, Eq. (5) can be reduced to a fivefold integration. Notice that the
“symmetric” choice q = p = k/2 [26] amounts to making the approximations we adopted when writing Eq. (3).

Finally, for an actual nucleus-nucleus scattering with given E/A, the average cross section given above becomes a
function of the laboratory energy, E(k), and the local densities of the colliding nuclei, ρi = 2k3Fi/(3π

2), and are ready
to be used in typical high-energy calculations. This is usually done by defining the average nucleon-nucleon cross
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section at the distance of closest approach b between the projectile and the target as

〈σNN (E, b)〉 =

∫
d3r1 ρ1(r1)ρ2(r1 + b) σNN (E, ρ1, ρ2)∫

d3r1ρ1(r1)ρ2(r1 + b)
, (6)

where ρi is the local density (at point r) inside nucleus i and σNN (E, ρ1, ρ2) is the in-medium NN cross section.
The calculation of reaction cross sections in high-energy collisions is best described in the eikonal fomalism. The

“survival amplitudes” (or S-matrices) in the eikonal approximation are given by [9, 24]

S(E, b) = exp

[
−〈σNN (E, b)〉

4π

∫ ∞
0

dq q ρ1 (q) ρ2 (q) J0 (qb)

]
, (7)

where ρ1,2 (q) is the Fourier transform of the nuclear densities of the projectile and target, and the reaction cross
sections are

σR = 2π

∫
db b

[
1− |S(b)|2

]
. (8)

Applications to stable and unstable nuclei using Eqs. (6-8) and our new prescription of Pauli-blocking effects will be
the subject of a future work.

C. Derivation of the Pauli-allowed solid angle

As mentioned in the previous section, the relative momentum 2q and the total momentum 2p are given as 2q =
k2 + k− k1, and 2p = k1 + k2 + k. We also define a vector 2b as 2b = k2 + k1 − k. Assuming that the collision is
elastic, conservation of energy and momentum requires

2p = k
′

1 + k
′

2 + k

2q
′

= k
′

2 − k
′

1 + k

2b = k
′

1 + k
′

2 − k .

(9)

The quantities k
′

1 and k
′

2 are the momenta of two nucleons after the collision, whereas q
′

is the relative momentum

after collision, with |q′ | = |q|. Because of the Pauli exclusion principle, the following restrictions apply:

|k′

1| = |p− q
′ | > kF1

|k′

2| = |b + q
′ | > kF2 ,

(10)

or,

p2 + q2 − 2pq cosα1 > k2F1

b2 + q2 + 2bq cosα2 > k2F2 .
(11)

In the equations above, α1 is the angle between p and q
′
, and α2 the angle between b and q

′
. As illustrated in

Fig. 2, we have

cos θA =
p2 + q2 − k2F1

2pq
, cos θB =

b2 + q2 − k2F2

2bq
, (12)

with θA and θB are the excluded polar angles. The excluded solid angles for each nucleon are then given by

Ωa = 2π(1− cos θA), Ωb = 2π(1− cos θB) , (13)

and therefore the total allowed solid angle can be obtained from:

Ωpauli = 4π − 2(Ωa + Ωb − Ω̄) , (14)

where Ω̄ represents the intersection of the two conical sections Ωa and Ωb. The full calculation has already been done
in Ref. [25]; however, in this paper we will use a slightly different approach to calculate Ω̄. Figure 3 shows how Ωa
and Ωb are projected on the surface of a unit sphere. If Ωi is the intersection of Ωa and Ωb, it is obvious that
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FIG. 2: (Color online) Two-dimensional projection of the geometry of Pauli blocking.

!

FIG. 3: (Color online) Pauli blocking of two nucleons in three dimensions.

Ωi =

 0 if θ > θA + θB ;
Ωb if θB < θA, θ < |θB − θA| ;
Ωa if θA < θB , θ < |θB − θA| .

(15)

The case |θB − θA| < θ < θA + θB is more complex than the other three cases and a more detailed study is needed.
As shown in Fig. 4, P and B are the centers of the two circular projections Ωa and Ωb. The two circular contours
intersect at R and L. α/2, β/2 and γ are the internal angles of the spherical triangle PBR. The circular sectors of
Ωa and Ωb have areas equal to αΩa/(2π) and βΩb/(2π), respectively. The intersection area of Ωa and Ωb is given by

Ωi =
α

2π
Ωa +

β

2π
Ωb − 2∆PRB . (16)
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FIG. 4: (Color online) A different view of Pauli blocking of two nucleons in three dimension

Here, ∆PRB is the area of the spherical triangle PBR. To obtain an expression for α/2, first we define the center of
the unit sphere, O, as the orgin of the system, and χp along the z-axis. Point B is at location (1, θ, α/2), while point
L has coordinates (1, θA, 0). We can then write:

OB ·OL = cos θB = cos θA cos θ + sin θA sin θ cos(α/2) , (17)

from which α/2 can be readily obtained as

α/2 = arccos

(
cos θB − cos θ cos θA

sin θ sin θA

)
. (18)

In a similar fashion we find β/2 to be given by

β/2 = arccos

(
cos θA − cos θ cos θB

sin θ sin θB

)
. (19)

Applying the law of cosines of spherical trigonometry,

cos γ = − cos(α/2) cos(β/2) + sin(α/2) sin(β/2) cos θ , (20)

we obtain

γ = arccos(− cos(α/2) cos(β/2) + sin(α/2) sin(β/2) cos θ) . (21)

From Girard’s theorem of spherical trigonometry, we have

∆PRB = α/2 + β/2 + γ − π . (22)

Inserting Eq. (21) and Eq. (22) into Eq. (16), the solid angle Ωi is found to have the following value

Ωi = 2{π − cos θA cos−1(δAB)− cos θB cos−1(δBA)− cos−1[cos θ
√

(1− δ2AB)(1− δ2BA)− δABδBA]} , (23)

where

δij =
cos θi − cos θ cos θj

sin θ sin θj
. (24)

Noticing that, while θ + θA + θB > π, Ωa and Ωb have two intersections on the hemisphere, we have

Ω̄ = Ωi(θ, θA, θB) + Ωi(π − θ, θA, θB) . (25)
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FIG. 5: (Color online) In-medium pp cross section calculated as in Eq. (5) for a variety of (a) symmetric (kF1 = kF2) and (b)
asymmetric (kF1 6= kF2) situations.
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FIG. 6: (Color online) As in the previous figure, for np scattering.
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FIG. 7: (Color online) (a) pp and (b) np in-medium cross sections calculated from Eq. (5) with kF1 = kF2 = 1.0 fm−1. Solid
red: predictions as in Figs. 5-6; dashed blue: the input NN cross section is evaluated in free space. See text for details.
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FIG. 8: (Color online) (a) pp and (b) np in-medium cross sections with kF1 = kF2 = 1.0 fm−1. Solid red: predictions as in
Figs. 5-6; dashed blue: predictions obtained with Eq. (3).
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III. RESULTS

A. Effective NN cross sections

We begin by showing in Fig. 5 the average in-medium pp cross section calculated as in Eq. (5). On the left, we
display a variety of cases with equal Fermi momenta, whereas asymmetric cases are shown on the right. Figure 6
contains the same information for the np cross section. After “overcoming” complete Pauli blocking, the cross section
generally rises with increasing incident momentum. In the np case, we observe, at least at the lower densities, a
tendency to reach a broad maximum. In all cases, the cross sections become nearly flat at the larger momenta and
begin to approach the free space predictions.

Figures 5-6 are more insightful when compared with Fig. 7. There, the pp and np cross sections shown by the dashed
blue line are also calculated with Eq. (5), but the input NN cross sections in the integrand are evaluated in free space.
Thus, comparing the two curves on the left-hand-side (or on the right, for np) shows the impact of the additional
medium effects (besides those coming from the

∫
Pauli

dΩ factor in Eq. (5)) originating from the G-matrix calculation
and included in σNN in the case of the solid curves. (These effects were described in Section IIA.) The impact is
noticeable, with the microscopic medium effects further suppressing the cross section and shifting the position of the
peak. We have chosen a particular case (kF1 = kF2 = 1.0 fm−1) for the purpose of demonstration, but the trend is
similar for other densities.

Figure 8 is crucial for the point that we wish to make. There, for pp and np (on the left and right, respectively),
we compare the cross sections calculated from Eq. (5) to the corresponding ones evaluated with Eq. (3) instead. The
predictions from Eq. (3) have a sharper rise from zero and a more pronounced peak structure. As is reasonable,
differences are large at low momenta, where the scattering is most sensitive to the description of Pauli blocking,
particularly near the onset of the cross section. Again, we have taken a representative case, but this pattern is
common to all densities. It will be interesting to explore the impact of such differences on reaction cross sections, our
next objective.

IV. CONCLUSIONS

Pauli blocking is perhaps the most important mechanism impacting the collision of two fermions in the medium. It
is known to have a substantial effect on the scattering probability, that is, the in-medium cross section.

In this paper, we predict in-medium effective NN cross sections suitable for applications to nucleus-nucleus scat-
tering. The microscopic NN elastic cross sections, modified by all medium effects implied by the Dirac-Brueckner-
Hartree-Fock theory of nuclear matter, are properly averaged so as to account for all possible directions of the relative
momentum of two nucleons in the two colliding Fermi spheres. The more realistic description of the collision geometry
amounts to an improved description of Pauli blocking as compared to a previous approach [16]. We find the effective
NN cross sections to be very sensitive to the description of the Pauli blocking geometry.

Our future plans include the application of these cross sections in Glauber reaction calculations with stable and
unstable nuclei. In closing, we also note that in-medium cross sections are related to the mean-free path of a nucleon,
a fundamental quantity in the description of a nucleon propagation in nuclear matter.
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