
This is the accepted manuscript made available via CHORUS. The article has been
published as:

0νββ and 2νββ nuclear matrix elements, quasiparticle
random-phase approximation, and isospin symmetry

restoration
Fedor Šimkovic, Vadim Rodin, Amand Faessler, and Petr Vogel

Phys. Rev. C 87, 045501 — Published  5 April 2013
DOI: 10.1103/PhysRevC.87.045501

http://dx.doi.org/10.1103/PhysRevC.87.045501


0νββ and 2νββ nuclear matrix elements, QRPA, and isospin symmetry restoration
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Within QRPA we achieve partial restoration of the isospin symmetry and hence fulfillment of the
requirement that the 2νββ Fermi matrix element M2ν

F vanishes, as it should, unlike in the previous
version of the method. This is accomplished by separating the renormalization parameter gpp of
the particle-particle proton-neutron interaction into the isovector and isoscalar parts. The isovector
parameter gT=1

pp need to be chosen to be essentially equal to the pairing constant gpair, so no new
parameter is needed. For the 0νββ decay the Fermi matrix element M0ν

F is substantially reduced,
while the full matrix element M0ν is reduced by ≈ 10%. We argue that this more consistent approach
should be used from now on in the proton-neutron QRPA and in analogous methods.

I. INTRODUCTION

Answering the questions whether total lepton number
is a conserved quantity or not, and thus whether neutri-
nos are massive Majorana fermions, is a crucial part of
the search for the “Physics Beyond the Standard Model”.
Consequently, experimental searches for the 0νββ decay
are pursued worldwide (for a recent review of the field, see
e.g. [1]). However, interpreting existing results and plan-
ning new experiments is impossible without the knowl-
edge of the corresponding nuclear matrix elements.

The nuclear matrix elements M0ν of the 0νββ decay
must be determined using nuclear structure theory, and
the choice of the appropriate approximations is a cru-
cial part of that task. Some of the methods employed for
evaluation of the M0ν , in particular those that begin with
the transformation from particles to quasiparticles to ac-
count for the like-nucleon pairing ( see e.g. [2–8]), use
wave functions that do not exactly conserve the particle
number. The number of protons and neutrons is usually
conserved on average or, in some cases, it is restored by
the particle number projection. In either case, until now
no attempt was made to check that the isospin, which is
known to be, to a very good approximation, valid quan-
tum number in nuclei, remains as such in the resulting
wave functions that are obtained by solving the corre-
sponding equations of motion.

It is well known that by the proper treatment of the
quasiparticle interaction the broken symmetries can be
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restored. Naturally, exact calculation would restore the
broken symmetries exactly. However, even with the ap-
proximate, RPA-like treatment, it is possible to partially
restore some of the broken symmetries. In this work we
show, following basically the suggestions made initially
in Ref.[9], how this can be done in the case of isospin
and by doing that the values of the Fermi nuclear matrix
elements, both for the 2νββ and 0νββ decays, are sub-
stantially modified. Even though the resulting total M0ν

nuclear matrix elements are changed only by ≈ 10%, it
is worthwhile, and certainly more consistent, to use in
future the prescriptions described below.

II. FORMALISM

Assuming that the 0νββ decay is caused by the ex-
change of light Majorana neutrinos, the half-life and the
nuclear matrix element are related through

1

T 0ν
1/2

= G0ν(Q,Z)|M0ν |2 |〈mββ〉|2 , (1)

where G0ν(Q,Z) is the calculable phase space factor,
〈mββ〉 is the effective neutrino Majorana mass whose de-
termination is the ultimate goal of the experiments, and
M0ν is the nuclear matrix element consisting of Gamow-
Teller, Fermi and Tensor parts,

M0ν = M0ν
GT −

M0ν
F

g2A
+M0ν

T ≡M0ν
GT (1− χF /g2A + χT ) ,

(2)
where χF and χT are the matrix element ratios χF =
M0ν
F /M0ν

GT and χT = M0ν
T /M0ν

GT . (In the literature a dif-
ferent notation is sometimes used, χF = M0ν

F /(g2AM
0ν
GT .)

The main GT part, M0ν
GT , can be somewhat symboli-

cally written as

M0ν
GT = 〈f |Σlkσl · σkτ+l τ

+
k H(rlk, Ē)|i〉 , (3)
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where H(rlk, Ē) is the neutrino potential described in
detail in [5] and rlk is the relative distance between the
two neutrons that are transformed in the decay into the
two protons.

Analogously, the Fermi matrix element is

M0ν
F = 〈f |Σlkτ+l τ

+
k H(rlk, Ē)|i〉 . (4)

Note that these 0νββ matrix elements are expressed in
the closure approximation; its applicability is also dis-
cussed in [5]. However, the results reported later in this
work were obtained without using the closure; instead
explicit summation over all virtual intermediate states
was performed.

The half-life of the experimentally well studied 2νββ
decay depends formally on two nuclear matrix elements

1

T 2ν
1/2

= G2ν(Q,Z)[M2ν
GT +

g2V
g2A
M2ν
F ]2. (5)

The Gamow-Teller 2νββ matrix element is

M2ν
GT = Σm

〈f ||Σkσkτ+k ||m〉〈m||Σlσlτ
+
l ||i〉

Em − (Mi +Mf )/2
, (6)

where the summation extends over all 1+ virtual inter-
mediate states. In that case the closure approximation is
not a valid approach but can be formally introduced by
defining the corresponding closure matrix element M2ν

cl
when replacing the energies Em by the proper average
value Ē2ν . Thus,

M2ν
GT (cl) ≡ 〈f |Σlkσl · σkτ

+
l τ

+
k |i〉 ,

M2ν
GT (cl) = M2ν × (Ē2ν−GT − (Mi +Mf )/2) . (7)

Formally, in the description of the 2νββ decay also
appears the Fermi matrix element

M2ν
F = Σm

〈f ||Σkτ+k ||m〉〈m||Σlτ
+
l ||i〉

Em − (Mi +Mf )/2
, (8)

where the summation extends over all 0+ virtual inter-
mediate states, and its closure form is

M2ν
F (cl) ≡ 〈f |Σlkτ

+
l τ

+
k |i〉 ,

M2ν
F (cl) = M2ν

F × (Ē2ν−F − (Mi +Mf )/2) . (9)

The ground state |i〉 of the initial nucleus has isospin
T ≡ Tz = (N −Z)/2 while the final state |f〉 has isospin
T − 2 ≡ Tz = (N − Z − 4)/2. Since the operator Σkτ

+
k

just changes the isospin projection and cannot change
the total isospin, it is obvious that when isospin is a good
quantum number both Fermi matrix elements must van-
ish,

M2ν
F = M2ν

F (cl) = 0, (10)

since the average energy denominators in Eq. (9) are
nonvanishing.

Until now, within QRPA, PHFB, EDF and IBM-2
methods the validity of condition Eq.(10) has not been
usually tested ([2–8]). When results were published, M2ν

F
and M2ν

F (cl) do not vanish and are, in fact, comparable to

M2ν
GT and M2ν

GT (cl), respectively. Despite that, when eval-

uating the 2νββ half-life the Fermi matrix element was
usually simply neglected.

As we show further, in the usual application of QRPA
the condition Eq.(10) is not obeyed. Instead, the magni-
tude of M2ν

F is numerically comparable to the magnitude
of M2ν

GT as just pointed out. In addition, for the 0νββ
decay, within QRPA the ratio χF ≈ −0.5 while in the
nuclear shell model, where isospin is a good quantum
number by construction, the condition Eq.(10) is, natu-
rally, obeyed and χF ≈ −(0.2− 0.3) [10].

Where does this problem in QRPA method originate?
The method begins with the Bogoliubov transformation
relating the particle creation and annihilation operators

a†jm, ãjm with the quasiparticle creation and annihilation

operators c†jm, c̃jm. By solving the BCS equations one in-
cludes the neutron-neutron and proton-proton isovector
pairing interactions.

At this stage several symmetries are broken. The num-
bers of protons Z and neutrons N are no longer ex-
act, but valid only on average. In addition, since the
neutron-proton part of the isovector pairing interaction
is neglected, additional source of isospin violation is in-
troduced. It turns out that it is relatively easy to remedy
this additional effect and restore the isospin conservation,
at least in part, as explained further here. As the RPA
( and QRPA) is derived from the equation of motion
for bifermionic operators (treated in the quasiboson ap-
proximation), symmetries of the model Hamiltonian can
naturally be fulfilled in that approximation.

To proceed further, the equations of motion need to
be solved. Within the QRPA method the forward- and
backward-going amplitudes X and Y that are needed for
the evaluation of the nuclear matrix elements, as well as
the corresponding energy eigenvalues ωm, are determined
by solving the eigenvalue equations of motion for each
angular momentum and parity Jπ(

A B
−B −A

)(
X
Y

)
= ω

(
X
Y

)
. (11)

The matrices A and B are (see e.g. [11])

AJpn,p′n′ = (12)

〈O|[(cpcn)(JM)† , [Ĥ, (c†p′c
†
n′)

(JM)]]|O〉
= δpp′δnn′(Ep + En)−

(upvnup′vn′ + vpunvp′un′)×
2gph〈pn−1, J |V |p′n′−1, J〉
−(upunup′un′ + vpvnvp′vn′)×
2gpp〈pn, J |V |p′n′, J〉 ,

and

BJpn,p′n′ = (13)



3

〈O|[(cpcn)(J−M)(−1)M , [Ĥ, (cp′cn′)(JM)]]|O〉
= −(upvnvp′un′ + vpunup′vn′)

×2gph〈pn−1, J |V |p′n′−1, J〉
+(upunvp′vn′ + vpvnup′un′)
×2gpp〈pn, J |V |p′n′, J〉 ,

where Ep, En are the quasiparticle energies.
The definitions, Eqs. (12) and (13), contain two renor-

malization adjustable parameters gph for the particle-hole
interaction, and gpp for the particle-particle interaction.
While gph = 1.0 is typically used, it is customary to ad-
just gpp so that the experimentally known half-life of the
2νββ decay is correctly reproduced [2]. But the particle-
particle neutron-proton interaction governed by gpp ac-
tually contains two kinds of interaction matrix elements,
isovector and isoscalar. Thus, to be consistent with the
treatment of the like particle pairing, one should separate
the T = 1 part from the T = 0 part, i.e. replace

gpp〈pn, J |V |p′n′, J〉 → (14)

gT=1
pp 〈pn, J, T = 1|V |p′n′, J, T = 1〉

+gT=0
pp 〈pn, J, T = 0|V |p′n′, J, T = 0〉 ,

and adjust the parameters gT=1
pp and gT=0

pp indepen-
dently. To partially restore the isospin symmetry and
achieve that Eq.(10) is obeyed, it is sufficient to choose
gT=1
pp ∼ gpair. (That the coupling constant of the isovec-

tor proton-neutron particle-particle force should be close,
or identical, to the pairing strength constant, was recog-
nized already in the early works on the QRPA application
to the ββ decay that used a schematic, δ-force interac-
tion, see Ref. [12]).

III. DETERMINATION OF THE PARAMETER
gT=1
pp

When solving the BCS pairing equations, it is cus-
tomary to slightly renormalize the strength of the pair-
ing part of the realistic nucleon-nucleon interaction so
that experimental pairing gaps are correctly reproduced.

Thus, four adjusted parameters (d
(i)
pp , d

(f)
pp , d

(i)
nn, d

(f)
nn ) are

introduced (see, e.g. [2–5]) representing the adjustments
needed to describe the neutron and proton pairing gaps
in the initial and final nuclei. The values of these pa-
rameters as well as their averages for selected ββ-decay
candidate nuclei are displayed in Table I. (The Table en-
tries are for two variants of the nucleon-nucleon interac-
tion and one choice, of large size (21/23 levels, oscillator
shells N = 0− 5 with the addition of the i13/2 and i11/2
for the nuclei heavier than 124Sn), of the single particle
level scheme. The results for other choices are not very
different.) In several cases in Table I we encounter magic
numbers of neutrons or protons. In those cases the BCS
treatment is inappropriate and hence the corresponding
entries are missing there. For the case of 48Ca we con-
sidered two variants. In the listed one we assumed that
there is no pairing in the doubly magic 48Ca. In the other

variant we assumed that the values ∆p = 2.18 MeV and
∆n = 1.68 obtained from the usual odd-even mass dif-
ference with the five point formula represent the pairing
gaps; the resulting gT=1

pp is rather similar to the values
listed in Table I.
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FIG. 1: (Color online) Dependence of the 2νββ matrix ele-
ments M2ν

F and M2ν
GT on the isovector coupling constant gT=1

pp .
This example is for 76Ge and 130Te, the Argonne V18 poten-
tial, and the isoscalar coupling constants gT=0

pp = 0.750 and
0.783.

The example in Fig. 1 shows how the matrix ele-
ments M2ν

F and M2ν
GT behave when the isovector cou-

pling constant gT=1
pp is changed while the isoscalar gT=0

pp

is kept constant. As one can see, the Fermi matrix el-
ement M2ν

F decreases and crosses zero, with increasing
gT=1
pp , while the Gamow-Teller matrix element remains

constant. This is a typical case, and we can now choose
gT=1
pp such that M2ν

F−cl and hence also M2ν
F vanish. Those

values of gT=1
pp are shown in the last column of Table I.

It follows from the entries in Table I that the renormal-
ization parameter gT=1

pp that assures the validity of the

Eq. (10) is indeed very close to the average d̄ ≡ gpair of

the pairing parameters di,fii . In few rare cases, in particu-
lar in semi-magic nuclei, the difference between gT=1

pp and

d̄ is ∼10% (but not more). As shown in Ref. [9] the ratio
gT=1
pp /d̄ remains essentially unchanged when the size of

the single-particle basis is modified.

In this work, our choice is to renormalize gT=1
pp indepen-

dently, but very close, to d̄. On the other hand, it turns
out that the M2ν

GT depends sensitively only on gT=0
pp , so

that this parameter can be still adjusted such that the
half-life of the 2νββ decay is correctly reproduced, ex-
actly as done before. In fact, the previously used common
value of gpp, and the new parameter gT=0

pp , are essentially
the same as we demonstrate in the next Section.
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TABLE I: Renormalization parameters of the pairing interaction, their average and the T = 1 renormalization constant gT=1
pp

adjusted such that M2ν
F (cl) and M2ν

F vanish.

nucleus NN pot. number d
(i)
pp d

(i)
nn d

(f)
pp d

(f)
nn d̄ gT=1

pp

of s.p. lev
48Ca Argonne 21 lev. — — 1.075 0.988 1.034 1.031

CD-Bonn 21 lev. — — 0.985 0.903 0.944 0.944
76Ge Argonne 21 lev. 0.930 1.074 0.970 1.106 1.020 1.038

CD-Bonn 21 lev. 0.863 0.983 0.899 1.013 0.940 0.958
82Se Argonne 21 lev. 0.869 1.085 0.930 1.131 1.004 1.032

CD-Bonn 21 lev. 0.808 0.995 0.864 1.038 0.926 0.955
96Zr Argonne 21 lev. 0.923 0.768 1.000 0.962 0.913 0.984

CD-Bonn 21 lev. 0.856 0.704 0.926 0.881 0.842 0.907
100Mo Argonne 21 lev. 1.019 0.960 1.041 0.979 1.000 1.008

CD-Bonn 21 lev. 0.946 0.883 0.966 0.900 0.924 0.933
110Pd Argonne 21 lev. 1.000 0.975 1.025 0.945 0.986 0.979

CD-Bonn 21 lev. 0.930 0.895 0.954 0.871 0.913 0.908
116Cd Argonne 21 lev. 1.017 0.971 — 0.919 0.969 0.922

CD-Bonn 21 lev. 0.949 0.895 — 0.847 0.897 0.852
124Sn Argonne 23 lev. — 1.001 0.929 1.000 0.977 0.988

CD-Bonn 23 lev. — 0.918 0.860 0.917 0.898 0.913
128Te Argonne 23 lev. 0.881 0.968 0.926 0.999 0.944 0.988

CD-Bonn 23 lev. 0.816 0.889 0.857 0.918 0.870 0.914
130Te Argonne 23 lev. 0.845 0.970 0.920 1.000 0.934 0.989

CD-Bonn 23 lev. 0.783 0.891 0.852 0.918 0.861 0.915
134Xe Argonne 23 lev. 0.851 0.912 0.917 0.963 0.911 0.973

CD-Bonn 23 lev. 0.790 0.840 0.850 0.887 0.842 0.903
136Xe Argonne 23 lev. 0.782 — 0.885 0.926 0.864 0.950

CD-Bonn 23 lev. 0.726 — 0.821 0.853 0.800 0.881

IV. RESULTS AND DISCUSSION

In the previous Section we explained how the parame-
ter gT=1

pp is determined. The determination of the other

renormalization parameter gT=0
pp is analogous and follows

the suggestion made long time ago in Ref. [2] as already
stated. We fit gT=0

pp from the requirement that the calcu-

lated values of the full 2νββ matrix elements M2ν
GT agrees

with their experimental values. For most nuclei in Table
I the half-lives T 2ν

1/2 have been measured; we use the rec-

ommended values in Ref.[14] plus the 136Xe half-life of
Refs. [15, 16]. But for several nuclei in that Table, and
in the Tables that follow, the half-life remains unknown.
In those cases we proceed as follows: for 110Pd we use
the estimate of Ref. [17] that uses the single-state domi-
nance assumption, for 124Sn and 134Xe we use an interval
of possible M2ν

GT values 0 ≤ M2ν
GT ≤ 0.2(0.1)MeV−1 for

124Sn(134Xe) , respectively. For these two nuclei we show
in Tables II - IV the results with gA = 1.0 for the upper
limit of M2ν

GT , and with gA = 1.27 for the lower limit
M2ν
GT = 0. Our results for these two nuclei therefore re-

flect our incomplete knowledge of the corresponding 2ν

half-life.
Before presenting the results for the 0νββ nuclear ma-

trix elements, several comments are in order. Since the
main effect considered here is the change in M2ν

F and the
associated change in M0ν

F , lets analyze these changes us-
ing the radial dependence of M2ν

F−cl explained in Ref.[5].

In Fig. 2 the functions C2ν
F−cl(r) with the old and new

parametrization of gpp are plotted, together with the
function C2ν

GT−cl(r) (scaled by 1/3 for clarity). As one

can see, with the new gT=1
pp the tail of C2ν

F−cl(r) becomes
more negative and therefore its integral vanishes, as re-
quired. Let us remind ourselves that

M2ν
F−cl =

∫ ∞
0

C2ν
F−cl(r)dr , (15)

and in analogy

M2ν
GT−cl =

∫ ∞
0

C2ν
GT−cl(r)dr . (16)

Another comment concerns the fact that, as we will
see, with the new parametrization χF ≈ −(0.3− 0.4), or
more precisely χF ≈ −1/3. Somewhat similar conclusion
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FIG. 2: (Color online) Functions C2ν
F (r) with old and new

parametrization and, for comparison, the function C2ν
GT (r)

(scaled by 1/3) for clarity) is also shown. This is the case
of 76Ge.

is obtained in the shell model [10] where the isospin is
conserved by definition. The explanation is based on the
fact that the ground states of even-even nuclei consist
dominantly of the Jπ = 0+, T = 1 Cooper pairs that,
in turn, are mostly in the S = 0, L = 0 state. Since
such states are eigenstates of the operator σ1 · σ2 with
eigenvalue -3, our conclusion simply follows.

In Fig. 3 we show examples of the decomposition of
the function C2ν

F−cl(r) into their S = 0 and S = 1 com-
ponents. These are rather typical cases. The dominance
of the S = 0 component in the pure pairing case (the up-
per panel in Fig. 3) is easily understood. However, that
feature is still present in the realistic case with gpp 6= 0.0,
hence our finding that, usually, χF ≈ −1/3.

For both modes, 0νββ and 2νββ, we can find relations
between the Fermi and Gamow-Teller parts and their S =
0 and S = 1 components. These relations are exact in the
closure approximation and when the higher order weak
currents ( and thus the tensor part M0ν

T ) are neglected
and the nucleon form factors have the same cut-off values
for the vector and axial vector parts. In addition, since
the neutrino potentials indirectly depend on the assumed
averaged energy, these Ē values must be chosen to be the
same for the Fermi and Gamow-Teller matrix elements.
Using the properties of the σ1 · σ2 operator and that
M2ν
F = 0 with our new parametrization we find that only

one of the four components is independent and

M2ν
cl−F (S = 0) = −M2ν

cl−F (S = 1) = (17)

= −M2ν
cl−GT (S = 1) = −M2ν

cl−GT (S = 0)/3 .

For the 0ν mode, however, M0ν
F 6= 0 and hence the

above relations must be modified:

M0ν
F (S = 0) = M0ν

F −M0ν
F (S = 1) = (18)

= M0ν
F −M0ν

GT (S = 1) = −M0ν
GT (S = 0)/3 ,

M0ν
GT = M0ν

F − 4M0ν
F (S = 0) .

Two components are independent in this case. In realistic
case these relations are not exact, but still valid in a
reasonable approximation.

We will return to the discussion of the χF values ob-
tained by different approximate methods in the next Sec-
tion.
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FIG. 3: (Color online) In the upper panel (a) the function
C2ν
F−cl(r) is shown for the pure pairing case, i.e. gT=0

pp =

gT=1
pp = gph = 0.0, separated into the S = 0 and S = 1

components. In the lower panel (b) the function C2ν
F−cl(r)

is shown for gT=1
pp = 1.038 and gT=0

pp = 0.750 again sepa-
rated into its S = 0 and S = 1 parts. The sum function is
also displayed. The dominance of the S = 0 component is
clearly visible in the upper panel. In the lower panel the two
components when integrated over r are, naturally, equal and
opposite. The S = 0 part, however, clearly is considerably
larger in absolute value than the S = 1 part, at all r values.
This is the case of 76Ge.

In tables II and III we compare the resulting matrix
elements M2ν

F , M2ν
GT and M0ν with its components evalu-

ated using the old parametrization (gT=1
pp = gT=0

pp ≡ gpp)
with the new results, where gT=1

pp ≈ gpair and where gT=0
pp
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is fitted to the known experimental values of M2ν
GT . The

calculations were performed for the unquenched value
gA = 1.27 as well as for gA = 1.0. The quantities
M ′0ν = M0ν × (gA/1.27)2 are also shown, as well as
χF . Calculations in both tables were performed within
the standard QRPA with all the usual ingredients, i.e.
including the higher order weak currents, nucleon form
factors, and the short-range correlation treatment of Ref.
[13].

Lets explain briefly again (for more details see Ref.
[5]) how the quenching is taken into account with our
method. Since we adjust the isoscalar particle-particle
renormalization constant gT=0

pp in such a way that the ex-
perimental half-life of the 2νββ is correctly reproduced,
by changing the effective value of the axial current cou-
pling constant gA we are forced to change also the pa-
rameter gT=0

pp , albeit only slightly. Those changes are
visible in the third columns of Tables II and III. Since
with smaller gA the parameter gT=0

pp slightly decreases,

the corresponding M0ν
GT matrix element increases. How-

ever, the 0νββ decay rate, proportional to the (M ′0ν)2,
naturally, decreases.

In that context it is worthwhile to point out another
feature of the new parametrization. The Fermi matrix
element M0ν

F is associated with the weak vector current,
and as such should not be affected by the axial current
quenching. With the old parametrization, with a sin-
gle gpp, that was not quite true, as seen in Tables II and
III. However, with the new parametrization where isospin
symmetry is partially restored, the M0ν

F becomes inde-
pendent of the effective value of gA as it should be. (The
tiny changes in Tables II and III are round-off errors.)

From the tables one can see that the new parametriza-
tion, leading to M2ν

F = 0.0, leads to a substantial reduc-
tion of the M0ν

F component of M0ν and overall ∼ 10-20%
reduction of the final M0ν nuclear matrix elements. It
is encouraging that both variants of the M0ν matrix ele-
ments for 48Ca are now rather close to the results of nu-
clear shell model evaluation. (With gA = 1.27 our M0ν

values are 0.54 in the listed case and 0.71 in the variant
where the even-odd mass differences are treated as aris-
ing from pairing, both with the Argonne V18 potential
and 0.59 (0.77) with the CD-Bonn potential , while the
shell model values are 0.59 in Ref. [18] and 0.82(0.90)
for the Argonne V18 (CD Bonn) potential in Ref.[19].)
Note that only in the case of 48Ca the full oscillator pf
shell is included and hence the Ikeda sum rule is fulfilled
in the nuclear shell model treatment. We are, naturally,
well aware of the fact that to apply QRPA in the case of
48Ca is questionable; our results should be treated with
that in mind.

Finally, in order to better visualize effect of the new
parametrization of the particle-particle interaction, we
show in Fig. 4 an example of the multipole decompo-
sition of the matrix element M0ν

F . One can see there
that the contribution of the intermediate multipole 0+ is
drastically reduced with our choice of gT=1

pp , while all the
other multipoles are affected only slightly or not at all.

This is, in some sense, analogous to the situation with
M0ν
GT where the parameter gT=0

pp affects mostly the inter-

mediate 1+ states, while all the other multipolarities are
affected much less.
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FIG. 4: (Color online) Multipole decomposition of the matrix
element M0ν

F . The results with the old and new parametriza-
tions are compared. Note the dominant effect for the 0+ mul-
tipole, and the relatively small effects for the other multipoles.
This is the case of 76Ge.
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FIG. 5: (Color online) Nuclear matrix elements M0ν evalu-
ated with the new parametrization developed in this work
(filled squares) compared with the old method (gT=1

pp =

gT=0
pp ≡ gpp) (empty circles). This is QRPA with gA = 1.27

and large size single particle level scheme, as in Table I, eval-
uation using the Argonne V18 potential.

We compare in Fig. 5 the M0ν matrix elements for
all considered nuclei evaluated with the old and new
parametrizations of gpp. The smaller values of M0ν in
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48Ca, 166Cd, 124Sn, 136Xe and to some extent also in 96Zr
are related to the magic or semimagic nucleon number in
these nuclei, and thus to the reduced pairing correlations
in them.

V. COMPARISON OF THE χF VALUES
EVALUATED BY DIFFERENT METHODS

As we argued in this work, the result of the new
parametrization of the particle-particle interaction, that
partially restores the isospin symmetry and leads to the
correct M2ν

F = 0 value, is the reduction of the Fermi
part M0ν

F of the 0νββ nuclear matrix element. At the
same time, the largest component of that matrix element,
M0ν
GT , remains essentially unaffected. One can see that

most clearly by considering the quantity χF , the ratio
M0ν
F /M0ν

GT .
In Table IV we compare the χF values obtained with

different methods. (Analogous table, naturally without
our new results, appears in Ref. [20] in their Table VII.
However, as we already mentioned, their definition of
χF contains an extra factor (gV /gA)2.) One can see in
the Table IV that in the nuclear shell model, and in our
QRPA calculation with the new parametrization of gpp,
the χF values are substantially smaller than in the pre-
vious approaches. (In IBM-2 the χF are very small when
neutrons and protons are in different shells. That is an
artifact of the model where only one shell in each system
is included.)

In the shell model, and in our new QRPA calculations,
the χF values are relatively close to -1/3, the value one
would obtain in pure S = 0 states. However, in the
shell model the χF values are systematically smaller than
in our version of QRPA. Why this is so remains to be
understood. (To be really precise, χF = −1/3 would
arise for pure S = 0 when the higher order terms in the
weak current are absent, when in the nucleon form factor
the cut-off parameters for the vector and axial vector
currents are the same and the average energies Ē are the
chosen to be the same in both neutrino potentials.) As
we pointed out before, while the S = 0 component is
large, the other parts, in particular S = 1, are clearly
present.

We may notice that the QRPA values of χF are always
smaller with the quenched value gA = 1.0 compared to
the unquenched value gA = 1.27. That trend continues

when the amount of quenching is increased, e.g. to
gA = 0.8 where χF values are really quite close to -1/3.
However, the question of quenching of the 0νββ matrix
elements remains open, and in particular how to treat
it properly in the QRPA goes beyond the scope of the
present paper.

VI. CONCLUSIONS

By separating the particle-particle neutron-proton in-
teraction into its isovector and isoscalar parts, and renor-
malizing them each separately with its own fitted pa-
rameters gT=1

pp and gT=0
pp , we have achieved the partial

restoration of the isospin symmetry and fulfillment of
the requirement that M2ν

F = 0.0. This has been done
essentially without introducing new parameters, since
gT=1
pp ≈ gpair as required by the isospin symmetry of the

particle-particle force. At the same time the isoscalar
parameter gT=0

pp is fitted from the requirement that the
calculated 2νββ half-life is the same as its experimental
value. The resulting gT=0

pp is then almost the same one as
with the old parametrization with the single gpp value.

When the new parametrization of the particle-particle
renormalization constants is used in the QRPA evalua-
tion of the 0νββ nuclear matrix elements, a substantial
reduction of the Fermi part, M0ν

F , is observed, while the
Gamow-Teller and Tensor parts remain essentially unaf-
fected. The full matrix elements M0ν are reduced by ∼
10 -20% as seen in Fig. 5. We believe that such reduc-
tion, which also brings the ratio χF closer to ≈ −1/3,
nearer to its value in the isospin conserving nuclear shell
model values, is realistic, and should be used in the future
application of the QRPA and its generalizations.

Acknowledgments

Useful discussions with Kazuo Muto are appreciated.
The work of P.V. was partially supported by the US
DOE Grant DE-FG02-92ER40701. F. Š. acknowledges
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TABLE II: Nuclear matrix elements for both ββ decay modes with the old parametrization (gT=0
pp = gT=1

pp ≡ gpp) are compared

to those with the new one, gT=0
pp 6= gT=1

pp . The adopted values of the parameter gT=0
pp are also shown. The results for two values

of the axial coupling constant gA are displayed; the quenched value gA = 1.0 and the standard value gA = 1.27. The G-matrix
elements of realistic Argonne V18 potential nucleon-nucleon potential are considered. The nuclear radius R = r0A

1/3 with r0
= 1.2fm is used.

nucleus gA gT=0
pp param. 2νββ-decay NMEs 0νββ-decay NMEs χF

M2ν
F M2ν

GT M0ν
F M0ν

GT M0ν
T M0ν M ′

0ν

48Ca 1.000 0.771 old 0.331 0.0736 -0.794 0.642 -0.164 1.272 0.790 -1.24

0.770 new 0.00 0.0736 -0.268 0.639 -0.161 0.745 0.463 -0.42

1.27 0.776 old 0.327 0.0457 -0.788 0.526 -0.151 0.864 0.864 -1.50

0.775 new 0.00 0.0457 -0.268 0.523 -0.149 0.541 0.541 -0.51
76Ge 1.00 0.728 old 0.240 0.220 -2.688 5.276 -0.606 7.357 4.569 -0.51

0.728 new 0.00 0.220 -1.612 5.236 -0.591 6.258 3.886 -0.31

1.27 0.750 old 0.231 0.137 -2.632 4.753 -0.575 5.812 5.812 -0.55

0.750 new 0.00 0.137 -1.615 4.715 -0.561 5.157 5.157 -0.34
82Se 1.00 0.751 old 0.180 0.153 -2.394 4.614 -0.557 6.452 4.007 -0.52

0.751 new 0.00 0.153 -1.529 4.586 -0.545 5.571 3.460 -0.33

1.27 0.766 old 0.175 0.095 -2.359 4.233 -0.527 5.171 5.171 -0.56

0.766 new 0.00 0.095 -1.531 4.207 -0.516 4.642 4.642 -0.36
96Zr 1.00 0.806 old 0.063 0.145 -1.547 2.825 -0.414 3.958 2.458 -0.55

0.817 new 0.00 0.145 -1.214 2.667 -0.411 3.469 2.154 -0.45

1.27 0.824 old 0.058 0.090 -1.518 2.466 -0.391 3.018 3.018 -0.62

0.830 new 0.00 0.090 -1.215 2.349 -0.387 2.717 2.717 -0.52
100Mo 1.00 0.841 old 0.100 0.373 -2.757 5.166 -0.683 7.240 4.496 -0.53

0.840 new 0.00 0.373 -2.250 5.162 -0.673 6.739 4.185 -0.44

1.27 0.848 old 0.097 0.232 -2.738 4.640 -0.645 5.696 5.696 -0.59

0.847 new 0.00 0.232 -2.251 4.639 -0.635 5.402 5.402 -0.49
110Pd 1.00 0.785 old 0.081 0.423 -2.668 5.609 -0.585 7.692 4.777 -0.48

0.783 new 0.00 0.423 -2.182 5.614 -0.574 7.222 4.485 -0.39

1.27 0.805 old 0.075 0.263 -2.626 4.949 -0.558 6.021 6.021 -0.53

0.803 new 0.00 0.263 -2.184 4.954 -0.549 5.762 5.762 -0.44
116Cd 1.00 0.870 old 0.008 0.206 -1.633 3.663 -0.277 5.019 3.117 -0.45

0.870 new 0.00 0.206 -1.583 3.661 -0.275 4.969 3.086 -0.43

1.27 0.900 old 0.004 0.128 -1.607 3.319 -0.264 4.053 4.053 -0.48

0.900 new 0.00 0.128 -1.586 3.318 -0.263 4.040 4.040 -0.48
124Sn 1.00 0.628 old 0.132 0.20 -1.779 3.860 -0.344 5.295 3.288 -0.46

0.626 new 0.00 0.20 -0.984 3.859 -0.338 4.504 2.797 -0.25

1.27 0.785 old 0.086 0.00 -1.473 2.308 -0.361 2.861 2.861 -0.64

0.785 new 0.00 0.00 -0.988 2.302 -0.358 2.558 2.558 -0.43
128Te 1.00 0.770 old 0.133 0.0776 -2.540 4.453 -0.642 6.351 3.944 -0.57

0.769 new 0.00 0.0776 -1.750 4.436 -0.634 5.552 3.445 -0.39

1.27 0.780 old 0.128 0.0481 -2.508 4.092 -0.608 5.042 5.042 -0.61

0.779 new 0.00 0.0481 -1.751 4.076 -0.601 4.563 4.563 -0.43
130Te 1.00 0.775 old 0.103 0.0545 -2.232 3.796 -0.588 5.439 3.378 -0.59

0.774 new 0.00 0.0545 -1.545 3.778 -0.582 4.742 2.945 -0.41

1.27 0.784 old 0.100 0.0339 -2.206 3.493 -0.556 4.306 4.306 -0.63

0.783 new 0.00 0.0339 -1.546 3.478 -0.550 3.888 3.888 -0.44
134Xe 1.00 0.739 old 0.111 0.10 -2.247 4.108 -0.537 5.819 3.613 -0.55

0.738 new 0.00 0.10 -1.501 4.091 -0.530 5.071 3.149 -0.37

1.27 0.787 old 0.092 0.00 -2.112 3.256 -0.521 4.045 4.045 -0.65

0.787 new 0.00 0.00 -1.513 3.241 -0.517 3.664 3.664 -0.47
136Xe 1.00 0.730 old 0.0652 0.0313 -1.228 2.149 -0.299 3.078 1.911 -0.57

0.730 new 0.00 0.0313 -0.806 2.138 -0.297 2.646 1.643 -0.38

1.27 0.740 old 0.0627 0.0194 -1.211 1.968 -0.283 2.437 2.437 -0.62

0.740 new 0.00 0.0194 -0.806 1.959 -0.282 2.177 2.177 -0.41
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TABLE III: The same as in Table II for realistic charge-dependent Bonn potential (CD-Bonn).

nucleus gA gT=0
pp param. 2νββ-decay NMEs 0νββ-decay NMEs χF

M2ν
F M2ν

GT M0ν
F M0ν

GT M0ν
T M0ν M ′

0ν

48Ca 1.000 0.703 old 0.321 0.0736 -0.795 0.678 -0.151 1.322 0.821 -1.17

0.703 new 0.00 0.0736 -0.284 0.675 -0.149 0.810 0.503 -0.42

1.27 0.708 old 0.318 0.0457 -0.789 0.558 -0.139 0.909 0.909 -1.41

0.708 new 0.00 0.0457 -0.284 0.555 -0.137 0.594 0.594 -0.51
76Ge 1.00 0.660 old 0.188 0.220 -2.794 5.644 -0.551 7.886 4.897 -0.49

0.660 new 0.00 0.220 -1.711 5.607 -0.537 6.781 4.211 -0.30

1.27 0.681 old 0.220 0.137 -2.735 5.052 -0.522 6.228 6.228 -0.54

0.681 new 0.00 0.137 -1.713 5.018 -0.510 5.571 5.571 -0.34
82Se 1.00 0.683 old 0.172 0.156 -2.495 4.939 -0.508 6.926 4.301 -0.51

0.683 new 0.00 0.156 -1.616 4.913 -0.497 6.032 3.746 -0.33

1.27 0.698 old 0.166 0.095 -2.459 4.508 -0.480 5.555 5.555 -0.55

0.698 new 0.00 0.095 -1.618 4.484 -0.470 5.018 5.018 -0.36
96Zr 1.00 0.735 old 0.060 0.145 -1.614 3.035 -0.373 4.276 2.655 -0.53

0.747 new 0.00 0.145 -1.277 2.861 -0.370 3.769 2.341 -0.45

1.27 0.753 old 0.055 0.090 -1.583 2.640 -0.351 3.271 3.271 -0.60

0.760 new 0.00 0.090 -1.278 2.511 -0.347 2.957 2.957 -0.51
100Mo 1.00 0.770 old 0.097 0.373 -2.883 5.532 -0.615 7.800 4.8435 -0.52

0.769 new 0.00 0.373 -2.366 5.526 -0.606 7.287 4.525 -0.43

1.27 0.778 old 0.093 0.232 -2.863 4.950 -0.580 6.148 6.148 -0.58

0.776 new 0.00 0.232 -2.367 4.950 -0.571 5.850 5.850 -0.48
110Pd 1.00 0.715 old 0.081 0.423 -2.799 6.046 -0.531 8.314 5.163 -0.46

0.713 new 0.00 0.423 -2.288 6.052 -0.521 7.820 4.856 -0.38

1.27 0.734 old 0.075 0.263 -2.755 5.324 -0.506 6.529 6.529 -0.52

0.732 new 0.00 0.263 -2.290 5.330 -0.497 6.255 6.255 -0.43
116Cd 1.00 0.785 old 0.010 0.206 -1.707 3.942 -0.253 5.396 3.351 -0.43

0.784 new 0.00 0.206 -1.639 3.940 -0.251 5.328 3.308 -0.42

1.27 0.815 old 0.006 0.128 -1.680 3.564 -0.241 4.367 4.367 -0.40

0.814 new 0.00 0.128 -1.642 3.563 -0.240 4.343 4.343 -0.46
124Sn 1.00 0.557 old 0.127 0.200 -1.871 4.208 -0.311 5.768 3.582 -0.44

0.555 new 0.00 0.200 -1.057 4.206 -0.305 4.958 3.079 -0.25

1.27 0.708 old 0.085 0.00 -1.569 2.579 -0.324 3.230 3.230 -0.61

0.707 new 0.00 0.00 -1.062 2.575 -0.321 2.913 2.913 -0.41
128Te 1.00 0.694 old 0.130 0.0776 -2.673 4.902 -0.580 6.996 4.344 -0.54

0.693 new 0.00 0.0776 -1.850 4.887 -0.572 6.164 3.828 -0.38

1.27 0.704 old 0.125 0.0481 -2.641 5.582 -0.549 5.582 5.582 -0.47

0.703 new 0.00 0.0481 -1.851 4.476 -0.542 5.084 5.084 -0.41
130Te 1.00 0.698 old 0.102 0.0545 -2.354 4.213 -0.531 6.036 3.748 -0.56

0.697 new 0.00 0.0545 -1.637 4.198 -0.525 5.310 3.297 -0.39

1.27 0.707 old 0.098 0.0339 -2.328 3.867 -0.502 4.810 4.810 -0.60

0.706 new 0.00 0.0339 -1.637 3.852 -0.496 4.373 4.373 -0.42
134Xe 1.00 0.664 old 0.110 0.10 -2.268 4.532 -0.486 6.414 3.983 -0.50

0.663 new 0.00 0.10 -1.595 4.516 -0.479 5.632 3.497 -0.35

1.27 0.712 old 0.092 0.00 -2.231 3.608 -0.472 4.522 4.522 -0.62

0.712 new 0.00 0.00 -1.599 3.593 -0.466 4.119 4.119 -0.44
136Xe 1.00 0.657 old 0.0643 0.0131 -1.300 2.395 -0.269 3.426 2.127 -0.54

0.657 new 0.00 0.0313 -0.858 2.385 -0.268 2.975 1.847 -0.36

1.27 0.667 old 0.0619 0.0194 -1.282 2.190 -0.255 2.735 2.735 -0.59

0.667 new 0.00 0.0194 -0.858 2.181 -0.254 2.460 2.460 -0.39
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TABLE IV: Ratio χF = M0ν
F /M0ν

GT (see our definition of χF in the Eq. (2) ) in ISM [10], QRPA-A, QRPA-B (present work,
gA = 1.00 and gA = 1.27 side by side), QRPA-A results are with the Argonne V18 potential, QRPA-B with the Bonn CD
potential), IBM-2 [20], and QRPA-JyLa [21].

Nucleus χF

ISM QRPA-A QRPA-B IBM QRPA-JyLa

48Ca -0.22 -0.42, -0.51 -0.42, -0.51 -0.68 -0.90a

76Ge -0.16 -0.31, -0.34 -0.30, -0.34 -0.61 -0.35
82Se -0.16 -0.33, -0.36 -0.33, -0.36 -0.68 -0.45
96Zr — -0.45, -0.52 -0.45, -0.51 -0.10 -0.69
100Mo — -0.44, -0.49 -0.43, -0.48 -0.10 -0.64
110Pd -0.25 -0.39, -0.44 -0.38, -0.46 -0.05 -0.61
116Cd -0.30 -0.43, -0.48 -0.42, -0.46 -0.10 -0.45
124Sn -0.20 — -0.43 — -0.41 -0.56 -0.68
128Te -0.20 -0.39, -0.43 -0.38, -0.41 -0.55 -0.60
130Te -0.20 -0.41, -0.44 -0.39, -0.42 -0.55 -0.60
136Xe -0.20 -0.38, -0.41 -0.36, -0.39 -0.55 -0.60

a Ref.[22]


