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Elastic and semileptonic transition form factors for the kaon and pion are calculated using the
leading-order in a global-symmetry-preserving truncation of the Dyson-Schwinger equations and a
momentum-independent form for the associated kernels in the gap and Bethe-Salpeter equations.
The computed form factors are compared both with those obtained using the same truncation
but an interaction that preserves the one-loop renormalisation-group behaviour of QCD and with
data. The comparisons show that: in connection with observables revealed by probes with |Q2| .
M2, where M ≈ 0.4GeV is an infrared value of the dressed-quark mass, results obtained using a
symmetry-preserving regularisation of the contact-interaction are not realistically distinguishable
from those produced by more sophisticated kernels; and available data on kaon form factors do not
extend into the domain whereupon one could distinguish between the interactions. The situation
is different if one includes the domain Q2 > M2. Thereupon, a fully consistent treatment of the
contact interaction produces form factors that are typically harder than those obtained with QCD
renormalisation-group-improved kernels. Amongst other things also described are a Ward identity
for the inhomogeneous scalar vertex, similarity between the charge distribution of a dressed-u-quark
in the K+ and that of the dressed-u-quark in the π+, and reflections upon the point whereat one
might begin to see perturbative behaviour in the pion form factor. Interpolations of the form
factors are provided, which should assist in working to chart the interaction between light-quarks
by explicating the impact on hadron properties of differing assumptions about the behaviour of the
Bethe-Salpeter kernel.

PACS numbers: 12.38.Aw, 12.38.Lg, 11.10.St, 14.40.Df

I. INTRODUCTION

The concept and definition of strangeness emerged over
a roughly twenty-year period, following discovery of the
(neutral) kaon [1]. Like the charged pions, all kaons are
stable against strong and electromagnetic decays. Hence,
to the first observers they appeared to survive a strangely
long time. As a strong interaction bound state, whose
decay is mediated only by the weak interaction (thus,
the relatively long lifetime), kaons have been instrumen-
tal in establishing the foundation and properties of the
Standard Model; most notably, perhaps, the notions of
CP violation and weak-interaction mixing between quark
flavours. Simple phenomena involving kaons continue to
provide a valuable means by which to make precision
tests of the Standard Model [2].

The association of strangeness with a distinct quark
flavour was complete with the advent of the constituent
quark model [3, 4]. As a scheme for systematically clas-
sifying hadrons according to their quark content, the
quark model is adequate for pions and kaons. However,
it early became clear [5, 6] that quantum mechanical
models cannot veraciously describe the masses and in-
teractions of pions and kaons because they are (pseudo-)
Goldstone bosons associated with dynamical chiral sym-
metry breaking (DCSB).

Owing to the existence of nonzero current-quark
masses [7], pions and kaons are not consummate Gold-
stone modes. Comparison between their properties can
expose the differences in magnitudes between both the
current- and constituent-like masses of u, d-quarks and
the s-quark; and the wider impact of these differences.
This window on SU(3)-flavour symmetry breaking there-
fore provides direct access to both explicit and dynamical
effects in a wide variety of domains. For example: the
mass formulae for pseudo-Goldstone bosons involve both
current-quark masses and order parameters for DCSB
[8, 9]; and the ratio of kaon and pion valence-u-quark dis-
tribution functions provides access to a renormalisation
scale invariant ratio of DCSB order parameters [10, 11].

Herein we analyse kaon and pion elastic and semilep-
tonic transition form factors with the framework of
QCD’s Dyson-Schwinger equations [12–14]. This study is
an integral part of a larger programme, aimed at charting
the interaction between light-quarks by explicating the
impact of differing assumptions about the behaviour of
the Bethe-Salpeter kernel upon the spectrum of hadrons,
and also upon their elastic and transition form factors on
a large domain of momentum transfer. Material progress
has been made in connection with u, d-quark systems [15–
19]; and a spectrum of mesons and baryons with one or
more s-quarks was recently computed [20]. In order to
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extend the latter to predictions for elastic and transition
form factors of baryons containing s-quarks, it is neces-
sary to compute such form factors for mesons containing
s-quarks.

This need is readily explained [18]. Many properties
of baryons are successfully described via a Poincaré co-
variant Faddeev equation that expresses the presence of
nonpointlike diquark correlations [21], evidence for the
existence of which is accumulating [19, 22–24]. There
is a fundamental mathematical similarity between di-
quark correlations and uniquely identified meson ana-
logues [25]. Hence, computing the properties of these
analogues is principally equivalent to producing results
for the diquark correlations [18]; and form factors for
diquark correlations are a necessary piece in the compu-
tation of baryon form factors [19].

In addition, as indicated above, these meson form fac-
tors are interesting in their own right. The pion elas-
tic form factor is much studied theoretically and, on a
modest domain, constrained well experimentally [26–28].
However, there are fewer single-framework analyses of the
pion transition and kaon form factors in which quark-
gluon dynamics is discernible (e.g., Refs. [29–35]), and
the data is typically old and imprecise [36–39]. We thus
focus primarily on the kaon elastic and transition (Kℓ3)
form factors, and the pion transition (πe3). (N.B. Ex-
cept in connection with the pion transition form factor,
we assume isospin symmetry.)

As a Poincaré-covariant framework, capable of simul-
taneously implementing light-quark confinement and ex-
pressing DCSB, and admitting a symmetry-preserving
truncation scheme, the DSEs are an excellent tool for
analysis of these form factors involving the pion and
kaon pseudo-Goldstone bosons. Our study will exploit
a symmetry-preserving treatment of a vector×vector
contact interaction. In contrasting the behaviour pro-
duced by such an interaction with that obtained using
a momentum-dependent interaction, which preserves the
one-loop renormalisation group behaviour of QCD, we
will achieve comparisons that expose those observables
which are most sensitive to the infrared evolution of
the strong interaction’s running coupling and masses or
might become so in future with additional experimen-
tal effort. Moreover, from careful interpretation of the
contact-interaction results, one can draw additional valu-
able insights. To express this differently, we take a global
perspective centred on the strong interaction and make
no effort to fine tune interaction parameters. Plainly,
then, we do not intend that this study should make a
material contribution to precision tests of the Standard
model. Rather, we seek to identify those aspects of kaon
and pion physics that can serve to discriminate between
conjectures about strong interaction dynamics.

In Sec. II we introduce the matrix elements that must
be computed, present the associated kinematics, provide
some backgroundmaterial on the nature of SU(3)-flavour
symmetry breaking, and present the formulae we use to
calculate the matrix elements. We also detail the im-

pact of symmetries and dynamics on the vector part of
the dressed-quark–W -boson vertex: an informed under-
standing of this vertex is crucial in any analysis of hadron
form factors. This section is complemented by three ap-
pendices. They detail our symmetry-preserving treat-
ment of the vector×vector contact interaction, includ-
ing some information about the gap and Bethe-Salpeter
equations and current conservation; and list a formula
for the kaon elastic form factor, which is readily mapped
into an expression for the analogous pion form factor.
In Secs. III and IV we present our results along with a
detailed comparative analysis in the context of experi-
ment and kindred theoretical studies. We recapitulate
and conclude in Sec. V.

II. FORM FACTORS

A. Definitions

We are interested in the following matrix elements

MK
µ (P,Q) = 〈K+(p)|

∑

f=u,s̄

ef q̄f iγµqf |K+(k)〉

= 2PµFK(Q2) , (1)

Mπ
µ (P,Q) = 〈π+(p)|

∑

f=u,d̄

ef q̄f iγµqf |π+(k)〉

= 2PµFπ(Q
2) , (2)

MKℓ3
µ (P,Q) = 〈π0(p)|s̄iγµu|K+(k)〉

=
1√
2

[

fK
+ (Q2)2Pµ − fK

− (Q2)Qµ

]

, (3)

Mπe3

µ (P,Q) = 〈π0(p)|d̄iγµu|π+(k)〉

=
1√
2

[

fπ
+(Q

2)2Pµ − fπ
−(Q

2)Qµ

]

, (4)

where: eu = 2/3, ed̄ = 1/3 = es̄; 2P = k + p,
Q = p− k, with k2 = −m2

K ,−m2
π and p2 = −m2

K ,−m2
π,

depending on the initial and final state; and the squared-
momentum-transfer is t = −Q2.1

In connection with the elastic form factors:

P ·Q = 0 and P 2 = −m2
H − 1

4
Q2, (5)

with H = K,π as appropriate. For the Kℓ3 transitions,
on the other hand:

2P ·Q = m2
K −m2

π =: ∆Kπ , (6a)

2P 2 = −(m2
K +m2

π)−
1

2
Q2 =: −ΣKπ − 1

2
Q2, (6b)

1 We use a Euclidean metric: {γµ, γν} = 2δµν ; γ†
µ = γµ; γ5 =

γ4γ1γ2γ3, tr[γ5γµγνγργσ ] = −4ǫµνρσ ; σµν = (i/2)[γµ, γν ]; a·b =
∑4

i=1
aibi; and Qµ spacelike ⇒ Q2 > 0.
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and tm = (mK −mπ)
2 < ∆Kπ is the largest value of the

squared-momentum-transfer in the physical decay pro-
cess. The kinematic constraints for the πe3 transition
are obtained from Eqs. (6) by the replacements K → π+,
π → π0.
We judge it worth recalling that in the isospin sym-

metric limit, fπ
+ ≡ −Fπ and fπ

− ≡ 0. Moreover, in the

limit of exact SU(3)-flavour symmetry, fπ,K
+ ≡ −Fπ and

fπ,K
− ≡ 0. Consequently, fK

− should be a sensitive gauge
of SU(3)-breaking. It is notable, too, that away from
the SU(3)-flavour symmetry limit the Ademollo-Gatto
theorem ensures [fK

+ (0)]2 ≈ 1 [40]. A consideration of
contemporary theoretical estimates [2] indicates

|fK
+ (0)| = 0.97± 0.01 . (7)

An experimental estimate can be inferred using values of
the CKM matrix element Vus in Ref. [39]:

|fK
+ (0)| = 0.9605± 0.0061 . (8)

As a measure of the divergence QµM
Kℓ3
µ (P,Q), the

function

fK
0 (Q2) = fK

+ (Q2)− Q2

m2
K −m2

π

fK
− (Q2) (9)

is also useful in characterising the transitions. According
to Ref. [41], current algebra predicts

fK
0 (Q2 = −∆Kπ) =

fK
fπ

+∆CT = 1.20 + ∆CT, (10)

where ∆Kπ, defined in Eq. (6a), is an albeit unphysical
momentum transfer, fK and fπ are the mesons’ leptonic
decay constants [39], and ∆CT = O(mu,md). The correc-
tion ∆CT is generally found to be small [42] (namely, of a
magnitude similar to the error in fK/fπ) and is therefore
neglected hereafter.

B. Semileptonic decays

In any study of hadron physics observables it is critical
to preserve symmetries. For example, if one does not
ensure satisfaction of the vector Ward-Green-Takahashi
identity [43–45] throughout a computation of the pion’s
elastic form factor; i.e., in the gap and Bethe-Salpeter
equations, and in the expression for the matrix element
in Eq. (2), one cannot even guarantee the pion will have
unit charge [46]. The DSE framework is distinguished by
the existence of at least two nonperturbative, symmetry-
preserving truncation schemes [47–49]. Herein we use
a truncation that may be described as leading-order in
the scheme of Refs. [47, 48]; namely, the rainbow-ladder
approximation, because it is a quantitatively reliable tool
for computation of the properties of pions and kaons, for
reasons that are well understood [50, 51].

In the rainbow-ladder treatment of a vector×vector
contact interaction, the matrix element in Eq. (3) is

MKℓ3
µ (P,Q) =

√
2Nc trD

∫

d4t

(2π)4
Γπ(−p)Su(t)ΓK(k)

×Ss(t+ k)iV
su
µ (Q)Su(t+ p) . (11)

In Eq. (11), Su,s are dressed-quark propagators and Γπ,K

are meson Bethe-Salpeter amplitudes. In the context of
the rainbow-ladder truncation of the contact interaction,
their forms are described in App. A.

1. Weak vector vertex

The remaining element in Eq. (11) is the vector piece of
the dressed-quark–W -boson vertex, V su

µ (Q), which sat-
isfies a Ward-Green-Takahashi identity:

QµiV
su
µ (Q) = S−1

s (q+Q)−S−1
u (q)− (ms −mu)Γ

su
I (Q) ,

(12)
where Γsu

I is an analogous Dirac-scalar vertex. (The
axial-vector piece of the quark–W -boson coupling can-
not contribute to a 0− → 0− transition in the Standard
Model.) In order to highlight the symmetry-preserving
nature of our treatment of the contact interaction, it is
worth detailing the computation of V su

µ .
Using the interaction kernels in App.A, the inhomo-

geneous Bethe-Salpeter equation for the dressed-quark–
W-boson vertex is

V su
µ (Q) = γµ

−16παIR

3m2
G

∫

d4t

(2π)4
γαSs(t+Q)Γsu

µ (Q)Su(t)γα (13)

and that for its scalar counterpart is

Γsu
I (Q) = ID

−16παIR

3m2
G

∫

d4t

(2π)4
γαSs(t+Q)Γsu

I (Q)Su(t)γα . (14)

With a symmetry-preserving treatment of the contact
interaction, the vector vertex has the general form

V su
µ (Q) = γT

µ P
su
T (Q2) + γL

µP
su
1L(Q

2)− iQµIDP
su
2L(Q

2) ,
(15)

where Qµγ
T
µ = 0, γT

µ + γL
µ = γµ; and the scalar vertex

may be written

Γsu
I (Q) = ID Esu

I (Q2) . (16)

These expressions are simple, in part because a
momentum-independent interaction cannot support a de-
pendence on relative momentum.
With these things in mind, consider Eq. (14), which

may be written

ID Esu
I (Q2) = ID

−Esu
I (Q2)

16παIR

3m2
G

∫

d4t

(2π)4
γαSs(t+Q)Su(t)γα . (17)
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It is straightforward to evaluate the expression on the
second line: compute the Dirac contraction; introduce a
Feynman parametrisation, characterised by the param-
eter α; shift the integration variable t → t − αQ; and
thereby arrive at

Ksu
E (Q2) =

16παIR

3m2
G

∫

d4t

(2π)4
γαSs(t+Q)Su(t)γα (18)

= − 4αIR

3πm2
G

∫ 1

0

dα

∫ ∞

0

dy y
y − αα̂Q2 −MuMs

[y + wus̄]2
, (19)

where wus̄ = ωus̄(α,Q
2), with the latter defined in

Eq. (A13). At this point, Eqs. (A9), (A14) may be used
to obtain

Ksu
E (Q2) = − 4αIR

3πm2
G

∫ 1

0

dα

[

C iu(wus̄)− C iu
1 (wus̄)

−(MuMs + αα̂Q2)C
iu

1 (wus̄)

]

; (20)

and hence the scalar vertex is Eq. (16) with

Esu
I (Q2) =

1

1 +Ksu
E (Q2)

. (21)

Comparison with Eq. (B15) in Ref. [20] shows that, as it
should, the rainbow-ladder scalar vertex exhibits a pole
at Q2 = −m2

κ; i.e., at the mass of the lightest us̄-scalar
excitation.
We return now to the vector vertex. Substituting

Eq. (15) into Eq. (13) and drawing upon Eq. (16), one
finds

P su
1L(Q

2) ≡ 1 . (22)

One may determine P su
T (Q2) by first contract-

ing Eq. (13) with the transverse projection operator
Tµν(Q) = δµν −QµQν/Q

2, then proceeding as with the
derivation of Eq. (21) and finally using Eq. (A12), to find

P su
T (Q2) =

1

1 +Ksu
V (Q2)

, (23)

Ksu
V (Q2) = − 2αIR

3πm2
G

∫ 1

0

dα
[

MuMs −M2
uα̂

−M2
sα− 2αα̂Q2

]

C
iu

1 (wus̄) . (24)

Comparison with Eq. (19) in Ref. [20] shows that, nat-
urally, the transverse part of the rainbow-ladder vector
vertex exhibits a pole at Q2 = −m2

K∗ ; i.e., at the mass
of the lightest us̄-vector excitation.
Only the computation of P su

2L(Q
2) remains. This may

be accomplished by first contracting Eq. (13) with iQµ,
then using the identity

iγ ·Q = S−1
s (t+Q)− S−1

u (t)−Ms +Mu (25)

and subsequently the gap equations for the s, u-quarks,
Eq. (A3), and finally Eq. (18), so that one arrives at

Q2P su
2L(Q

2) = (mu −ms)E
su
I (Q2)−Mu +Ms . (26)

It is straightforward now to verify the Ward-Green-
Takahashi identity, Eq. (12), by direct substitution.
It is worth noting that V su

µ does not exhibit a pole at

Q2 = 0. That is so because

(ms −mu)E
su
I (Q2 = 0) = Ms −Mu , (27)

as may readily be verified using the u, s-quark gap equa-
tions, Eq. (A3), and Eqs. (16), (18).
Equation (27) is a particular example of a general iden-

tity that is true irrespective of the interaction. In a
renormalisable relativistic quantum gauge field theory
the scalar vertex at zero total momentum, Q = 0, takes
the form

Γsu
I (k;Q = 0; ζ) = IDE

su
I (k2; ζ) + iγ · kGI(k

2; ζ) , (28)

where k is the relative momentum and ζ is the renor-
malisation point. The scalar functions in this expression
satisfy

(mζ
s −mζ

u)E
su
I (k2; ζ) = Bs(k

2; ζ)−Bu(k
2; ζ) , (29a)

(mζ
s −mζ

u)G
su
I (k2; ζ) = As(k

2; ζ)−Au(k
2; ζ) , (29b)

where the general form of the dressed propagator for a
fermion with flavour f is given by

S−1
f (k; ζ) = iγ · kAf (k

2; ζ) + ID Bf (k
2; ζ) . (30)

Equations (29) will be recognised as finite-difference gen-
eralisations of better known scalar Ward identities [52]:

Eff
I (k2; ζ) =

∂

∂mζ
f

Bf (k
2; ζ) , (31a)

Gff
I (k2; ζ) =

∂

∂mζ
f

Af (k
2; ζ) . (31b)

2. Vertex nonanalyticities

We have explained that, when computed in rainbow-
ladder truncation, the vector vertex exhibits poles at the
location of various bound-states. For the Kℓ3 transition
form factors, this translates into the appearance of a pole
in fK

+ (Q2) at Q2 = −m2
K∗ , where mK∗ is the mass of the

K∗-meson, and a pole in fK
0 (Q2) at Q2 = −m2

κ, where
mκ is the rainbow-ladder mass of the us̄-scalar-meson.
When one proceeds beyond rainbow-ladder truncation,

these poles in the form factors are smeared by widths.
The same class of corrections to the rainbow-ladder trun-
cation contains those diagrams whose point-meson ana-
logue is Kπ rescattering for the Kℓ3 transition, and KK-
and ππ-rescattering for the respective elastic form fac-
tors. Such effects are modest in the neighbourhood of
Q2 = 0. For example, ππ-rescattering increases the
pion’s charge radius by . 10%, beyond that obtained
in a complete rainbow-ladder treatment (which neces-
sarily includes a simple-pole associated with ρ-meson)
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[12, 16, 53, 54]. Furthermore, the impact of such cor-
rections diminishes rapidly with increasing spacelike mo-
menta because hard probes expose the structure of a
hadron’s dressed-quark core.
On the other hand, rescattering effects on form fac-

tors increase as the squared-momentum transfer moves
toward a timelike value associated with a nonanalytic
feature in the S-matrix, such as a production threshold.
This might be particularly important for the Kℓ3 tran-
sitions because tm ≈ (1/3)tp, tp = (mK + mπ)

2. In
Ref. [30] such considerations led to exploration of the im-
pact of a beyond-rainbow-ladder correction to the weak
vector vertex, which in our context corresponds to the
following Ansatz :

V su
µ (Q) → V su

µ (Q) + clγµe
t/tpLsu(Q2) , (32)

with cl a parameter, see Table II, and

Lsu(t = −Q2) = 2 +

[

∆Kπ

t
− ΣKπ

∆Kπ

]

ln
m2

π

m2
K

−ν(t)

t
ln

[t+ ν(t)]2 −∆2
Kπ

[t− ν(t)]2 −∆2
Kπ

, (33)

where ν(t)2 = (t− tp)(t − tm). It was shown in Ref. [30]
that the precise form of L(t) is unimportant, only its
analytic structure matters. N.B.Lsu(t) is regular in the
neighbourhood of t = 0.

3. Kaon leptonic transition form factors

All elements necessary for the computation of fK
± (Q2)

are now in hand. They may be obtained from M(P,Q)
in Eq. (11) as follows:

fK
+ (Q2) =

1√
2

Q2P ·M − P ·QQ ·M
P 2Q2 − (P ·Q)2

, (34a)

fK
− (Q2) =

√
2
P ·QP ·M − P 2 Q ·M

P 2Q2 − (P ·Q)2
. (34b)

Formulae for the quantities P ·M and Q ·M are straight-
forward to compute but the expressions are lengthy and
we choose not to reproduce them herein.

4. Pion leptonic transition form factors

The form factors associated with the πe3 decay may be
obtained by following the pattern described above: one
must merely change s̄ → d̄.

C. Elastic

1. Kaon

The matrix element in Eq. (1) can be decomposed thus:

Mµ(P,Q) = euM
uus̄
µ (P,Q) + es̄M

us̄s̄
µ (P,Q) , (35)

where the expressions

Muus̄
µ (P,Q) = 2PµF

u
K+(Q2) , (36a)

Mus̄s̄
µ (P,Q) = 2PµF

s̄
K+(Q2) (36b)

define the flavour-separated charged-kaon form factors
such that

FK+(Q2) = eu F
u
K+(Q2) + es̄ F

s̄
K+(Q2) . (37)

It is noteworthy that the canonical normalisation con-
dition for the kaon Bethe-Salpeter amplitude ensures
Fu
K+(Q2 = 0) = 1 = F s̄

K+(Q2 = 0). (See App. C for
additional comments.)
In rainbow-ladder truncation,

Muus̄
µ (P,Q) = 2NctrD

∫

d4t

(2π)4
iΓK(−p)Su(t+ p)

×iV uu
µ (Q)Su(t+ k)iΓK(k)Ss(t) , (38a)

Mus̄s̄
µ (P,Q) = 2NctrD

∫

d4t

(2π)4
iΓK(−p)Su(t)iΓK(k)

×Ss(t− k)iV ss
µ (Q)Ss(t− p) . (38b)

All elements in these expressions are already known. In
particular, the vertices V ff

µ (Q) are natural specialisa-
tions of Eq. (15). From this it is plain that, in rainbow-
ladder truncation, the kaon electromagnetic form factor
possesses poles at the masses of ρ- and φ-like mesons.
The pole at the ground-state ρ-meson mass is naturally
not kinematically accessible since mρ < 2mK .
The neutral kaon is not an eigenstate of the charge con-

jugation operation and hence this particle has a nonzero
elastic form factor:

FK0(Q2) = ed F
d
K0(Q2) + es̄ F

s̄
K0(Q2) , (39)

where

2PµF
d
K0(Q2) = Mdds̄

µ (P,Q) , (40a)

2PµF
s̄
K0(Q2) = Mds̄s̄

µ (P,Q) , (40b)

with these last two expressions obtained by analogy with
Eqs. (38). In the isospin symmetry limit, which we usu-
ally employ herein,

F d
K0(Q2) = Fu

K+(Q2) , F s̄
K0(Q2) = F s̄

K+(Q2) . (41)

Analysis of the expression in Eq. (36a) yields

Fu
K+(Q2) = Puu

T (Q2)
[

T u
K,EE(Q

2)E2
us̄

+T u
K,EF (Q

2)Eus̄Fus̄ + T u
K,FF (Q

2)F 2
us̄

]

, (42)

where: the functions T u
K(Q2) are given in App. B; Eus̄,

Fus̄ are elements in the kaon’s Bethe-Salpeter amplitude
[Eq. (A11)]; and Puu

T (Q2) is plain from Eq. (23).
It will be observed that Eq. (38a) is mapped into

Eq. (38b) under the interchanges s̄ ↔ u, k ↔ −p. The
latter changes none of the kinematic relations. Hence,

F s̄
K+(Q2) = P ss

T (Q2)
[

T s
K,EE(Q

2)E2
us̄

+T s
K,EF (Q

2)Eus̄Fus̄ + T s
K,FF (Q

2)F 2
us̄

]

, (43)

with the functions T s
K(Q2) obtained from the expressions

in Eq. (B1) by the interchange s̄ ↔ u.
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2. Pion

The expression for the charged-pion elastic form factor
is obtained by setting s̄ → d̄ in the formulae described
above. Since we assume isospin symmetry, this process
yields:

Fπ+(Q2) = (eu + ed̄)F
u
π+(Q2) = Fu

π+(Q2) . (44)

It may also be read from Eq. (A1) in Ref. [18].

III. RESULTS - ELASTIC

All information necessary for computation of the form
factors is now available.

A. Charged kaon

We begin with theK+ elastic form factor. In the upper
panel of Fig. 1 we depict the contact-interaction result for
FK(Q2), computed with the model parameters specified
in Table III and Eq. (C2). On the domain x ∈ (−1, 10],
the function

FK(x)
interpolation

=
1 + 1.112x+ 0.228x2

1 + 1.778x+ 0.780x2
, (45)

with x = Q2/m2
ρ, provides an accurate interpolation.

The figure also presents a comparison with both the DSE
computation that successfully predicted the pion electro-
magnetic form factor [32] and extant data [37].
Two things are immediately apparent. First, as also

observed elsewhere [15–20], in connection with observ-
ables determined by probes with |Q2| . M2, results
obtained using a symmetry-preserving regularisation of
the contact-interaction are not realistically distinguish-
able from those produced by the most sophisticated QCD
renormalisation-group-improved kernels currently avail-
able. In addition, available data on the charged-kaon
form factor do not extend into the domain whereupon
one could distinguish between contact-interaction results
and those obtained with QCD-like kernels.
As the lower panel in Fig. 1 shows, the picture changes

completely if one includes the domain Q2 > M2. It was
demonstrated in Ref. [55] that pseudoscalar meson Bethe-
Salpeter amplitudes necessarily possess components that
may be described as pseudovector in character. These
components impact materially on a vast array of quan-
tities involving pseudoscalar mesons and, of particular
relevance herein, the large-Q2 behaviour of their form
factors [15, 56]. Namely, if the meson is bound by an
interaction whose behaviour at large relative momentum
is (1/k2)n, then

FM (Q2)
Q2

≫M2

≃
[

1

Q2

]n

, (46)
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FIG. 1. Upper panel. Computed charged-kaon elastic form
factor (solid curve) cf. the prediction in Ref. [32] (dashed
curve) and extant data: circles [37] and squares [38]. Lower

panel. Comparison of the contact interaction result with the
monopole fit to the charged-kaon form factor in Ref. [32]. The
dot-dashed curve in both panels is our computed result if
one (erroneously) neglects the pseudovector component of the
kaon; i.e., sets Fus̄ ≡ 0 in Eq. (A11). In all cases the results
are rescaled with the appropriate value of mρ; namely, for the
curves, that computed with the interaction, and for the data,
the empirical value.

up to lnQ2/M2 corrections, where M is the infrared
value of the dressed-quark mass. This explains the di-
vergence between the solid and dashed curves in the
lower panel of Fig. 1: the former is obtained with our
symmetry-preserving treatment of a contact interaction,
(1/k2)n=0; and the latter with the like treatment of a
QCD renormalisation-group-improved (1/k2)n=1 interac-
tion. The marked discrepancy highlights the potential
for empirical data to chart the pointwise behaviour of
the strong interaction between light-quarks.

In order to complete the illustration of these points,
the dot-dashed curve in Fig. 1 depicts the result obtained
with a contact interaction if the pseudovector component
of the kaon’s Bethe-Salpeter amplitude is erroneously
omitted; i.e., one sets Fus̄ ≡ 0 in Eq. (A11). Plainly,
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TABLE I. Row 1: Calculated radii, quoted in units of the
computed value of 1/mρ (see Table. III). The “F ≡ 0” super-
script indicates a result obtained by (erroneously) omitting
the pseudovector components of the pseudoscalar mesons.
N.B.We quote the magnitude of the neutral kaon radius
because (r0K)2 = −6F ′

K0 (0) < 0. Row 2: Results from
Refs. [32, 34], expressed in units of that study’s computed
value of 1/mρ. Row 3: Experimental values [39], quoted in
terms of the empirical value of 1/mρ. These values span two
columns since experiment cannot suppress a meson’s pseu-
dovector component. N.B. r2Kπ = −6fK′

+ (0)/fK
+ (0) and the

empirical value is determined from the quadratic fit to the
K±

e3 form factor.

rK+ rF≡0

K+ |rK0 ||rF≡0

K0 | rπ+ rF≡0

π+ rKπ rF≡0
Kπ

computed 2.00 2.30 0.78 0.85 2.12 2.40 1.79 2.10

Ref. [32, 34] 2.32 1.10 2.52 2.44

empirical 2.20± 0.12 1.09± 0.07 2.64± 0.03 2.14± 0.07

if this error is made, as was formerly typical [57, 58],
then there is no realistic means by which to distinguish
between (1/k2)n=0 and (1/k2)n=1 interactions, if the lat-
ter does not also make the mistake of ignoring the pseu-
doscalar meson’s pseudovector components [46]. The
dot-dashed curve in Fig. 1 may be interpolated using

FF≡0
K (x)

interp.
=

1− 0.237x− 0.749x2

1 + 0.643x− 0.984x2 − 0.632x3
. (47)

Signficantly, the nearly identical behaviour of the
dashed and dot-dashed curves was not achieved by fine
tuning any parameters in our contact interaction: the
same values were used for Fus̄ 6= 0 as for Fus̄ ≡ 0. The
curves are strikingly similar because the few parameters
in both our interaction and that in Ref. [32] were fixed
through fitting the same small set of static pion and kaon
properties with equivalent accuracy.

In Table I we list our calculated radii in comparison
with both those computed in Ref. [32] and experiment
[39]. The QCD renormalisation-group-improved interac-
tion produces results in better agreement with empirical
values. However, analyses that (mistakenly) omit a pseu-
doscalar meson’s pseudovector component are again seen
to produce deceptively good results, something which ex-
plains, in part, the allure of such mistreatment of a con-
tact interaction.

On the other hand, a more positive view might rea-
sonably be advocated. Bearing in mind that the vera-
cious treatment of a contact-interaction is readily distin-
guishable from QCD, a Ffḡ → 0 Ansatz may be used
judiciously to produce a useful model of phenomena in
hadron physics, so long as neither agreement nor dis-
agreement with experiment is interpreted as a challenge
to QCD. Contemporary examples of this approach can be
found in, e.g., Refs. [59, 60]; and we exploit it in Sec. III D.

0. 2 4 6 8 10
0.

0.2
0.4
0.6
0.8
1.0
1.2

x=Q2
�m
Ρ

2

F
K
+

u
Hx
L,

F
K
+

s
Hx
L

FIG. 2. Flavour-separated form factors for the K+, defined
in Eq. (37). Solid curve – fully consistent contact interaction
result for Fu

K+ ; short-dashed curve – Fus̄ ≡ 0 result for Fu
K+ ;

long-dashed curve – fully consistent contact interaction result
for F s̄

K+ ; and dot-dashed curve – Fus̄ ≡ 0 result for F s̄
K+ . For

comparison, the dotted curve is Fu
π+ = F d̄

π+ in Eq. (44).

B. Flavour separated kaon elastic

In Fig. 2 we depict the charged kaon’s flavour separated
form factors: Fu

K+ and F s̄
K+ in Eq. (37). The curves are

accurately interpolated using

Fu
K+(x)

interp.
=

1 + 0.270x+ 0.0226x2

1 + 1.050x+ 0.0541x2
, (48a)

F s̄
K+(x)

interp.
=

1 + 0.221x+ 0.00893x2

1 + 0.704x+ 0.0166x2
, (48b)

Fu
K+

Fus̄≡0

(x)
interp.
=

1− 0.133x+ 0.0138x2

1 + 0.859x− 0.120x2 + 0.0160x3
,

(48c)

F s̄
K+

Fus̄≡0

(x)
interp.
=

1 + 0.227x− 0.00538x2

1 + 0.868x+ 0.121x2 − 0.00325x3
.

(48d)

One may readily compute radii from the interpolation
formulae: in units of 1/mρ, they are

Fus̄ 6≡ 0 Fus̄ ≡ 0

ruK+ 2.16 2.44

rs̄K+ 1.70 1.96

. (49)

For comparison, using Eq. (44), one reads from Table I
that ruπ+ = 2.12 or 2.40. This single measure highlights
the picture painted in the figure; namely, identical to
results obtained using a sophisticated interaction [32],
the dressed-u-quark charge distribution within the K+ is
almost indistinguishable from the dressed-u-quark charge
distribution in the π+. In contrast, the result rs̄K+/ruK+ ≈
0.8 indicates, as one might have anticipated, that the
heavier s̄-quark is constrained to remain closer to the
collective centre-of-mass within the charged kaon than
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FIG. 3. Neutral kaon elastic form factor: solid curve – com-
plete Bethe-Salpeter amplitude; and dot-dashed curve – result
if one (erroneously) neglects the pseudovector component; i.e.,
sets Fus̄ ≡ 0 in Eq. (A11).

the light u-quark. It follows that the K0 elastic form
factor, defined in Eq. (39), should be positive on Q2 > 0.

C. Neutral kaon

In Fig. 3 we depict the neutral kaon form factor. In
this case there is little difference on the displayed do-
main between the Fus̄ 6= 0 and Fus̄ ≡ 0 curves because
that change has a nearly identical effect on both F d

K0(Q2)
and F s̄

K0(Q2), as apparent from Fig. 2, and hence almost
cancels in Eq. (39). The solid curve in these figures is
accurately interpolated using

FF≡0
K0 (x)

interp.
=

x

100

9.812 + 1.148x+ 0.0149x2 − 0.00346x3

1 + 1.667x+ 0.669x2
. (50)

D. Charged pion

The fully-consistent contact-interaction result for the
charged pion’s electromagnetic form factor is reported in
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FIG. 4. Momentum-square weighted charged pion elastic form
factor. Upper panel. Solid curve – contact interaction result
with Fud̄ ≡ 0; and dot-dashed curve – monopole interpola-
tion of result in Ref. [32]. The data, included to illustrate
the scale, are from Ref. [27]. Lower panel. Solid curve – con-
tact interaction result with Fud̄ ≡ 0; and long-dashed curve –
asymptotic form of the that result. The vertical dotted lines
at x = 14 and x = 57 mark, respectively, the points at which
the asymptotic form is 60% and 80% of the full result.

Refs. [15, 18]: naturally, one obtains [see Eq. (46)]

Fπ+(Q2)
Q2

≫M2

≃ constant . (51)

We return to this topic here, however, in order to provide
an illustration of the remarks at the end of Sec. III A.
In Fig. 4 we present the result for Fπ+(Q2) obtained if

the pseudovector component of the pion is deliberately
suppressed. In this case [57]:

F
Fud̄≡0

π+ (Q2)
Q2

≫M2

∝ lnQ2/M2

Q2
. (52)

The power-law is the same as that predicted by QCD but
the ln-dependence is different [61–63]. Notwithstanding
this, the mere presence of the ln-term is useful for the
illustration we wish to draw.
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It is apparent from the upper panel of Fig. 4 that the
Fud̄ ≡ 0 Ansatz could readily be tuned to produce results
in accord with contemporary data: there is little differ-
ence between this result and the calculation often cited
in connection with the data [32]. Moreover, some might
argue that the data appear to be approaching a plateau
but at a value above that one might simply infer from
perturbative QCD.
The lower panel shows that the latter conclusion would

probably be premature. The solid curve is an interpola-
tion of the Fud̄ ≡ 0 result, accurate on x ∈ (1, 100]; viz.,

F
Fud̄≡0
π+ (x)

x>1
= ln

[

x
m2

ρ

M2

]

1 + 0.0443x

1 + 2.506x+ 0.309x2
, (53)

and the dashed curve is the asymptotic limit of this for-
mula:

xF
Fud̄≡0
π+ (x)

asymp.
= 0.143 ln

[

x
m2

ρ

M2

]

. (54)

The upper panel depicts the limit of available reliable
data. It covers a small domain, upon which calculations
are evolving slowly. It is evident in the lower panel that
the Fud̄ ≡ 0 Ansatz result does not truly flatten until x &
10, at which point the asymptotic limit of the formula is
responsible for only half the magnitude. The full curve is
not even reasonably well approximated by Eq. (54) until
x & 50. (Empirically, this is Q2 & 30GeV2.) It is at
approximately x = 50 that the curve exhibits a local
minimum, a feature which marks the beginning of the
domain whereupon the lnx growth is actually visible.
(In QCD, that would be a lnx suppression, which could
be even harder to distinguish.)
We do not pretend that these observations amount to

a statement about the domain upon which one might
finally expect to discover perturbative QCD behaviour
of the charged pion form factor. (Note, on the other
hand, that they are consistent with the conclusions drawn
using a momentum-dependent dressed-quark mass [55].)
It does, however, demonstrate concretely that: the ap-
proach to an asymptotic limit which involves logarithmic
evolution can be very slow; and a plateau that seems to
appear on a small domain can easily be misleading.

IV. RESULTS - TRANSITION

We turn now to the Kℓ3 transition form factors, the
physical domain for which is t ∈ [m2

ℓ , tm].

A. Primary kaon transition form factor

Our result for fK
+ , depicted in Fig. 5, is accurately in-

terpolated by

fK
+ (x)

interp.
= fK

+ (0)
1− 4.492x+ 1.131x2 − 0.00966x3

1− 5.029x+ 3.397x2
,

(55)

0.250.20.150.10.050.
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FIG. 5. Kℓ3 transition form factor fK
+ . Upper panel. Solid

curve – contact interaction; dashed curve – contact interaction
with elimination of the pseudovector component in both pseu-
doscalar mesons (F0− → 0); long-dashed curve – contact in-
teraction, obtained with vertex in Eq. (32); thin curve brack-
eted by dotted curves – quadratic fit to empirical data, drawn
from Ref. [39]; and dot-dashed curve – result from Ref. [34].
Lower panel. Solid curve – contact interaction; dashed curve –
contact interaction with elimination of the pseudovector com-
ponent in both pseudoscalar mesons (F0− → 0); long-dashed
curve – contact interaction, obtained with vertex in Eq. (32);
dot-dashed curve – monopole interpolation of the result from
Ref. [34]; and dotted curve – elastic kaon form factor, which
is the solid curve in the lower panel of Fig. 1.

with fK
+ (0) listed in Table II. As seen with the elastic

form factors and evident in the lower panel of Fig. 5, the
contact interaction result for fK

+ (solid curve) is hard.
Omitting (erroneously) the pseudovector components

in both pseudoscalar mesons, a much softer result is ob-
tained. This is the dashed curve in Fig. 5, which is inter-
polated by

fKF≡0

+ (x)
interp.
=

fKF≡0

+ (0)
1 + 0.763x− 0.203x2

1 + 0.0299x− 0.808x2 + 0.105x3
. (56)

The long-dashed curve in Fig. 5, which exhibits the
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steepest ascent, is produced by augmenting the contact-
interaction vertex with the Ansatz in Eq. (33) that mod-
els a nonanalyticity associated with the Kπ production
threshold. The parameter value cl = 0.095 was chosen
in order to satisfy Eq. (10). The lower panel shows that
such nonanalyticities rapidly become immaterial when
considering the evolution of form factors into the domain
Q2 > 0 [53]. A valid interpolation of the long-dashed
curve is provided by

f
KEq. (32)
+ (x)

interp.
=

f
KEq. (32)
+ (0)

1− 0.428x+ 0.450x2 − 0.264x3

1− 1.216x+ 0.196x2 − 0.699x3
. (57)

The final calculation depicted in the upper panel of
Fig. 5 is that from Ref. [34] (dot-dashed curve), which em-
ployed one-loop QCD renormalisation-group-improved
kernels for the gap and Bethe-Salpeter equations. The
vertex computed therein possesses a pole at t = (m∗

K)2

but no other nonanalyticities; and that is the origin of the
difference between this result and the long-dashed curve.
The lower panel highlights features we have already seen
with the elastic form factor. The dot-dashed and dashed
curves are nearly identical in the spacelike region; and
hence we see again that a deliberate mistreatment of the
contact interaction, by neglecting pseudovector compo-
nents of pseudoscalar mesons, produces results that are
not practically distinguishable from the those obtained
with more sophisticated interactions.
Curiously, the best agreement with the quadratic fit to

empirical data (drawn from Ref. [39]) is obtained via mis-
treating the contact interaction by neglecting the pseu-
dovector components of the pseudoscalar mesons. Real-
istically, though, the data is incapable of distinguishing
between the models. On the other hand, much more care
would be needed in formulating the model interactions
before they could be useful in precision kaon physics.
In the lower panel of Fig. 5, the charged-kaon elastic

form factor is plotted as the dotted curve. The differ-
ence between this and the solid curve is one measure of
the magnitude of SU(3)-flavour symmetry breaking in
our symmetry-preserving treatment of the contact inter-
action. The breaking is observable but not dramatic.

B. Secondary kaon transition form factor

We plot fK
− in Fig. 6. This form factor may be inter-

polated using

fK
− (x)

interp.
= fK

− (0)
1− 0.914x+ 0.0328x2

1− 10.879x+ 6.403x2
. (58)

For comparison, we depict a result extracted from
Ref. [34] (dot-dashed curve) on the domain within which
it is valid: the scale and evolution rate are similar to
those of our results obtained in the absence of the Kπ
threshold correction to the vertex, Eq. (32).
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FIG. 6. Kℓ3 transition form factor fK
− . Upper panel. Solid

curve – contact interaction; dashed curve – contact interac-
tion with elimination of the pseudovector component in both
pseudoscalar mesons (F0− → 0); long-dashed curve – contact
interaction, obtained with vertex in Eq. (32); and dot-dashed
curve – result extracted from Ref. [34] on the domain within
which it is valid. Lower panel. Legend unchanged but the
domain is extended.

With respect to the other curves, there is one nov-
elty in the pattern of comparison, evident in the lower
panel: for this subdominant form factor the result ob-
tained by neglecting the pseudovector components of the
pseudoscalar mesons is not noticeably softer than that
produced by a consistent treatment of the contact in-
teraction. This is readily understood upon careful con-
sideration of Eqs. (6), (15), (20), (21), (34). The P · M
term in Eq. (34) is sensitive to the presence or absence of
Fus̄, whereas Q ·M is not because it is dominated by the
scalar vertex; and, owing to kinematics, Eqs. (6), Q · M
dominates f− at large Q2.

The dashed curve in Fig. 6 may be interpolated using

fKF≡0

− (x)
interp.
=

fKF≡0

− (0)
1 + 0.763x− 0.203x2

1 + 0.0299x− 0.808x2 + 0.105x3
(59)
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FIG. 7. Kℓ3 transition form factor fK
0 . Solid curve – contact

interaction; dashed curve – contact interaction with elimi-
nation of the pseudovector component in both pseudoscalar
mesons (F0− → 0); long-dashed curve – contact interaction,
obtained with vertex in Eq. (32); and dot-dashed curve – re-
sult from Ref. [34].

and the long-dashed curve with

f
KEq. (32)
− (x)

interp.
=

f
KEq. (32)
− (0)

1− 0.428x+ 0.450x2 − 0.264x3

1− 1.216x+ 0.196x2 − 0.699x3
. (60)

We recall now the observation made before Eq. (7);
namely, that fK

− should be a sensitive gauge of SU(3)-
flavour symmetry breaking. Observe, therefore, that

fK
− (0) ≈ 0.1 ≈ 0.6

ms −mu

Λuv
≈ 0.6

Ms −Mu

Λuv
; (61)

and so the t = 0 value of this form factor is truly a di-
rect measure of the symmetry breaking. It is noteworthy
that the magnitude found here is similar to the amount
of SU(3)-flavour symmetry breaking observed in the dif-
ference between ρKK and ρππ couplings [64].

C. Kaon longitudinal transition form factor

In Fig. 7 we plot the Kℓ3 scalar form factor, defined in
Eq. (9). The solid curve may be interpolated using

fK
0 (x)

interp.
=

fK
0 (0)

1− 0.784x+ 0.0178x2 + 0.00113x3

1− 0.987x− 0.0184x2
. (62)

The pattern of comparison between the results should
now be familiar. An interpolation of the dashed curve is
provided by

fKF≡0

0 (x)
interp.
=

fKF≡0

0 (0)
1− 2.290x+ 1.181x2 − 0.0647x3

1 + 2.553x+ 1.554x2
(63)

TABLE II. A range of quantities that are typically used to
characterise the semileptonic decays of pseudoscalar mesons.
Column 1: Results computed using vertex obtained as solu-
tion of Eq. (13). Column 2: Results computed with solution of
Eq. (13) augmented by the Ansatz in Eq. (32). The parameter
cl = 0.095 was chosen in order to produce fK

0 (−∆) = 1.20
[see Eq. (10)]. Column 3: Results computed using vertex
obtained as solution of Eq. (13) and replacement Fus̄ → 0.
Column 4: Results for comparable quantities reported in
Ref. [34]. Column 5: Some empirical values inferred using
Refs. [2, 39, 42]: the widths correspond to 7.926±0.032×106/s
and 5.285 ± 0.022 × 106/s. The λ-parameters are defined in
Eqs. (65), (66).

(13) (13,32)Ffḡ ≡ 0 Ref. [34] Emp. [2, 39, 42]

−fK
+ (−tm) 1.07 1.13 1.11 1.13 1.161 ± 0.031

−fK
+ (0) 0.98 0.98 0.98 0.96 0.961 ± 0.006

fK
− (−tm) 0.096 0.10 0.13 0.11

fK
− (0) 0.087 0.088 0.12 0.10 0.120 ± 0.023

−fK
0 (−∆) 1.06 1.20 1.08 1.18

100 λ′

K±

e3

1.21 1.78 1.66 2.23 2.485 ± 0.167

100 λ′′

K±
e3

0.044 0.12 0.060 0.10 0.192 ± 0.094

10 λ̃′

K±
e3

5.37 7.88 7.33 6.33 7.667 ± 0.513

λ̃′′

K±

e3

0.87 2.43 1.17 0.80 1.825 ± 0.896

1018ΓKe3/mρ 5.53 5.66 5.62 6.54 6.721 ± 0.027

1018ΓKµ3/mρ 3.61 3.76 3.68 4.34 4.482 ± 0.018

and, of the long-dashed curve, by

f
KEq. (32)
0 (x)

interp.
=

f
KEq. (32)
0 (0)

1− 1.372x+ 0.984x2 + 0.0261x3

1− 1.825x− 0.909x2
. (64)

In Table II we list a few quantities that are typically
used to characterise the semileptonic decays of pseu-
doscalar mesons. In this table, the usual slope param-
eters are defined via

λ′

K±

e3

= m2
π+

d

dt
fKe3

+ (t)

∣

∣

∣

∣

t=0

, (65a)

λ′′

K±

e3

= m4
π+

d2

dt2
fKe3

+ (t)

∣

∣

∣

∣

t=0

. (65b)

In comparing them with the figures, it is important to
recall that the x-axis for each curve is rescaled by the
appropriate value of mρ. The following slope parameters
account for this:

λ̃′

K±

e3

=
m2

ρ

m2
π

λ′

K±

e3

, λ̃′′

K±

e3

=
m4

ρ

m4
π

λ′′

K±

e3

. (66)

The table includes widths for the neutral-kaon leptonic
decays, computed using Eq. (11) in Ref. [65], which cor-
rects a typographical error in Eq. (14) of Ref. [34]. As
usual, the results are scaled by the appropriate value of
the ρ-meson mass.
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FIG. 8. πe3 transition form factor fπ
+. Upper panel. Solid

curve – contact interaction; dashed curve – interpolation of
the pion elastic form factor from Ref. [18]; and dotted curve
– fK

+ from Fig. 5. Lower panel. Legend unchanged but the
domain is extended.

D. Pion transition

We depict fπ
+ in Fig. 8: fπ

+(0) = 1.00. This form fac-
tor is almost identical to the pion elastic form factor, as
ought to be the case; and deviates by a measurable but
modest amount from fK

+ .

In Fig. 9 we plot fπ
− and compare it with (1/5)fK

− /fK
+ .

It is plain and understandable [see Eq. (21)] that fπ
− ex-

hibits a pole at the mass of a uū+dd̄-scalar meson, which
is lighter than that at which the us̄-scalar pole appears
in fK

− .
We note that

fπ
−(0) = 0.019 ≈ 2

Md −Mu

Λuv
≈ 2

md −mu

Λuv
. (67)

Comparison with Eq. (61) and fB→K
− (0) = 0.28,

fB→π
− (0) = 0.29, from Ref. [66], shows that whilst f−(0)
is a gauge of flavour symmetry breaking, it is also sen-
sitive to the difference between explicit and dynamically
generated mass; viz., the rate at which f−(0) increases is

-1.0 -0.8 -0.6 -0.4 -0.2 0. 0.2
0.01
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x=-Q2
�m
Ρ
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-
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L�
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L

FIG. 9. πe3 transition form factor fπ
−. Solid curve – our

contact interaction result; and dotted curve – (1/5)fK
− /fK

+

from Fig. 6.

damped as one moves away from the chiral limit and by
the difference Mf −mf .
Owing to their definition via the ratios in Eqs. (34) and

the kinematic constraints of the πe3 decay, in computing
fπ
± one must exercise particular care with numerical anal-
ysis, especially in calculating the contribution to P ·Mπe3

from the P1L(Q
2)-term in Eq. (15). In order to mitigate

the difficulty when evaluating the πe3 analogue of the in-
tegral in Eq. (11), in the P du

1L (Q
2)-term alone we employ

isospin-averaged dressed-quark and pion masses.

V. EPILOGUE

Using the leading-order in a global-symmetry-
preserving truncation of QCD’s Dyson-Schwinger equa-
tions, we calculated elastic and semileptonic transition
form factors for the kaon and pion. In these computa-
tions we employed a momentum-independent form for the
leading-order kernel in the gap- and Bethe-Salpeter equa-
tions. Amongst our results, we provide interpolations
of the form factors. They should be useful in working
toward the broader aim of charting the interaction be-
tween light-quarks by explicating the impact of differing
assumptions about the behaviour of the Bethe-Salpeter
kernel upon the spectrum of hadrons, and also upon their
elastic and transition form factors on a large domain of
momentum transfer.
To provide a context for our results and to assist

in understanding them, we compared our form factors
with those obtained using the same truncation but an
interaction that preserves the one-loop renormalisation
group behaviour of QCD. The comparison showed that
in connection with experimental observables revealed by
probes with |Q2| . M2, where M ≈ 0.4GeV is an
infrared value of the dressed-quark mass, results ob-
tained using a symmetry-preserving regularisation of the
contact-interaction are not realistically distinguishable
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from those produced by more sophisticated kernels. It
is notable, too, that available data on the kaon form fac-
tors do not extend into the domain whereupon one could
distinguish between contact-interaction results and those
obtained with QCD-like kernels. These remarks may be
quantified by the following observation: considering a
collection of eleven |Q2| . M2 quantities, the contact
interaction produces a rms-error relative to experiment
of 25%, whereas this error is 19% for the more sophisti-
cated interaction. (Expressed differently, the mean ab-
solute value of the relative error (mmre) is 21± 10% cf.
11± 11%.)

The picture is different if one includes the domainQ2 >
M2, whereupon a consistent treatment of the contact in-
teraction yields harder form factors than those obtained
with one-loop QCD renormalisation-group-improved ker-
nels. This owes to the necessary presence in pseudoscalar
meson Bethe-Salpeter amplitudes of terms that may be
described as pseudovector in character.

In this context, an inconsistent treatment of the con-
tact interaction is possible; namely, through deliber-
ate omission of the pseudoscalar mesons’ pseudovector
components. Results obtained thereby are just as soft
as those produced by a fully-consistent treatment of a
momentum-dependent kernel that behaves as 1/k2 in the
ultraviolet.

In the past, this omission was mere negligence; and re-
sults obtained were often misinterpreted as questioning
the need for QCD. From a modern perspective, however,
the omission might be used judiciously in order to build
efficacious models for hadron physics phenomena that
cannot readily be studied using more elaborate means, so
long as neither agreement nor disagreement with experi-
ment is interpreted as a challenge to QCD. For the phe-
nomena studied herein, such an artifice is quite fruitful;
e.g., it produces a rms-error of 15% (or mmre= 10±9%)
over the basket of eleven |Q2| . M2 quantities mentioned
above and a Q2-dependence of form factors that is typ-
ically almost indistinguishable from that obtained with
the fully-consistent treatment of a sophisticated interac-
tion. In addition, it enables one to develop a perspective
on the point at which perturbative-QCD behaviour might
become apparent in meson form factors.

In stepping toward these conclusions, we were able to
make a number of other observations. For example, it
was necessary to detail the properties of the inhomoge-
neous vector and scalar vertices, a process which led us
to a novel Ward identity for the scalar vertex. In addi-
tion, we found that the charge distribution of a dressed-
u-quark in the K+ is very similar to that of the dressed-
u-quark in the π+, whereas the charge distribution of the
dressed-s-quark in the K+ is noticeably harder than that
of its u-quark partner. This explains the positive slope of
the K0 form factor at Q2 = 0. Finally, whilst the Q2 = 0
value of the subleading transition form factor, f−, is a
gauge of flavour symmetry breaking, it is also sensitive
to the difference between the explicit current-quark mass
and the interaction-generated dynamical mass.

This study lays a foundation for the contact-
interaction computation of elastic and transition form
factors involving baryons with strangeness. It also em-
phasises that studies employing a symmetry-preserving
regularisation of the contact interaction can usefully
serve as a surrogate, enabling the exploration of domains
which analyses using interactions that more closely fol-
low the pointwise behaviour anticipated of QCD are not
yet able to enter. At present, prudent studies of this
type are critical in attempts to use experimental data as
a tool for charting the nature of the quark-quark inter-
action at long-range; i.e., for identifying distinct signals
of the running of couplings and masses in QCD.
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Appendix A: Contact interaction

The key elements in our analysis are the dressed-quark
propagators, the meson Bethe-Salpeter amplitudes and
the quark–gauge-boson vertices. All are completely de-
termined once the quark-quark interaction kernel is spec-
ified. We use

g2Dµν(p− q) = δµν
4παIR

m2
G

, (A1)

where mG = 0.8GeV is a gluon mass-scale typical of the
one-loop renormalisation-group-improved interaction de-
tailed in Ref. [67], and the fitted parameter αIR = 0.93π is
commensurate with contemporary estimates of the zero-
momentum value of a running-coupling in QCD [68–73].
We embed Eq. (A1) in a rainbow-ladder truncation of the
DSEs. This means

Γν(p, q) = γν (A2)

in the gap equation and in the subsequent construction
of the Bethe-Salpeter kernels.
The interaction in Eq. (A1) may be viewed as be-

ing inspired by models of the Nambu–Jona-Lasinio type
[74]. Our treatment is atypical, however. Used to build
a rainbow-ladder truncation of the DSEs, Eqs. (A1),
(A2) produce results for low-momentum-transfer ob-
servables that are directly comparable with those pro-
duced by more sophisticated interactions, as illustrated
in Refs. [15, 16, 18–20].
These observations emphasise, in addition, the dis-

tinction between our framework and constituent-quark-
like models, a question which might be raised, given
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TABLE III. Dressed-quark properties at T = 0, computed
from the gap equation and required as input for the Bethe-
Salpeter equations. All results obtained with αIR = 0.93π
and (in GeV) Λir = 0.24 , Λuv = 0.905. (These parame-
ters take the values determined in the spectrum calculation
of Ref. [17], which produces mρ = 0.928GeV; isospin symme-
try is assumed; and all dimensioned quantities are listed in
GeV.)

mu ms ms/mu M0 Mu Ms Ms/Mu

0.007 0.17 24.3 0.36 0.37 0.53 1.43

that we will obtain a momentum-independent dressed-
quark mass from Eq. (A1). Our quantum field theory
approach is symmetry-preserving and treats mesons and
baryons on an equal footing. It makes concrete state-
ments about the kernels of the DSEs (n-point Schwinger
functions) and rigorous connections between them, whose
fidelity can be checked directly. As noted above, such
checks verify, e.g., that the interaction kernel for the
Bethe-Salpeter equation can truly be represented as
momentum-independent on a small but measurable do-
main. From this foundation follows our predictions for
observables. In contrast, constituent-quark-like models
do not, e.g., permit the definition of a current-quark.
Lost, therefore, are, inter alia: the meaning of a chiral
limit, the possibility of describing and explaining DCSB,
and the capacity to describe mesons and baryons equally.

1. Gap equation

The dressed-quark propagators in Eq. (11) are ob-
tained from the gap equation:

S−1
f (p) = iγ · p+mf +

16π

3

αIR

m2
G

∫

d4q

(2π)4
γµ Sf (q) γµ ,

(A3)
where mf is the quark’s current-mass. When the diver-
gence is regularised in a Poincaré covariant manner, the
solution is

Sf (p)
−1 = iγ · p+Mf , (A4)

where Mf is momentum-independent and determined by

Mf = mf +Mf
4αIR

3πm2
G

∫ ∞

0

ds s
1

s+M2
f

. (A5)

In regularising, we write [75]

1

s+M2
=

∫ ∞

0

dτ e−τ(s+M2)

→
∫ τ2

ir

τ2
uv

dτ e−τ(s+M2) (A6)

=
e−(s+M2)τ2

uv − e−(s+M2)τ2
ir

s+M2
, (A7)

where τir,uv are, respectively, infrared and ultraviolet reg-
ulators. It is apparent from the rightmost expression in
Eq. (A7) that a finite value of τir =: 1/Λir implements
confinement by ensuring the absence of quark produc-
tion thresholds [13, 14]. Since Eq. (A1) does not define
a renormalisable theory, then Λuv := 1/τuv cannot be
removed but instead plays a dynamical role, setting the
scale of all dimensioned quantities. Using Eq. (A7), the
gap equation becomes

Mf = mf +Mf
4αIR

3πm2
G

C iu(M2
f ) , (A8)

where

C iu(σ) =

∫ ∞

0

ds s

∫ τ2
ir

τ2
uv

dτ e−τ(s+σ)

= σ
[

Γ(−1, στ2uv)− Γ(−1, στ2ir)
]

, (A9)

with Γ(α, y) being the incomplete gamma-function. It is

convenient to define C
iu
(σ) = C iu(σ)/σ.

In Table III we report values of u- and s-quark prop-
erties, computed from Eq. (A8), that will subsequently
be used herein. The input ratio ms/m̄, where m̄ =
(mu +md)/2, is consistent with contemporary estimates
[7]. The result Ms −ms ≈ M0 is typical [8, 76] and in-
dicates that the additive impact of DCSB is nearly as
great for the s-quark as it is for u, d-quarks. In general,
however, Mf−mf is a monotonically decreasing function
of mf , bounded below by zero as mf → ∞ [76, 77].
It is perhaps worth reiterating and highlighting here

that our regularisation scheme is symmetry-preserving
and implements confinement in a straightforward man-
ner. In satisfying these two criteria we are guaran-
teed that our treatment of Eq. (A1) is compatible with
the DSE treatment of more sophisticated interactions,
and hence preserves the known connection between the
momentum-dependence of an interaction and that of ob-
servables, such as meson electromagnetic form factors
[see Eq. (46)] and the large-x behaviour of parton distri-
bution amplitudes and functions [16, 78]. We can thus be
certain that our treatment of both infrared and ultravi-
olet phenomena is valid. The question of regularisation-
scheme ambiguities is thus moot: any scheme that does
not meet the criteria stipulated above is unacceptable;
and any other which does will produce equivalent results.

2. Bethe-Salpeter equations

In rainbow-ladder truncation and with the interaction
in Eq. (A1), the homogeneous Bethe-Salpeter equation
(BSE) for a meson comprised of quarks with flavours f ,
ḡ is

Γfḡ(Q) = −16π

3

αIR

m2
G

∫

d4t

(2π)4
γµSf (t+Q)Γfḡ(Q)Sg(t)γµ ,

(A10)
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where Q is the total momentum of the bound-state. This
equation has a solution for Q2 = −m2

fḡ, where mfḡ is the
bound-state’s mass.
The contact interaction supports a Bethe-Salpeter am-

plitude of the form

Γfḡ(P ) = iγ5 Efḡ(P ) +
1

2Mfḡ
γ5γ · P Ffḡ(P ) , (A11)

where2 Mfḡ = MfMḡ/[Mf + Mḡ]. If one inserts
Eq. (A11) into Eq. (A10) and employs the symmetry-
preserving regularisation of the contact interaction ex-
plained, e.g., in Ref. [19], which requires

0 =

∫ 1

0

dα
[

C iu(ωfḡ(α,Q
2)) + C iu

1 (ωfḡ(α,Q
2))

]

, (A12)

where (α̂ = 1− α)

ωfḡ(α,Q
2) = M2

f α̂+ αM2
ḡ + αα̂Q2 , (A13)

and

C iu
1 (z) = −z(d/dz)C iu(z) = z

[

Γ(0,M2τ2uv)−Γ(0,M2τ2ir)
]

,
(A14)

then one arrives at the following explicit form of the
Bethe-Salpeter equation:

[

Efḡ(Q)

Ffḡ(Q)

]

=
4αIR

3πm2
G

[

K fḡ
EE K fḡ

EF

K fḡ
FE K fḡ

FF

] [

Efḡ(Q)

Ffḡ(Q)

]

,

(A15)
with

K fḡ
EE =

∫ 1

0

dα

{

C iu(ωfḡ(α,Q
2))

+

[

MfMḡ − αα̂Q2 − ωfḡ(α,Q
2)

]

×C iu

1 (ωfḡ(α,Q
2))

}

, (A16a)

K fḡ
EF =

Q2

2Mfḡ

∫ 1

0

dα

[

α̂Mf + αMḡ

]

×C iu

1 (ωfḡ(α,Q
2)), (A16b)

K fḡ
FE =

2M2
fḡ

Q2
K fḡ

EF , (A16c)

K fḡ
FF = −1

2

∫ 1

0

dα

[

MfMḡ + α̂M2
f + αM2

ḡ

]

×C iu

1 (ωfḡ(α,Q
2)) . (A16d)

Equation (A15) is an eigenvalue problem, which has a
solution for Q2 = −m2

fḡ, at which point the eigenvector
is the meson’s Bethe-Salpeter amplitude. In the com-
putation of observables one must employ the canonically

2 The choice one makes for the mass-dimensioned constant Mfḡ

has no effect on any result.

TABLE IV. Selected meson properties, including the canoni-
cally normalised Bethe-Salpeter amplitudes, computed using
the formulae described herein. The row labelled “chiral” is
obtained with mu = md = ms = 0; and to compute that la-
belled π0, we used mu = 0.0029, md = 0.011, which produces
Mu = 0.36, Md = 0.37. Note that m̄ = (mu+md)/2 = 0.007,
deliberately consistent with Table III. (All dimensioned quan-
tities are listed in GeV.)

Efḡ Ffḡ mfḡ ffḡ κ
1/3
fḡ

chiral 3.57 0.46 0 0.10 0.24

π+ 3.64 0.48 0.14 0.10 0.24

π0 3.60 0.48 0.139 0.24

K+ 3.82 0.59 0.50 0.11 0.25

normalised amplitude; viz., the amplitude rescaled such
that

1 =
d

dQ2
Πfḡ(Z,Q)

∣

∣

∣

∣

Z=Q

, (A17)

where

Πfḡ(Z,Q) = 6trD

∫

d4t

(2π)4
Γfḡ(−Z)

×Ss(t+Q) Γfḡ(Z)Su(t) . (A18)

With the amplitudes and propagators in hand, one
may compute all properties of the pions and kaons in
rainbow-ladder truncation. For example, the leptonic de-
cay constants of the charged mesons and the in-meson
condensates [8, 9] are respectively expressed:

ffḡ =
Nc

4π2

1

Mfḡ

[

EfḡK
fḡ
FE + FfḡK

fḡ
FF

]

, (A19)

κfḡ = ffḡ
Nc

4π2

[

EfḡK
fḡ
EE + FfḡK

fḡ
EF

]

, (A20)

wherein each quantity is computed at that Q2 for which
Eq. (A15) is satisfied for the meson under considera-
tion. In Table IV we record computed values of all
canonically normalised Bethe-Salpeter amplitudes rele-
vant herein and results from Eqs. (A19), (A20). N.B. It
is typical that the π+ − π0 mass difference is small when
electromagnetic contributions are neglected [76, 79].

Appendix B: Form-Factor Formulae

Equation (42) decomposes the u-quark contribution to
the charged-kaon’s form factor into a sum of three pieces,
each associated with a different pairing of the terms in
the kaon’s Bethe-Salpeter amplitude:

T u
K,EE =

Nc

4π2

[
∫ 1

0

dαC
iu

1 (ωuu)

+2

∫ 1

0

dαdβ α

(

2Ms[Mu −Ms]
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+α[(Mu −Ms)
2 +m2

K ]

)

C
iu

2 (ω1us̄)

]

, (B1a)

T u
K,EF =

Nc

4π2

1

M2
us̄

[
∫ 1

0

dαdβ α

(

AEF
uus̄ C

iu

1 (ω1us̄)

+[BEF
uus̄ − AEF

uus̄ ω1us̄]C
iu

2 (ω1us̄)

)]

, (B1b)

T u
K,FF =

Nc

4π2

1

M2
us̄

[
∫ 1

0

dαdβ α

(

AFF
uus̄ C

iu

1 (ω1us̄)

+[
1

2
BFF
uus̄ − AFF

uus̄ ω1us̄]C
iu

2 (ω1us̄)

)]

, (B1c)

where: ωuu = ωuu(α,Q
2), with the latter defined in

Eq. (A13); (β̂ = 1− β)

ω1us̄ = αM2
u + α̂M2

s + α2ββ̂ Q2 − αα̂m2
K , (B2)

C iu
2 (σ) =

σ2

2

d2

dσ2
C ir(σ) =

σ

2

[

e−σr2uv − e−σr2ir
]

, (B3)

with C
iu

2 (σ) = C iu
2 (σ)/σ2; and

AEF
uus̄ = −4Mus̄[θMu − (1/2− θ)Ms] , (B4a)

AFF
uus̄ = [1/2− θ][(α− 2α̂)m2

K + αQ2] , (B4b)

BEF
uus̄ = −Mus̄(2[MsM

2
u +m2

K α̂(Msα̂+ 2αMu)]

−α[αMu +Ms(α̂+ 2αββ̂)]Q2) , (B4c)

BEF
uus̄ = m2

K [2MsMuα̂+ α(M2
u +m2

K α̂2)]

−αQ2[MuMs + αm2
K(α̂ + ββ̂[α− 2α̂])] .

(B4d)

The parameter θ is explained in App. C.

Appendix C: Current conservation

In deriving the formulae in Sec. B we followed the
methods detailed in Refs. [15, 18] and indicated in
Sec. II B 1 herein. They rely in part on O(4) invariance
and the assumption of a translationally invariant regu-
larisation of the integrals. The latter is always formally
true but, in the presence of pseudovector components
in the pseudoscalar meson, it is practically broken with
the contact interaction once Eq. (A6) is used. The effect
is to produce a small nonzero result for [T u

K,EF (Q
2 =

0)− T s
K,EF (Q

2 = 0)], typically a relative error of . 1%,
whereas this difference should always vanish.
The weakness can be traced to the quadratic diver-

gences that arise through integrals such as
∫

d4t

(2π)4
1

[t2 + ω]2
{(P · t)2, (Q · t)2, (P · t)(Q · t)}

=

∫

d4t

(2π)4
t2

[t2 + ω]2
1

4
{P 2, Q2, P ·Q} , (C1)

which also affect the value of fK
+ (0). It can be amelio-

rated via a simple expedient: in Eq. (C1), replace

1/4 → θ = 1.456(1/4) . (C2)

This is the origin and value of θ in Eqs. (B4a), (B4b).
We employ the same improvisation in connection with
the Kℓ3 form factors.
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