This is the accepted manuscript made available via CHORUS. The article has been published as:

Near-threshold neutral pion electroproduction at high momentum transfers and generalized form factors
P. Khetarpal et al. (CLAS Collaboration)

Phys. Rev. C 87, 045205 - Published 15 April 2013
DOI: 10.1103/PhysRevC.87.045205

Near Threshold Neutral Pion Electroproduction at High Momentum Transfers and Generalized Form Factors

P. Khetarpal, ${ }^{30,12}$ P. Stoler, ${ }^{30}$ I.G. Aznauryan, ${ }^{35,40}$ V. Kubarovsky, ${ }^{35,30}$ K.P. Adhikari, ${ }^{29}$ D. Adikaram, ${ }^{29}$ M. Aghasyan, ${ }^{18}$ M.J. Amaryan, ${ }^{29}$ M.D. Anderson, ${ }^{37}$ S. Anefalos Pereira, ${ }^{18}$ M. Anghinolfi, ${ }^{19}$ H. Avakian, ${ }^{35}$ H. Baghdasaryan, ${ }^{38,29}$ J. Ball, ${ }^{7}$ N.A. Baltzell, ${ }^{1}$ M. Battaglieri, ${ }^{19}$ V. Batourine, ${ }^{35}$ I. Bedlinskiy, ${ }^{22}$ A.S. Biselli, ${ }^{11,5}$ J. Bono, ${ }^{12}$ S. Boiarinov, ${ }^{35,22}$ W.J. Briscoe, ${ }^{15}$ W.K. Brooks, ${ }^{36,35}$ V.D. Burkert, ${ }^{35}$ D.S. Carman, ${ }^{35}$ A. Celentano, ${ }^{19}$ G. Charles, ${ }^{7}$ P.L. Cole, ${ }^{16,35}$ M. Contalbrigo, ${ }^{17}$ V. Crede, ${ }^{13}$ A. D'Angelo, ${ }^{20},{ }^{32}$ N. Dashyan, ${ }^{40}$ R. De Vita, ${ }^{19}$ E. De Sanctis, ${ }^{18}$ A. Deur, ${ }^{35}$ C. Djalali, ${ }^{34}$ D. Doughty, ${ }^{8,35}$ M. Dugger, ${ }^{2}$ R. Dupre, ${ }^{21}$ H. Egiyan, ${ }^{35,39}$ A. El Alaoui, ${ }^{1}$ L. El Fassi, ${ }^{1}$ P. Eugenio, ${ }^{13}$ G. Fedotov, ${ }^{34,33}$ S. Fegan, ${ }^{37}$ R. Fersch, ${ }^{39,}$, J.A. Fleming, ${ }^{10}$ A. Fradi, ${ }^{21}$ M.Y. Gabrielyan, ${ }^{12}$ M. Garçon, ${ }^{7}$ N. Gevorgyan, ${ }^{40}$ G.P. Gilfoyle, ${ }^{31}$ K.L. Giovanetti, ${ }^{23}$ F.X. Girod, ${ }^{35}$ J.T. Goetz, ${ }^{28}$ W. Gohn, ${ }^{9}$ E. Golovatch, ${ }^{33}$ R.W. Gothe, ${ }^{34}$ K.A. Griffioen, ${ }^{39}$ B. Guegan, ${ }^{21}$ M. Guidal, ${ }^{21}$ L. Guo, ${ }^{12,35}$ K. Hafidi, ${ }^{1}$ H. Hakobyan, ${ }^{36,40}$ C. Hanretty, ${ }^{38}$ N. Harrison, ${ }^{9}$ K. Hicks, ${ }^{28}$ D. Ho, ${ }^{5}$ M. Holtrop, ${ }^{26}$ C.E. Hyde, ${ }^{29}$ Y. Ilieva, ${ }^{34,15}$ D.G. Ireland, ${ }^{37}$ B.S. Ishkhanov, ${ }^{33}$ E.L. Isupov, ${ }^{33}$ H.S. Jo, ${ }^{21}$ K. Joo, ${ }^{9}$ D. Keller, ${ }^{38}$ M. Khandaker, ${ }^{27}$ A. Kim, ${ }^{24}$ W. Kim, ${ }^{24}$ F.J. Klein, ${ }^{6}$ S. Koirala, ${ }^{29}$ A. Kubarovsky, ${ }^{30}{ }^{33}$, ${ }^{33}$ S.V. Kuleshov, ${ }^{36,22}$ N.D. Kvaltine, ${ }^{38}$ S. Lewis, ${ }^{37}$ K. Livingston, ${ }^{37}$ H.Y. Lu, ${ }^{5}$ I. J. D. MacGregor, ${ }^{37}$ Y. Mao, ${ }^{34}$ D. Martinez, ${ }^{16}$ M. Mayer, ${ }^{29}$ B. McKinnon, ${ }^{37}$ C.A. Meyer, ${ }^{5}$ T. Mineeva, ${ }^{9}$ M. Mirazita, ${ }^{18}$ V. Mokeev, ${ }^{35,}, 33, \dagger$ R.A. Montgomery, ${ }^{37}$ H. Moutarde, ${ }^{7}$ E. Munevar, ${ }^{35}$ C. Munoz Camacho, ${ }^{21}$ P. Nadel-Turonski, ${ }^{35}$ R. Nasseripour, ${ }^{23,12}$ S. Niccolai, ${ }^{21,}{ }^{15}$
G. Niculescu, ${ }^{23,28}$ I. Niculescu, ${ }^{23}$ M. Osipenko, ${ }^{19}$ A.I. Ostrovidov, ${ }^{13}$ L.L. Pappalardo, ${ }^{17}$ R. Paremuzyan, ${ }^{40},{ }^{\text {团 }}$ K. Park, ${ }^{35,24}$ S. Park, ${ }^{13}$ E. Pasyuk, ${ }^{35,2}$ E. Phelps, ${ }^{34}$ J.J. Phillips, ${ }^{37}$ S. Pisano, ${ }^{18}$ O. Pogorelko, ${ }^{22}$ S. Pozdniakov, ${ }^{22}$ J.W. Price, ${ }^{3}$ S. Procureur, ${ }^{7}$ D. Protopopescu, ${ }^{37}$ A.J.R. Puckett, ${ }^{35}$ B.A. Raue, ${ }^{12,35}$ G. Ricco, ${ }^{14,}$, ${ }_{3}$ D. Rimal, ${ }^{12}$ M. Ripani, ${ }^{19}$ G. Rosner, ${ }^{37}$ P. Rossi, ${ }^{18}$ F. Sabatié, ${ }^{7}$ M.S. Saini, ${ }^{13}$ C. Salgado, ${ }^{27}$ N.A. Saylor, ${ }^{30}$ D. Schott, ${ }^{15}$ R.A. Schumacher, ${ }^{5}$ E. Seder, ${ }^{9}$ H. Seraydaryan, ${ }^{29}$ Y.G. Sharabian, ${ }^{35}$ G.D. Smith, ${ }^{37}$ D.I. Sober, ${ }^{6}$ D. Sokhan, ${ }^{21}$ S.S. Stepanyan, ${ }^{24}$ S. Stepanyan, ${ }^{35}$ I.I. Strakovsky, ${ }^{15}$ S. Strauch, ${ }^{34,}{ }^{15}$ M. Taiuti, ${ }^{14, ~}{ }^{8}$ W. Tang, ${ }^{28}$ C.E. Taylor, ${ }^{16}$ S. Tkachenko, ${ }^{38}$ M. Ungaro, ${ }^{35,30}$ B. Vernarsky, ${ }^{5}$ H. Voskanyan, ${ }^{40}$ E. Voutier, ${ }^{25}$ N.K. Walford, ${ }^{6}$ L.B. Weinstein, ${ }^{29}$ D.P. Weygand, ${ }^{35}$ M.H. Wood, ${ }^{4,34}$ N. Zachariou, ${ }^{34}$ J. Zhang, ${ }^{35}$ Z.W. Zhao, ${ }^{38}$ and I. Zonta ${ }^{20}$, T
(The CLAS Collaboration)
${ }^{1}$ Argonne National Laboratory, Argonne, Illinois 60439
${ }^{2}$ Arizona State University, Tempe, Arizona 85287-1504
${ }^{3}$ California State University, Dominguez Hills, Carson, CA 90747
${ }^{4}$ Canisius College, Buffalo, NY
${ }^{5}$ Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
${ }^{6}$ Catholic University of America, Washington, D.C. 20064
${ }^{7}$ CEA, Centre de Saclay, Irfu/Service de Physique Nucléaire, 91191 Gif-sur-Yvette, France
${ }^{8}$ Christopher Newport University, Newport News, Virginia 23606
${ }^{9}$ University of Connecticut, Storrs, Connecticut 06269
${ }^{10}$ Edinburgh University, Edinburgh EH9 3JZ, United Kingdom
${ }^{11}$ Fairfield University, Fairfield CT 06824
${ }^{12}$ Florida International University, Miami, Florida 33199
${ }^{13}$ Florida State University, Tallahassee, Florida 32306
${ }^{14}$ Università di Genova, 16146 Genova, Italy
${ }^{15}$ The George Washington University, Washington, DC 20052
${ }^{16}$ Idaho State University, Pocatello, Idaho 83209
${ }^{17}$ INFN, Sezione di Ferrara, 44100 Ferrara, Italy
${ }^{18}$ INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Italy
${ }^{19}$ INFN, Sezione di Genova, 16146 Genova, Italy
${ }^{20}$ INFN, Sezione di Roma Tor Vergata, 00133 Rome, Italy
${ }^{21}$ Institut de Physique Nucléaire ORSAY, Orsay, France
${ }^{22}$ Institute of Theoretical and Experimental Physics, Moscow, 117259, Russia
${ }^{23}$ James Madison University, Harrisonburg, Virginia 22807
${ }^{24}$ Kyungpook National University, Daegu 702-701, Republic of Korea
${ }^{25}$ LPSC, Université Joseph Fourier, CNRS/IN2P3, INPG, Grenoble, France
${ }^{26}$ University of New Hampshire, Durham, New Hampshire 03824-3568
${ }^{27}$ Norfolk State University, Norfolk, Virginia 23504
${ }^{28}$ Ohio University, Athens, Ohio 45701
${ }^{29}$ Old Dominion University, Norfolk, Virginia 23529
${ }^{30}$ Rensselaer Polytechnic Institute, Troy, New York 12180-3590
${ }^{31}$ University of Richmond, Richmond, Virginia 23173

[^0]Pion photo- and electroproduction on the nucleon $\gamma N \rightarrow \pi N, \gamma^{*} N \rightarrow \pi N$ close to threshold has been studied extensively since the 1950s both experimentally and theoretically. Exact predictions for the threshold cross sections and the axial form factor were pioneered by Kroll and Ruderman in 1954 for photo-production and are known as the low energy theorem (LET) [1]. This LET provided model independent predictions of cross sections for pion photoproduction in the threshold region by applying gauge and Lorentz invariance [2]. This was the first of the LET predictions to appear but was not without limitations. This LET predictions were restricted only to charged pions and the π^{0} contribution was shown to vanish in the 'soft pion' limit, i.e., $m_{\pi} \sim p_{\pi}$. Here, m_{π} and p_{π} are the mass and momentum of the pion. Additionally, these cross section predictions were limited to diagrams with first order contributions in the pionnucleon mass ratio. In later years, using vanishing pion mass chiral symmetry $\left(m_{\pi} \rightarrow 0\right)$, these predictions were extended to pion electroproduction for both charged and neutral pions 3, 4].

Of course, a vanishing pion mass doesn't relate to the ${ }^{123}$ observed mass of the pion (the pion to nucleon mass ratio ${ }^{12}$ $\left.m_{\pi} / m_{N} \sim 1 / 7\right)$, so higher order finite mass corrections ${ }_{125}$ to the LET were formulated in the late sixties and early ${ }_{126}$ seventies before the appearance of QCD. These also in- ${ }^{127}$ cluded contributions to the non-vanishing neutral pion amplitudes for the cross section.
In the late eighties and early nineties, experiments at ${ }_{13}$ Mainz [5] obtained threshold pion photo-production data

$$
\begin{equation*}
\left\langle N\left(P^{\prime}\right) \pi(k)\right| J_{\mu}|p(P)\rangle=-\frac{i}{f_{\pi}} \bar{N} \gamma_{5}\left[\left(\gamma_{\mu} q^{2}-q_{\mu} q q\right) \frac{G_{1}^{\pi N}\left(Q^{2}\right)}{m_{N}^{2}}-\frac{i \sigma_{\mu \nu} q^{\nu}}{2 m_{N}} G_{2}^{\pi N}\left(Q^{2}\right)\right] p \tag{1}
\end{equation*}
$$

132

$$
133
$$

Here, $N\left(P^{\prime}\right)$ and $p(P)$ are spinors for the final and initial nucleons with momenta P^{\prime} and P, respectively, m_{N} is the mass of the nucleon, f_{π} is the pion decay constant and q is the 4 -momentum of the virtual photon. Since the pion is a negative parity particle and the electromagnetic current is parity conserving, the γ_{5} matrix is present to 16 conserve the overall parity of the reaction.

These form factors are directly related to the pionnucleon s-wave multipoles E_{0+} and L_{0+} [13, 14]

$$
\begin{align*}
E_{0+}= & \frac{\sqrt{4 \pi \alpha}}{8 \pi f_{\pi}} \sqrt{\frac{\left(2 m_{N}+m_{\pi}\right)^{2}+Q^{2}}{m_{N}^{3}\left(m_{N}+m_{\pi}\right)^{3}}} \\
& \times\left(Q^{2} G_{1}^{\pi N}-\frac{m_{N} m_{\pi}}{2} G_{2}^{\pi N}\right) \tag{2}\\
L_{0+}= & \frac{\sqrt{4 \pi \alpha}}{8 \pi f_{\pi}} \frac{m_{N}\left|\omega_{\gamma}^{t h}\right|}{2} \sqrt{\frac{\left(2 m_{N}+m_{\pi}\right)^{2}+Q^{2}}{m_{N}^{3}\left(m_{N}+m_{\pi}\right)^{3}}} \\
& \times\left(G_{2}^{\pi N}+\frac{2 m_{\pi}}{m_{N}} G_{1}^{\pi N}\right) \tag{3}
\end{align*}
$$

${ }_{141}$ Here, α is the electromagnetic coupling constant and ${ }^{142} \omega_{\gamma}^{t h}$ is the virtual photon energy at threshold in the ${ }_{143} \mathrm{c} . \mathrm{m}$. frame and is given by the following relation:

$$
\begin{equation*}
\omega_{\gamma}^{t h}=\frac{m_{\pi}\left(2 m_{N}+m_{\pi}\right)-Q^{2}}{2\left(m_{N}+m_{\pi}\right)} \tag{4}
\end{equation*}
$$

In general, $E_{l \pm}, M_{l \pm}$, and $L_{l \pm}$ describe the electric, magnetic and longitudinal multipoles, respectively. Here, l describes the total orbital angular momentum of the pion relative to the nucleon and \pm is short for $\pm \frac{1}{2}$ so that the total angular momentum of the πN system is $l \pm \frac{1}{2}$.

Additionally, the sum rules can be extended to the $Q^{2} \sim 1 \mathrm{GeV}^{2}$ regime and the LETs are recovered to $O\left(m_{\pi}\right)$ accuracy by including contributions from semi disconnected pion-nucleon diagrams [14]. This approach provides a connection between the low and high Q^{2} regimes. Predictions for the axial form factor and the generalized form factors are also obtained in this approach.
In the low $Q^{2}<1 \mathrm{GeV}^{2}$ regime and the chiral limit $m_{\pi} \rightarrow 0$, the LET s-wave multipoles at threshold can be written as [7]:

$$
\begin{equation*}
E_{0+}=\frac{\sqrt{4 \pi \alpha}}{8 \pi} \frac{Q^{2} \sqrt{Q^{2}+4 m_{N}^{2}}}{m_{N}^{3} f_{\pi}} G_{1}^{\pi N} \tag{5}
\end{equation*}
$$

[^1]$G_{1}^{\pi N}$ and $G_{2}^{\pi N}$ can be written in terms of the electromagnetic form factors for the neutral pion-proton $\pi^{0} p$ channel in this approximation:
\[

$$
\begin{align*}
\frac{Q^{2}}{m_{N}^{2}} G_{1}^{\pi^{0} p} & =\frac{g_{A}}{2} \frac{Q^{2}}{\left(Q^{2}+2 m_{N}^{2}\right)} G_{M}^{p} \tag{7}\\
G_{2}^{\pi^{0} p} & =\frac{2 g_{A} m_{N}^{2}}{Q^{2}+2 m_{N}^{2}} G_{E}^{p} \tag{8}
\end{align*}
$$
\]

In the above equations, G_{M}^{p} and G_{E}^{p} are the Sachs electromagnetic form factors of the proton and g_{A} is the axial coupling constant obtained from weak interactions. Also, for the charged pion-neutron $\pi^{+} n$ channel, the general${ }^{67}$ ized form factors can be written as:

$$
\begin{align*}
\frac{Q^{2}}{m_{N}^{2}} G_{1}^{\pi^{+} n} & =\frac{g_{A}}{\sqrt{2}} \frac{Q^{2}}{\left(Q^{2}+2 m_{N}^{2}\right)} G_{M}^{n}+\frac{1}{\sqrt{2}} G_{A} \tag{9}\\
G_{2}^{\pi^{+} n} & =\frac{2 \sqrt{2} g_{A} m_{N}^{2}}{Q^{2}+2 m_{N}^{2}} G_{E}^{n} \tag{10}
\end{align*}
$$

$$
\begin{equation*}
L_{0+}=\frac{\sqrt{4 \pi \alpha}}{32 \pi} \frac{Q^{2} \sqrt{Q^{2}+4 m_{N}^{2}}}{m_{N}^{3} f_{\pi}} G_{2}^{\pi N} \tag{6}
\end{equation*}
$$

Here, G_{M}^{n} and G_{E}^{n} are the electromagnetic form factors of the neutron. Additionally, G_{A} is the axial form factor that is induced by the charged current and its contribution comes from the Kroll-Ruderman term [1].

These generalized form factors, $G_{1}^{\pi N}$ and $G_{2}^{\pi N}$, can be described as overlap integrals of the nucleon and the pion-nucleon wave functions. The wave function of the pion-nucleon system at threshold is related to the nucleon wave function without the pion by a chiral rotation in the spin-isospin space [10, 13]. The measurement of these form factors for pion electroproduction is in essence the measurement of the overlap integrals of the rotated and non-rotated nucleon wave functions, which are not accessible in elastic form factor measurements. This information complements our understanding of the various components of the nucleon wave function (quarks and gluons) and the theory of strong interactions. Additionally, it provides insight into chiral symmetry and its violation in reactions at increasing Q^{2}.
The generalized form factor for the charged pionneutron $G_{1}^{\pi^{+} n}\left(Q^{2}\right)$ and the axial form factor $G_{A}\left(Q^{2}\right)$ had been measured near threshold for $Q^{2} \sim 2-4.2 \mathrm{GeV}^{2}$ [15]. In this paper, we describe the measurement of the differential cross sections and the extraction of the s-wave amplitudes for the neutral pion electroproduction process, $e p \rightarrow e p \pi^{0}$, for $Q^{2} \sim 2-4.5 \mathrm{GeV}^{2}$ near threshold, i.e., $W \sim 1.08-1.16 \mathrm{GeV}$. From these cross sections, the generalized form factors $G_{1}^{\pi^{0} p}\left(Q^{2}\right)$ and $G_{2}^{\pi^{0} p}\left(Q^{2}\right)$ were extracted and compared with the theoretical calculations of Refs. 14 and 7 .

FIG. 1. Neutral pion electroproduction in the center of mass frame. interest are

$$
\begin{gather*}
Q^{2} \equiv-q^{2}=-\omega^{2}+|\mathbf{q}|^{2}=4 E_{e} E_{e}^{\prime} \sin ^{2}\left(\theta_{e}^{\prime} / 2\right) \\
s=W^{2}=(q+P)^{2}=m_{p}^{2}+2 \omega m_{p}-Q^{2} \tag{12}
\end{gather*}
$$

213

 214$$
\begin{equation*}
\Gamma=\frac{\alpha}{2 \pi^{2}} \frac{E_{e}^{\prime}}{E_{e}} \frac{W^{2}-m_{p}^{2}}{2 m_{p} Q^{2}} \frac{1}{1-\varepsilon} \tag{14}
\end{equation*}
$$

Here, $d \Omega_{e}^{\prime}=d \cos \theta_{e}^{\prime} d \phi_{e}^{\prime}$ is the differential solid angle for the scattered electron in the lab frame and $d \Omega_{\pi}^{*}=$ $d \cos \theta_{\pi}^{*} d \phi_{\pi}^{*}$ is the differential solid angle for the pion in the virtual photon-proton $\left(\gamma^{*} p\right)$ center of mass frame. The azimuthal angle ϕ_{π}^{*} is determined with respect to the plane defined by the incident and scattered lepton [2]. The factor Γ represents the virtual photon flux. In the Hand convention [16] it is
which depends entirely on the matrix elements of the leptonic interaction and contains the transverse polarization of the virtual photon

$$
\begin{equation*}
\varepsilon=\left(1+2 \frac{|\mathbf{q}|^{2}}{Q^{2}} \tan ^{2} \frac{\theta_{e}^{\prime}}{2}\right)^{-1} \tag{15}
\end{equation*}
$$

For unpolarized beam and target the reduced cross section from Eq. 13 can be expanded in terms of the hadronic structure functions:

$$
\begin{align*}
\frac{d \sigma_{\gamma^{*} p}}{d \Omega_{\pi}^{*}}= & \frac{\left|\mathbf{p}_{\pi}^{*}\right|}{K}\left[\frac{d \sigma_{T}}{d \Omega_{\pi}^{*}}+\varepsilon \frac{d \sigma_{L}}{d \Omega_{\pi}^{*}}+\varepsilon \frac{d \sigma_{T T}}{d \Omega_{\pi}^{*}} \cos 2 \phi_{\pi}^{*}\right. \\
& \left.+\sqrt{2 \varepsilon(\varepsilon+1)} \frac{d \sigma_{L T}}{d \Omega_{\pi}^{*}} \cos \phi_{\pi}^{*}\right] \tag{16}
\end{align*}
$$

Here, \mathbf{p}_{π}^{*} is the pion momentum and $K=\left(W^{2}-m_{p}^{2}\right) / 2 W$ is the photon equivalent energy in the c.m. frame of the subprocess $\gamma^{*} p \rightarrow p \pi^{0}$. Additionally, $\sigma_{T}+\varepsilon \sigma_{L}, \sigma_{L T}$ and $\sigma_{T T}$ are the structure functions that describe the transverse, longitudinal, longitudinal-transverse interference, and transverse-transverse interference components of the differential cross section.

Each of these structure functions contain the $\cos \theta_{\pi}^{*}$ dependence and can be parameterized in terms of the multipole amplitudes $E_{l \pm}, M_{l \pm}$ and $S_{l \pm}$ that describe the electric, magnetic and scalar multipoles, respectively. The scalar multipoles $S_{l \pm}$ can be written in terms of the longitudinal multipoles $L_{l \pm}=\frac{\omega^{*}}{\left|\mathbf{q}^{*}\right|} S_{l \pm}$, where ω^{*} and \mathbf{q}^{*} are the energy and 3 -momentum of the virtual photon in the c.m. frame, respectively [2].

III. EXPERIMENT

The near threshold reaction $e p \rightarrow e p \pi^{0}$ was studied using the CEBAF Large Acceptance Spectrometer (CLAS) in Jefferson Lab's Hall-B [17]. Fig. 2(a) shows the detector components that comprise CLAS. Six superconducting coils of the torus divide CLAS into six identical sectors and produce a toroidal magnetic field in the azimuthal direction around the beam axis. Each of the six sectors contain three regions of drift chambers (R1, R2, and R3) to track charged particles and to reconstruct their momentum 18, scintillator counters for identifying particles based on time-of-flight (TOF) information [19, Čerenkov counters (CC) to identify electrons [20], and electromagnetic counters (EC) to identify electrons and neutral particles [21]. The CC and EC are used for triggering on electrons and provide a mechanism to separate charged pions and electrons. With these six sectors, CLAS provides a large solid angle coverage with typical momentum resolutions of about $0.5 \%-1.0 \%$ depending on the kinematics [17.

A 5.754 GeV electron beam with an average intensity of 7 nA was incident on a 5 cm long liquid hydrogen target, which was placed 4 cm upstream of the CLAS center. Fig. 2(a) shows the electron beam entering CLAS from

FIG. 2. (a) A three-dimensional view of CLAS showing the superconducting coils of the torus, the three regions of drift chambers (R1-R3), the Čerenkov counters, the time-of-flight system, and the electromagnetic calorimeters. The positive $\hat{\mathbf{z}}$-axis is out of the page along the symmetry axis. (b) A schematic view of a typical near threshold event showing the reconstructed electron and proton tracks with the corresponding detector hits in two opposite CLAS sectors. The π^{0} is reconstructed using the missing mass technique as discussed in the text.

FIG. 3. (Color online) EC sampling fraction as a function of electron momentum for one of the CLAS sectors for (a) Data and (b) Monte Carlo (MC) simulation. The dashed lines show the parameterized mean and the solid line indicates the 3σ cut.

IV. ANALYSIS

At the start of this analysis, a cut of $W<1.3 \mathrm{GeV}$ 285 is applied to focus our events only in the kinematic re286 gion of interest. In this analysis the scattered electrons ${ }_{37}$ and protons are detected using CLAS and the π^{0} is re38 constructed using 4 -momentum conservation. A typical 289 event for this experiment is shown in Fig. 2(b).

A. Particle Identification: Electron

The scattered electrons in the final state of the reaction are detected by requiring geometrical coincidence between the Čerenkov counters and the electromagnetic calorimeter in the same sector. The momentum of the electrons is reconstructed using the drift chambers. Using the energy deposited in the EC and the momentum, the electrons are isolated from most of the minimum ionizing particles (MIPs), e.g., pions, contaminating the electron spectra.

As electrons pass through the EC, they shower with a

FIG. 4. (Color online) Δt as a function of p. The curves show the $\pm 3.5 \sigma$ cut (solid lines) from the mean fit (dashed line) for one of the CLAS sectors for (a) experimental and (b) Monte Carlo simulated events.
total energy deposition $E_{t o t}$ that is proportional to their momenta p. The sampling fraction energy $E_{t o t} / p$ is plotted as a function of momentum for each sector after applying all the other electron identification cuts. Fig. 3 shows this distribution for one of the CLAS sectors for experimental and Monte Carlo simulated events. In the figure, one can note the MIPs contamination near the smaller values of $E_{t o t} / p$. This contamination is significantly larger in data than in simulated events. The electrons are concentrated near $E_{t o t} / p \approx 0.3$. Ideally they should not show any dependence on momentum, albeit a slight momentum dependence is visible in the data. This dependence is parameterized and a cut of 3σ is applied as shown in the figure. The MIP events are well separated from the electrons below the 3σ cut.

B. Particle Identification: Proton

The recoiled protons are identified using the measured momentum and the timing information obtained from the TOF counters. A track is selected as a proton whose measured time is closest to that expected of a real proton,

321 i.e.,

$$
\begin{equation*}
\Delta t=t_{\text {meas }}-t_{\text {calc }}=\left(t_{T O F}-t_{t r}\right)-\frac{l}{\beta_{\text {calc }} c} . \tag{17}
\end{equation*}
$$

In the above equation, $t_{T O F}$ is the time measured from the TOF counters, l is the distance from the target center to the TOF paddle, and $t_{t r}$ is the event start time calculated from the electron hit time from the TOF traced back to the target position. Also, in Eq. (17) $\beta_{\text {calc }}=p / \sqrt{M_{p d g}^{2}+p^{2}}$, where $\beta_{\text {calc }}$ is computed using the PDG [23] value of the mass of the proton $M_{p d g}$ and the momentum of the track p.
Figs. 4(a) and (b) show the experimental and simulated event distributions, respectively, of Δt as a function of p for one of the CLAS sectors. The protons are centered around $\Delta t=0 \mathrm{~ns}$ and have a slight momentum dependence for $p<1 \mathrm{GeV}$. The dashed lines indicate the parameterized mean of the distributions and the solid lines indicate the $\pm 3.5 \sigma$ cut applied to select the protons.

C. Fiducial Cuts and Kinematic Corrections

For perfect beam alignment, the incident electron beam is expected to be centered at $\left(X_{\text {beam }}, Y_{\text {beam }}\right)=$ $(0,0) \mathrm{cm}$ at the target. But due to misalignments, the electron beam was actually at $\left(X_{\text {beam }}, Y_{\text {beam }}\right)=$ ($0.090,-0.345$) cm. This misalignment of the beamaxis is corrected for each sector, which also subsequently changes the reconstructed z-vertex positions of the electron and proton tracks. The details of this correction are described in previous works [24, 25]. A cut of $z \in(-8.0,-0.8) \mathrm{cm}$ is placed on the z-vertex to isolate events from within the target cell.

The measured angles and momenta of the electrons and protons are corrected using the same method as used in previous analyses [24, 25].

The electrons start to lose energy as they enter the electromagnetic calorimeter. When the electrons shower near the edge of the calorimeter, their shower is not fully contained and so their energies cannot be properly reconstructed. As such, a fiducial cut is applied to remove these events.

Electrons give off Čerenkov light in the CC, which is collected in the PMTs on either side of the counters in each sector. Inefficient regions in the CC are isolated by removing those regions where the average number of photo-electrons $\langle N p h e\rangle<5$. This cut results in keeping all events that lie in regions where the CC efficiency is about 99% 20.
To deal with edges and holes in the drift chambers, and to remove dead or inefficient wires, a fiducial cut for both electrons and protons is applied. Regions of non-uniform acceptance in the azimuthal angle ϕ resulting from these attributes are isolated on a sector-by-sector basis as a function of the electron's momentum p_{e} and polar angle θ_{e}. For the electron, at fixed p_{e} and θ_{e}, one expects the

FIG. 5. Electron ϕ_{e} distribution for CLAS Sector 4 for $p_{e}=4.1 \pm 0.1 \mathrm{GeV}$ shown for different θ_{e} slices. The unshaded curves show ϕ_{e} distribution after electron selection and the shaded curves show the ϕ_{e} distribution after applying electron DC fiducial cuts.

FIG. 6. (Color online) Proton ϕ_{p} vs. θ_{p} distribution for CLAS Sector 4 for $p_{p}=2.85 \pm 0.15 \mathrm{GeV}$. Rejected tracks are shown in black.
angular distribution to be symmetric in ϕ_{e} and relatively flat. Empirical cuts are applied to select these regions of relatively flat ϕ_{e} as shown in Fig. 5 for electrons with $p=4.1 \pm 0.1 \mathrm{GeV}$ for different slices of θ_{e} and one of the CLAS sectors. The same cuts are applied to both experimental and simulated events.

As for electrons, a fiducial cut on the proton's azimuthal angle ϕ_{p} as a function of its momentum p_{p} and polar angle θ_{p} is applied. However, the edges of the ϕ_{p} distributions are asymmetric for different slices of θ_{p}. The upper and lower bounds on ϕ_{p} are extracted and parameterized as a function of θ_{p} and p_{p}. The result of this cut for one of the CLAS sectors is shown in Fig. 6.

(a)

(b)

FIG. 7. The Bethe-Heitler process $e p \rightarrow e p \gamma$ diagrams for (a) a photon emitted from an incident electron (pre-radiation) and for (b) a photon emitted from a scattered electron (postradiation).
low. Also, a major source of contamination to the neutral pion signal near threshold is the elastic Bethe-Heitler process $e p \rightarrow e p \gamma$. The two dominating Feynman diagrams for this process are shown in Fig. 7. Fig. 7(a) shows the diagram with a pre-radiated photon (emission from an incident electron) and Fig. 7(b) shows the diagram with a post-radiated photon (emission from a scattered electron). These photons are emitted approximately in the direction of the incident and scattered electron, respectively [26, 27]. When these photons are emitted, the incident and scattered electrons lose energy. This feature of the Bethe-Heitler process can be exploited to our benefit.

For the elastic process $e p \rightarrow e p$, the proton angle can be computed independently of the incident or scattered electron energies:

$$
\begin{align*}
\tan \theta_{1}^{p} & =\frac{1}{\left(1+\frac{E^{\prime}}{m_{p}-E^{\prime} \cos \theta_{e}^{\prime}}\right) \tan \frac{\theta_{e}^{\prime}}{2}} \tag{19}\\
\tan \theta_{2}^{p} & =\frac{1}{\left(1+\frac{E}{m_{p}}\right) \tan \frac{\theta_{e}^{\prime}}{2}} \tag{20}
\end{align*}
$$

Here, θ_{1}^{p} and θ_{2}^{p} are the proton angles computed independently of the incident or scattered electron energies, respectively. Also, θ_{e}^{\prime} is the angle of the scattered electron in the lab frame, and E and E^{\prime} are the energies 16 of the incident and scattered electron, respectively. We

FIG. 8. (Color online) (a) M_{X}^{2} vs $\Delta \theta_{1}^{p}$ for $W=1.09 \pm 0.01$ GeV . The red dashed line indicates the expected pion peak position. The left red spot centered around zero degrees corresponds to the elastic scattering events in which the incident electrons have undergone Bethe-Heitler radiation (preradiative) and the one on the right to the elastic post-radiative events. The events below the linear polynomial and outside the ellipse are selected as pions. (b) M_{X}^{2} for events with $W=1.09 \pm 0.01 \mathrm{GeV}$. The black solid curve shows events prior to any Bethe-Heitler subtraction cuts, the blue dashed-dot curve shows events rejected from the cuts, and the red dashed curve shows those events that survive the Bethe-Heitler subtraction cuts.

417

423

429

can calculate these angles for each event and look at its deviation $\left(\Delta \theta_{1,2}^{p}\right)$ from the measured value $\left(\theta_{\text {meas }}^{p}\right)$:

$$
\begin{equation*}
\Delta \theta_{1,2}^{p} \equiv \theta_{1,2}^{p}-\theta_{\text {meas }}^{p} \tag{21}
\end{equation*}
$$

Fig. 8(a) shows the M_{X}^{2} plotted as a function of this deviation $\Delta \theta_{1}^{p}$ for one of the near threshold regions, $W=1.09 \pm 0.01 \mathrm{GeV}$. In the plot, we see two red spots along $M_{X}^{2}=0 \mathrm{GeV}^{2}$. The one on the left is centered along $\Delta \theta_{1}^{p}=0 \mathrm{deg}$ corresponding to the preradiated photon events. The other corresponds to the post-radiated photon events. Additionally, these radiative events are also present in the positive M_{X}^{2}. These are the radiative events that we need to isolate from the pion signal as indicated by the red dashed line in the plot. An ellipse and a linear polynomial are used to reject these events. These cuts are parameterized as a function of W. The result of these cuts is seen in Fig. 8(b) with the ac-

FIG. 9. (Color online) An example of the $M_{X}^{2}(e p)$ distribution with a double Gaussian fit after applying the elliptical cuts (black circles) of Fig. 8(a) and after residual BetheHeitler and other contamination subtractions (green triangles) for $Q^{2}=2.75 \pm 0.25 \mathrm{GeV}^{2}$ and $W=1.09 \pm 0.01 \mathrm{GeV}$ (top) and $W=1.11 \pm 0.01 \mathrm{GeV}$ (bottom) integrated over all ϕ_{π}^{*} and $\cos \theta_{\pi}^{*}$. The black dashed lines indicate the $\pm 3 \sigma$ cuts applied to select the pions. The χ^{2} is the goodness of fit per degree of freedom. See Sec. IV D for details.

432 cepted events after the cut shown in red (dashed curve) ${ }^{433}$ as our pions and the rejected events in blue (dashed-dot 434 curve).
435 After the Bethe-Heitler subtraction cuts are applied, ${ }_{436}$ the pions are selected by making a $\pm 3 \sigma$ cut on M_{X}^{2} from ${ }_{437}$ the mean position of the distribution. An example of the ${ }_{438}$ distributions and fit are shown in Fig. 9. The M_{X}^{2} distri${ }_{43}{ }^{43}$ butions (black circles) are fit with two Gaussians. The ${ }_{40}$ blue (dashed-dot) curve is an estimate of the remaining ${ }_{41}$ Bethe-Heitler background in the M_{X}^{2} distribution, which 442 was not eliminated by the elliptical cuts of Fig. 8(a). ${ }_{43}$ This was subtracted to yield the green (triangle) points. 44 A systematic uncertainty of $\pm 8 \%$ is associated with this 45 background subtraction procedure, which is detailed in ${ }_{46} \mathrm{Sec}$. VII.

V. SIMULATIONS

To determine the cross section, a Monte Carlo simulation study is required, including a physics event generator and the detector geometry. Events are generated using the MAID2007 unitary isobar model (UIM) [28, which uses a phenomenological fit to previous photo-

Variable	Range	Number of Bins	Width
$W(\mathrm{GeV})$	$1.08: 1.16$	4	0.02
$Q^{2}\left(\mathrm{GeV}^{2}\right)$	$2.0: 4.5$	4	variable
$\cos \theta_{\pi}^{*}$	$-1: 1$	5	0.4
$\phi_{\pi}^{*}(\mathrm{deg})$	$0: 360$	6	60

TABLE I. Kinematic bin selection.
and electroproduction data. Nucleon resonances are described using Breit-Wigner forms and the non-resonant backgrounds are modeled from Born terms and t-channel vector-meson exchange. To describe the threshold behavior, Born terms were included with mixed pseudovectorpseudoscalar $\pi N N$ coupling [28]. While the pion electroproduction world-data in the resonance region goes up to $Q^{2} \sim 7 \mathrm{GeV}^{2}[29$ for $W>1.11 \mathrm{GeV}$, there are no data near threshold for $Q^{2}>2 \mathrm{GeV}^{2}$ and $W<1.11 \mathrm{GeV}$ (the kinematics of this work). Thus, cross sections for the kinematics of this work are described by extrapolations of the fits to the existing data in the MAID2007 model.

Events are generated to cover the entire kinematic range described in Table I. About 73 million events are generated for the 2400 kinematic bins and 6.7 million events were reconstructed after all analysis cuts. The average resolutions of the kinematic quantities, W, Q^{2}, $\cos \theta_{\pi}^{*}$, and ϕ_{π}^{*} are $0.014 \mathrm{GeV}, 0.008 \mathrm{GeV}^{2}, 0.05$, and 8 degrees, respectively. These resolutions are obtained by comparing the generated kinematic quantities with those after reconstruction.

After the physics events are generated, their passage through the detector is simulated using the GEANT3 based Monte Carlo (GSIM) program. This program simulates the geometry of the CLAS detector during the experiment and the interaction of the particles with the detector material. GSIM models the effects of multiple scattering of particles in the CLAS detector and geometric mis-alignments. The information for all interactions with the detectors is recorded in raw banks, which is used for reconstruction of the tracks.

The events from GSIM are fed through a program called the GSIM Post Processor (GPP) to incorporate effects of tracking resolution and dead wires in the drift chambers, and timing resolutions of the TOF.

These events are then processed using the same codes as those events from the experiment to reconstruct tracks and higher level information such as 4-momentum, timing, and so on. The simulated events are analyzed the same way as the experimental data and are used to obtain acceptance corrections and radiative corrections for the cross sections calculations.

FIG. 10. Acceptance corrections for $W=1.09 \mathrm{GeV}$ and $Q^{2}=2.75 \mathrm{GeV}^{2}$ as a function of ϕ_{π}^{*}. Each subplot shows the correction for a different $\cos \theta_{\pi}^{*}$ bin.

VI. CORRECTIONS

A. Acceptance Corrections

Acceptance corrections are applied to the experimental data to obtain the cross section for each kinematic bin. These corrections describe the geometrical coverage of the CLAS detector, inefficiencies in hardware and software, and resolution effects from track reconstruction.

By comparing the number of events in each kinematic bin from the physics generator and the reconstruction 504 process, the acceptance can be obtained as:

$$
\begin{equation*}
A_{i}=\frac{N_{r e c}^{i}}{N_{g e n}^{i}} \tag{22}
\end{equation*}
$$

${ }_{505}$ where $N_{\text {rec }}^{i}$ corresponds to those events that have gone 506 through the entire analysis process including track re${ }_{07}$ construction and all analysis cuts. $N_{g e n}^{i}$ are those events ${ }_{508}$ that were generated. Fig. 10 shows the acceptances for a 509 few of the near threshold bins as a function of ϕ_{π}^{*}.

B. Radiative Corrections

The radiative correction is obtained using the software 512 package EXCLURAD [30] that takes theoretical models 13 as input to compute the corrections. For this experiment 14 the MAID2007 model, the same model used to generate 15 Monte Carlo events, is used to determine the radiative 16 corrections. The radiative corrections are closely related ${ }_{17}$ to the acceptance corrections. For each kinematic bin the 18 differential cross section can be written as:

$$
\begin{equation*}
\sigma=\frac{N_{\text {meas }}}{\mathcal{L} A} \frac{1}{\delta} \tag{23}
\end{equation*}
$$

where $N_{\text {meas }} / \mathcal{L}$ is the number of events from the experiment normalized by the integrated luminosity (with 521 appropriate factors) before acceptance and radiative corrections. Also, $A=N_{r e c}^{R A D} / N_{g e n}^{R A D}$ is the acceptance correction for the bin and δ is the radiative correction. It

FIG. 11. The radiative corrections for $W=1.11 \mathrm{GeV}$ and $Q^{2}=3.25 \mathrm{GeV}^{2}$ as a function of $\cos \theta_{\pi}^{*}$ and ϕ_{π}^{*} obtained from EXCLURAD using the MAID2007 model.
should be noted that the events for the acceptance correction were generated with a radiated photon in the final state using the MAID2007 model.
EXCLURAD uses the same model to obtain the correction $\delta=N_{\text {gen }}^{R A D^{\prime}} / N_{\text {gen }}^{N O R A D^{\prime}}$, where $N_{\text {gen }}^{N O R A D^{\prime}}$ are events generated without a radiated photon in the final state. Thus

$$
\begin{equation*}
\sigma=\frac{N_{\text {meas }}}{\mathcal{L}}\left(\frac{N_{g e n}^{R A D}}{N_{r e c}^{R A D}}\right) \times\left(\frac{N_{\text {gen }}^{N O R A D^{\prime}}}{N_{\text {gen }}^{R A D^{\prime}}}\right) . \tag{24}
\end{equation*}
$$

The details of the radiative correction procedure are described in Ref. [25].

Fig. 11 shows the radiative corrections calculated for one of the kinematic bins as a function of the pion angles in the c.m. system. One can observe that the corrections have a ϕ_{π}^{*} dependence. This is because the bremsstrahlung process only occurs near the leptonic plane, i.e., at angles near 0 or 180 degrees with respect to the hadronic plane. Also, one can notice that the correction increases with $\cos \theta_{\pi}^{*} \rightarrow-1$. This is because the cross section is expected to approach zero at backwards angles and that is the region where the Bethe-Heitler events dominate. The average radiative correction over all kinematic bins is $\sim 25 \%$.

C. Other Corrections

Two other corrections were applied to the cross section. One of them involves estimating the fraction of the events originating from the target cell walls and the other is an empirical overall normalization factor.

To estimate the level of contamination from the target cell walls, events collected during the empty-target run 60 52 period of the experiment are analyzed using the same

$$
561
$$

process as those for the production run period. Only those events that fall within the target wall region for the empty target should be considered for the source of contamination. This is because even though there was no liquid hydrogen in the target, it was still filled with cold hydrogen gas. So, for this estimation only events within $\pm 0.5 \mathrm{~cm}$ of the target wall region are selected. The correction is then calculated by taking the ratio of events within this target region from the empty target runs to those from the production run normalized to the total charge, ρ, collected during the run periods,

$$
\begin{equation*}
R=\frac{N_{\text {empty target }}}{N_{\text {production }}} \frac{\rho_{\text {production }}}{\rho_{\text {empty target }}} . \tag{25}
\end{equation*}
$$

VII. SYSTEMATIC STUDIES

To determine the systematic uncertainties in the anal604 ysis, the parameters of the likely sources of those uncer-

FIG. 12. The differential cross section $e p \rightarrow e p \pi^{0}$ for the $\Delta(1232)$ resonance region, $W=1.23 \pm 0.01 \mathrm{GeV}$, for typical kinematic bins. The squares are the measured cross sections after applying the normalization correction factor (see text for details). The dashed curves are from Ref. [32] and the dasheddot curves are from the MAID2007 model. The corrected values agree with the two curves to within 5% on average.
tainties are varied within reasonable bounds and the sensitivity of the final result is checked against this variation. A summary of the systematic uncertainties averaged over the kinematic bins of interest is shown in Table I.
The electron and proton identification cuts, the electron fiducial cuts, the vertex cuts and the target cell correction cuts provide small contributions to the overall systematic uncertainties.

The electron EC sampling fraction cuts were varied from 3σ to 3.5σ and the extracted structure functions changed by about 0.4% on average. The parameters for the electron fiducial cuts were similarly varied by about 10% and the structure functions changed by about 1% on average. As such, a systematic uncertainty of 0.4% and 1% was assigned to these sources.

The Δt cuts to select the protons were varied from 3.5σ to 4σ and a variation of about 1.1% on average was observed on the extracted structure functions, which was assigned as the systematic uncertainty associated with this source. The variations in the fiducial cuts for the proton had a negligible effect on the structure functions.

The vertex cuts were reduced by 5% and a variation of about 0.1% on average was observed on the extracted structure functions. So, a systematic uncertainty of 0.1% was assigned to this source. The structure functions are compared before and after applying the target cell corrections. A variation of about 1% is observed and this value was assigned as a source of systematic uncertainty.

The major sources of systematic uncertainty are the Bethe-Heitler background subtraction, the missing mass squared cut to select the neutral pions, the elastic normalization corrections and the model dependence of the acceptance and radiative corrections.
There are residual Bethe-Heitler events that escape the elliptical Bethe-Heitler cuts. These events peak at

$$
640 I
$$

FIG. 13. The differential cross sections in $\mu \mathrm{b} / \mathrm{sr}$ for a few kinematic bins near threshold as a function of ϕ_{π}^{*}. Experimental points (squares) are shown with statistical uncertainties only. The size of the estimated systematic uncertainties is shown in gray boxes below. The predictions from LCSR, MAID2007 and SAID are shown as dashed, dashed-dotted and dashed-doubledotted curves, respectively. The horizontal line at zero serves as a visual aid. The fit to the distributions is shown as a solid curve. See Sec. VIII for details.

VIII. DIFFERENTIAL CROSS SECTIONS AND STRUCTURE FUNCTIONS

The kinematic coverage of the experiment spans over ${ }^{69}$ W from 1.08 to 1.16 GeV and Q^{2} from 2 to $4.5 \mathrm{GeV}^{2}$. ${ }^{693}$ The reduced differential cross section for the reaction is 69 computed for each kinematic bin. The cross sections are ${ }_{69}$ reported at the center of each kinematic bin. Fig. 13696 shows the differential cross section for some of the kine- 697 matic bins near threshold as a function of ϕ_{π}^{*}. The pre- ${ }_{698}$ dictions from LCSR [14], MAID2007 [28] and SAID [34] 699 are shown for comparison.

Using Eq. 16, the differential cross section is fitted to 70 extract the structure functions $\sigma_{T}+\varepsilon \sigma_{L}, \sigma_{T T}$ and $\sigma_{L T}{ }^{702}$ The result of the fit is shown as the solid curve in Fig. 13, ${ }_{703}$ The reduced χ^{2} for the fit is calculated using $\chi^{2}=\chi_{0}^{2} / \nu,{ }_{70}$ where ν is the number of degrees of freedom calculated 705 for each W, Q^{2}, and $\cos \theta_{\pi}^{*}$ bin (i.e., $\nu=6$ data points $-3{ }_{706}$
fit parameters $=3$), and χ_{0}^{2} is the unnormalized goodness 690 of fit. The averaged χ^{2} of the fits is 0.9 .

691
The extracted structure functions $\sigma_{T}+\varepsilon \sigma_{L}, \sigma_{T T}$ and $\sigma_{L T}$ are shown in Figs. 14,15 and 16, respectively, as a function of $\cos \theta_{\pi}^{*}$ for $W=1.08-1.16 \mathrm{GeV}$ and $Q^{2}=2.0-4.5 \mathrm{GeV}^{2}$. The data points are shown with statistical error bars only and the size of the systematic errors is shown as the gray boxes. Predictions from LCSR, MAID2007, and SAID are also included for $\sigma_{T}+\varepsilon \sigma_{L}$ and $\sigma_{L T}$. Since the LCSR does not include any $\sigma_{T T}$ contributions in the calculations, they are not shown.
The structure function $\sigma_{T}+\varepsilon \sigma_{L}$ (Fig. 14) is generally in good agreement with the MAID2007 predictions but there is some discrepancy for $W=1.09 \mathrm{GeV}$ at high $\cos \theta_{\pi}^{*}$. This discrepancy is reduced for higher W bins. The results disagree with the LCSR predictions, especially for those bins away from threshold $(W>1.09$ GeV). This disagreement is also apparent for low Q^{2} the agreement is quite good, especially at backward angles $\cos \theta_{\pi}^{*} \rightarrow-1$. The LCSRs have been calculated and tuned especially for the threshold region at high Q^{2} and thus, there exists a strong disagreement at higher W and low Q^{2} bins. The predictions from SAID strongly disagree for the first W bin and low Q^{2} bins, but converge toward the MAID2007 predictions for higher W and Q^{2}. The structure function $\sigma_{T T}$ (Fig. 15) results are in good agreement with the SAID and MAID2007 predictions for low W and high Q^{2} but disagree at high W and low Q^{2} bins. Most of the values are close to zero for all W. The LCSR predictions assume only s-wave contri-

FIG. 14. The structure function $\sigma_{T}+\varepsilon \sigma_{L}$ as a function of $\cos \theta_{\pi}^{*}$ in $\mu \mathrm{b} / \mathrm{sr}$ for $W=1.08-1.16 \mathrm{GeV}$ and $Q^{2}=2.0-4.5$ GeV^{2}. Predictions from LCSR that include only s-wave contribution (dashed), MAID2007 (dashed-dot), and SAID (dashed-double-dot) are shown. The error bars represent statistical uncertainties only and the estimated systematic uncertainties are shown as gray boxes. The solid curve corresponds to the results obtained from the fit to the cross sections (see Sec. IX for details). The values of Q^{2} (on top of the panels) and \bar{W} (on the right side of the panels) are the central values of the bins.
bins. As one moves closer to threshold and at high Q^{2},

$$
\mathrm{Q}^{2}=2.25 \mathrm{GeV}^{2} \quad \mathrm{Q}^{2}=2.75 \mathrm{GeV}^{2} \quad \mathrm{Q}^{2}=3.25 \mathrm{GeV}^{2} \quad \mathrm{Q}^{2}=4.0 \mathrm{GeV}^{2}
$$

FIG. 15. The structure function $\sigma_{T T}$ as a function of $\cos \theta_{\pi}^{*}$ in $\mu \mathrm{b} / \mathrm{sr}$ for $W=1.08-1.16 \mathrm{GeV}$ and $Q^{2}=2.0-4.5 \mathrm{GeV}^{2}$. Predictions from MAID2007 (dashed-dot) and SAID (dashed-double-dot) are shown. The LCSR predictions do not include any $\sigma_{T T}$ contributions, so they are not shown. The error bars represent statistical uncertainties only and the estimated systematic uncertainties are shown as gray boxes. The solid curve corresponds to the results obtained from the fit to the cross sections (see Sec. IX for details). The values of Q^{2} (on top of the panels) and W (on the right side of the panels) are the central values of the bins. The horizontal line at zero serves as a visual aid.
${ }_{720}$ butions to the cross section from this structure function. ${ }_{721}$ The d-wave contribution to the total cross sections in ${ }_{722}$ SAID range from 0 to $0.001 \mu \mathrm{~b}$ for the near threshold ${ }_{723}$ bins 34.

The structure function $\sigma_{L T}$ (Fig. 16) also shows good ${ }_{725}$ agreement with the MAID2007 and LCSR predictions ${ }_{726}$ for high Q^{2} and low W, but there is some discrepancy at ${ }_{727}$ other kinematics. The SAID prediction has a large dis${ }_{728}$ agreement at low W and Q^{2}, but the level of agreement ${ }_{729}$ at other kinematics is similar to the MAID2007 model.

FIG. 16. The structure function $\sigma_{L T}$ as a function of $\cos \theta_{\pi}^{*}$ in $\mu \mathrm{b} / \mathrm{sr}$ for $W=1.08-1.16 \mathrm{GeV}$ and $Q^{2}=2.0-4.5 \mathrm{GeV}^{2}$. Predictions from LCSR that include only s-wave contribution (dashed), MAID2007 (dashed-dot), and SAID (dashed-double-dot) are shown. The error bars represent statistical uncertainties only and the estimated systematic uncertainties are shown as gray boxes. The solid curve corresponds to the results obtained from the fit to the cross sections (see Sec. IX for details). The values of Q^{2} (on top of the panels) and W (on the right side of the panels) are the central values of the bins. The horizontal line at zero serves as a visual aid.

IX. S-WAVE MULTIPOLES AND GENERALIZED FORM FACTORS

In order to compare with the calculated generalized form factors of Ref. [14, one must extract the s-wave multipole amplitudes from the measured cross sections. First, the structure functions are written in terms of the helicity amplitudes H_{i}. The helicity amplitudes are functions defined by transitions between eigenstates of the helicities of the nucleon and the virtual photon [16]. The helicity amplitudes are then expanded in terms of the multipole amplitudes.

FIG. 17. The s-wave multipoles (a) E_{0+} and (b) S_{0+} normalized to the dipole formula G_{D} are plotted as a function of Q^{2}. The error bars include statistical and systematic uncertainties added in quadrature. The size of the estimated systematic uncertainties are shown in the bottom. The LCSR based model predictions and the LET predictions are also shown as curves. The horizontal line at zero serves as a visual aid.

The structure functions are related to the helicity am${ }_{72}$ plitudes $H_{1,2, \ldots 6}\left(W, Q^{2}, \cos \theta_{\pi}^{*}\right)$ by:

$$
\begin{align*}
\sigma_{T} & =\frac{1}{2}\left(\left|H_{1}\right|^{2}+\left|H_{2}\right|^{2}+\left|H_{3}\right|^{2}+\left|H_{4}\right|^{2}\right) \tag{26}\\
\sigma_{L} & =\left|H_{5}\right|^{2}+\left|H_{6}\right|^{2} \tag{27}\\
\sigma_{T T} & =\operatorname{Re}\left(H_{3} H_{2}^{*}-H_{4} H_{1}^{*}\right), \tag{28}\\
\sigma_{L T} & =-\frac{1}{\sqrt{2}} \operatorname{Re}\left[\left(H_{1}-H_{4}\right) H_{5}^{*}+\left(H_{2}+H_{3}\right) H_{6}^{*}\right] . \tag{29}
\end{align*}
$$

The analysis of the data is based on the following expansion of the helicity amplitudes over multipole amplitudes (see, for example, [35]):

$$
\begin{align*}
H_{1}= & \frac{1}{\sqrt{2}} \sin \theta_{\pi}^{*} \cos \frac{\theta_{\pi}^{*}}{2} \sum\left(B_{l+}-B_{(l+1)-}\right) \\
& {\left[P_{l}^{\prime \prime}\left(\cos \theta_{\pi}^{*}\right)-P_{l+1}^{\prime \prime}\left(\cos \theta_{\pi}^{*}\right)\right] } \tag{30}\\
H_{2}= & \sqrt{2} \cos \frac{\theta_{\pi}^{*}}{2} \sum\left(A_{l+}-A_{(l+1)-}\right) \\
& {\left[P_{l}^{\prime}\left(\cos \theta_{\pi}^{*}\right)-P_{l+1}^{\prime}\left(\cos \theta_{\pi}^{*}\right)\right] } \tag{31}
\end{align*}
$$

FIG. 18. The generalized form factors (a) $G_{1}^{\pi^{0} p}$ and (b) $G_{2}^{\pi^{0} p}$ normalized to the dipole formula G_{D} are plotted as a function of Q^{2}. The error bars include statistical and systematic uncertainties added in quadrature. The size of the estimated systematic uncertainties are shown in the bottom. The LCSR based model predictions and the LET predictions are also shown as curves. The horizontal line at zero serves as a visual aid.

$$
\begin{align*}
H_{3}= & \frac{1}{\sqrt{2}} \sin \theta_{\pi}^{*} \sin \frac{\theta_{\pi}^{*}}{2} \sum\left(B_{l+}+B_{(l+1)-}\right) \\
& {\left[P_{l}^{\prime \prime}\left(\cos \theta_{\pi}^{*}\right)+P_{l+1}^{\prime \prime}\left(\cos \theta_{\pi}^{*}\right)\right] } \tag{32}\\
H_{4}= & \sqrt{2} \sin \frac{\theta_{\pi}^{*}}{2} \sum\left(A_{l+}+A_{(l+1)-}\right) \\
& {\left[P_{l}^{\prime}\left(\cos \theta_{\pi}^{*}\right)+P_{l+1}^{\prime}\left(\cos \theta_{\pi}^{*}\right)\right] } \tag{33}\\
H_{5}= & \frac{Q}{\left|\mathbf{q}^{*}\right|} \cos \frac{\theta_{\pi}^{*}}{2} \sum(l+1)\left(S_{l+}+S_{(l+1)-}\right) \\
& {\left[P_{l}^{\prime}\left(\cos \theta_{\pi}^{*}\right)-P_{l+1}^{\prime}\left(\cos \theta_{\pi}^{*}\right)\right] } \tag{34}\\
H_{6}= & \frac{Q}{\left|\mathbf{q}^{*}\right|} \sin \frac{\theta_{\pi}^{*}}{2} \sum(l+1)\left(S_{l+}-S_{(l+1)-}\right) \\
& {\left[P_{l}^{\prime}\left(\cos \theta_{\pi}^{*}\right)+P_{l+1}^{\prime}\left(\cos \theta_{\pi}^{*}\right)\right] } \tag{35}
\end{align*}
$$

Here, $P_{l, l+1}^{\prime}\left(\cos \theta_{\pi}^{*}\right)$ and $P_{l, l+1}^{\prime \prime}\left(\cos \theta_{\pi}^{*}\right)$ are the first and second derivatives of the Legendre polynomials, respectively, and \mathbf{q}^{*} is the virtual photon 3 -momentum in the

749 c.m. system. Also,

$$
\begin{align*}
A_{l+} & =\frac{1}{2}\left[(l+2) E_{l+}+l M_{l+}\right] \tag{36}\\
B_{l+} & =E_{l+}-M_{l+} \tag{37}\\
A_{(l+1)-} & =\frac{1}{2}\left[(l+2) M_{(l+1)-}-l E_{(l+1)-}\right] \tag{38}\\
B_{(l+1)-} & =E_{(l+1)-}+M_{(l+1)-} . \tag{39}
\end{align*}
$$

The strong $\cos \theta_{\pi}^{*}$-dependence of the structure function $\sigma_{T}+\varepsilon \sigma_{L}$ and the nonzero values of $\sigma_{L T}$ found in the experiment (see Figs. 14 and 16) show that higher multipole amplitudes should be taken into account in addition to the s-wave amplitudes E_{0+} and S_{0+} at all W. Our understanding of the high-wave multipoles, which should be included in this analysis, was based on the results of the analysis of CLAS data 24, 25] performed in Ref. 32 using the unitary isobar model (UIM) and dispersion relations (DR). These data are on the $\gamma^{*} p \rightarrow \pi^{+} n$ [25] and $\gamma^{*} p \rightarrow \pi^{0} p$ [24] cross sections in a similar range of Q^{2} but in a significantly wider energy range, which start from $W=1.15$ and 1.11 GeV , respectively. The precision in the present experimental results near threshold is much better than the precision in Refs. [24, (25). However, the results of their analysis are useful to study the p - and d wave contributions, which are determined mainly by the $\Delta(1232) P_{33}, N(1440) P_{11}$, and $N(1520) D_{13}$ resonances.
According to the results of the analysis 32 at $W=$ 1.09 to 1.15 GeV , there are large p-wave contributions related to the $\Delta(1232) P_{33}$ and $N(1440) P_{11}$. The d-wave contributions are negligibly small for the following reasons: (i) near threshold, the d-wave multipole amplitudes are suppressed compared to the p-wave amplitudes by the additional kinematical factor p_{π}^{*}; (ii) at the values of Q^{2} investigated in this experiment, the contribution of the $N(1520) D_{13}$ to the corresponding multipole amplitudes is significantly smaller than the contributions of the $\Delta(1232) P_{33}$ and $N(1440) P_{11}$ to the p-wave multipole amplitudes; (iii) in contrast with the $\Delta(1232) P_{33}$ and $N(1440) P_{11}$, the width of the $N(1520) D_{13}$ is significantly smaller than the difference between the mass of the resonance and total energy at the threshold. Therefore, in our analysis only multipole amplitudes E_{0+}, S_{0+}, $M_{1 \pm}, S_{1 \pm}$, and E_{1+} were included.
The data were fitted simultaneously at $W=1.09,1.11$, 1.13 and 1.15 GeV with statistical and systematic uncertainties added in quadrature for each point. The amplitudes were parametrized according to their threshold behavior and the results of the analysis in Ref. [32].
Due to the Watson theorem [36], the imaginary parts of the multipole amplitudes below the 2π production threshold are related to their real parts as $\operatorname{ImM}=$ $\operatorname{Re} \mathcal{M} \tan \left(\delta_{\pi N}^{I}\right)$, where \mathcal{M} denotes $E_{l \pm}^{I}, M_{l \pm}^{I}$ or $S_{l \pm}^{I}$ amplitudes, and I is the total isotopic spin of the πN system. Near threshold $\delta_{\pi N}^{I} \sim p_{\pi}^{* 2 l+1}$, and the imaginary parts of the multipole amplitudes are suppressed compared to their real parts. Therefore, in the analysis, only the real parts of the amplitudes were kept. These amplitudes were parameterized as follows: $E_{0+}, S_{0+} \sim$ const,
$M_{1 \pm}, S_{1 \pm}$, and $E_{1+} \sim p_{\pi}^{*}$.
In the fitting procedure, the amplitudes E_{0+}, S_{0+} and $M_{1 \pm}$ were fitted without any restrictions. The relatively small amplitudes $S_{1 \pm}$ and E_{1+} were fitted within ranges found from the results of the analysis of the data [24, 25] using the UIM and DR in Ref. [32. It should be mentioned that the results for the $M_{1 \pm}$ contributions obtained in our fit of the $\gamma^{*} p \rightarrow \pi^{0} p$ cross sections near threshold are consistent with those of Ref. 32 obtained in the analysis of significantly larger range over W. The overall average χ^{2} per degree of freedom for the fit is approximately one.
The obtained results for the structure functions are plotted in Figs. $14 \mid 16$ as solid curves. It can be seen that the multipole amplitudes $E_{0+}, S_{0+}, M_{1 \pm}, S_{1 \pm}$, and $E_{1+} 866$ parametrized in the way discussed above represent the data very well at all W. The obtained results for E_{0+} and S_{0+} are presented in Fig. 17. These multipoles have been normalized to the dipole formula $G_{D}\left(Q^{2}\right)=\left(1+\frac{Q^{2}}{.71}\right)^{-2}$.

Fig. 18 shows the extracted generalized form factors, G_{1} and G_{2}, as a function of Q^{2}. The error bars on the points include statistical and systematic uncertainties added in quadrature. The size of the estimated systematic uncertainties is shown separately at the bottom of the plots, which assumes all systematic errors for all the data points to be entirely uncorrelated (10.8\%). The LET [7] predictions are shown as dash-dotted curves.
The plots also show LCSR predictions [14] as solid and dashed curves. Braun et al. have tried to minimize the uncertainties in their LCSR based model calculations by including electromagnetic form factor values known from experiment. These calculations are shown as solid curves in the figure. The "pure" LCSR based models are calculations where all the form factors are obtained entirely from theoretical calculations and the uncertainties have not been minimized. These are shown as dashed curves in the figure. The difference between these two curves can essentially be treated as the overall uncertainty in their predictions.

X. DISCUSSION

The results for the E_{0+} multipole and $G_{1}^{\pi^{0} p}$ are in good agreement with the LCSR predictions. The extracted E_{0+} values deviate significantly from the LET predictions over the entire Q^{2} range even though the extracted $G_{1}^{\pi^{0} p}$ values are not too far off from the LET predictions. This is because the LET calculations for E_{0+} only depend on $G_{1}^{\pi^{0} p}$ (Eq. (5), whereas the LCSR calculations include contributions from both $G_{1}^{\pi^{0} p}$ and $G_{2}^{\pi^{0} p}$ (Eq. (2)). The overall trends of increasing E_{0+} and decreasing $G_{1}^{\pi^{0} p}$ are similar to these two predictions, but the deviation of the extracted values for $G_{1}^{\pi^{0} p}$ from the LET predictions becomes much more apparent at $Q^{2}>3 \mathrm{GeV}^{2}$.

One can observe a discrepancy of our results for the
S_{0+} multipole and $G_{2}^{\pi^{0} p}$ from the LCSR predictions. The results are closer to the LET predictions but are not entirely consistent for all Q^{2}.

The uncertainty in the LCSR predictions for the S_{0+} multipole and $G_{2}^{\pi^{0} p}$ is much bigger than for E_{0+} and $G_{1}^{\pi^{0} p}$. In the chiral limit approximation, $m_{\pi} \rightarrow 0$, the Pauli form factor $F_{2}\left(Q^{2}\right)$, which is the primary contributor to the calculations of S_{0+} and $G_{2}^{\pi^{0} p}$, is not reproduced very well. Also, the LCSR calculations exist in leading order only and do not include next-to-leading order (NLO) corrections. The NLO corrections are expected to be large. Additionally, the LCSR predictions contain approximations and were not expected to have an accuracy of better than 20% [14.

Furthermore, the LCSR predictions do not include effects from terms proportional to the pion mass. In the Q^{2} region of this experiment, the predictions indicate a suppression of the S_{0+} multipole [14] and this multipole is very sensitive to corrections of all kinds, including the pion mass corrections. In the LET predictions, some pion mass corrections have been included [7]. This may also explain the discrepancy between the predictions and the extracted results for S_{0+} and $G_{2}^{\pi^{0} p}$.
Due to these theoretical uncertainties, the predictions of the magnitude of S_{0+} and $G_{2}^{\pi^{0} p} / G_{D}$, and where they cross zero, differs for the two methods of calculation. The experimental results indicate that this sign change for $G_{2}^{\pi^{0} p} / G_{D}$ occurs at $Q^{2}>4 \mathrm{GeV}^{2}$ rather than at the LCSR prediction of around $2.2 \mathrm{GeV}^{2}$ or $3.5 \mathrm{GeV}^{2}$.
The results of the structure functions, Figs. 14. 16, indicate a significant contribution of the p-wave in the near threshold region as indicated by the almost linear dependence of the $\sigma_{T}+\varepsilon \sigma_{L}$ as a function of $\cos \theta_{\pi}^{*}$. This contribution increases as one moves away from threshold to higher W (e.g., see Fig. 16). This is highly underestimated in the overall LCSR predictions for the structure functions and cross section calculations. Their predictions are tuned to include mostly s-wave and very little p-wave contribution very close to threshold at high Q^{2}. This also explains the good agreement of the extracted E_{0+} and $G_{1}^{\pi^{0} p}$ to their predictions but the strong disagreement of the $S_{0+}, G_{2}^{\pi^{0} p}$, the cross sections and the structure functions.

The extracted generalized form factors, $G_{1}^{\pi^{0} p}$ and $G_{2}^{\pi^{0} p}$, show a faster fall off than the dipole form. This suggests a broadening of the spatial distribution of the correlated pion-nucleon system. It suggests that the correlated pion-nucleon system is broader than the bare nucleon itself because the bare nucleon follows the dipole form factor.

The results for $G_{1}^{\pi^{0} p}$ show similar trends to the previously extracted $G_{1}^{\pi^{+} n}$ 15]. In comparison, the former is about 30% higher in magnitude while the overall behavior as a function of Q^{2} is similar. There are no results for $G_{2}^{\pi^{+} n}$ for comparison. However, the generalized form fac-

908

909

 910tor results for the $\pi^{0} p$ channel provide strong constraints on chiral aspects of the nucleon structure and the validity of the LETs at high Q^{2}.

ACKNOWLEDGMENTS

The authors thank Vladimir Braun for insightful discussions on the theoretical aspects of this work. The authors also acknowledge the excellent efforts of the Jefferson Lab's Accelerator and the Physics Divisions for making this experiment possible. This work was supported in part by the US National Science Foun-

918 dation, the US Department of Energy, the Italian Is919 tituto Nazionale di Fisica Nucleare, the French Centre ${ }_{920}$ National de la Recherche Scientifique, the French Com921 missariat à l'Énergie Atomique, the United Kingdom's 922 Science and Technology Facilities Council, the Chilean ${ }_{923}$ Comisión Nacional de Investigación Científica y Tec924 nológica, the Scottish Universities Physics Alliance, and 25 the National Research Foundation of Korea. The South${ }_{26}$ eastern Universities Research Association (SURA) operated the Thomas Jefferson National Accelerator Facil${ }_{28}$ ity for the US Department of Energy under Contract 929 No. DE-AC05-84ER40150. Electroproduction (Springer-Verlag, New York, 1979). 955 [17] B. A. Mecking et al., Nucl. Instrum. Meth. A 503, 513

946 [12] G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157
7 (1980)
[13] V. M. Braun, D. Y. Ivanov, A. Lenz, and A. Peters, 97 Phys. Rev. D 75, 014021 (2007)
${ }^{5}[14]$ V. M. Braun, D. Y. Ivanov, and A. Peters, Phys. Rev. D 77, 034016 (2008).
[15] K. Park et al., Phys. Rev. C 85, 035208 (2012).
[16] E. Amaldi, S. Fubini, and G. Furlan, Pion-
[1] N. M. Kroll and M. A. Ruderman, Phys. Rev. 93, 233 (1954)
[2] D. Drechsel and L. Tiator, J. Phys. G 18, 449 (1992)
[3] Y. Nambu and D. Lurié, Phys. Rev. 125, 1429 (1962).
[4] Y. Nambu and E. Shrauner, Phys. Rev. 128, 862 (1962)
[5] R. Beck et al., Phys. Rev. Lett. 65, 1841 (1990)
[6] A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B 36, 589 (1972)
[7] S. Scherer and J. H. Koch, Nucl. Phys. A 534, 461 (1991)
[8] T. P. Welch et al., Phys. Rev. Lett. 69, 2761 (1992)
[9] For convenience, we use units where $c=\hbar=1$ throughout the document unless noted otherwise.
[10] P. V. Pobylitsa, M. V. Polyakov, and M. Strikman, Phys. Rev. Lett. 87, 022001 (2001)

976

977

978
979
979
(2003)
[18] M. D. Mestayer et al., Nucl. Instrum. Meth. A 449, 81 (2000)

19] E. S. Smith et al., Nucl. Instrum. Meth. A 432, 265 (1999)
[20] G. Adams et al., Nucl. Instrum. Meth. A 465, 414 (2001)
[21] M. Amarian et al., Nucl. Instrum. Meth. A 460, 239 (2001)
[22] J. Alcorn et al., Nucl. Instrum. Meth. A 522, 294 (2004)
[23] J. Beringer et al., Phys. Rev. D 86, 010001 (2012)
[24] M. Ungaro et al., Phys. Rev. Lett. 97, 112003 (2006)
[25] K. Park et al., Phys. Rev. C 77, 015208 (2008)
[26] L. I. Schiff, Phys. Rev. 87, 750 (1952).
[27] R. Ent et al., Phys. Rev. C 64, 054610 (2001)
[28] D. Drechsel, S. S. Kamalov, and L. Tiator, Eur. Phys. J. A 34, 69 (2007)
[29] A. Villano et al., Phys. Rev. C 80, 035203 (2009)
[30] A. Afanasev, I. Akushevich, V. Burkert, and K. Joo, Phys. Rev. D 66, 074004 (2002)
[31] P. E. Bosted, Phys. Rev. C 51, 409 (1995).
[32] I. G. Aznauryan et al., Phys. Rev. C 80, 055203 (2009)
[33] I. Bedlinskiy et al., Phys. Rev. Lett. 109, 112001 (2012).
[34] R. Arndt et al., Chin. Phys. C 33, 1063 (2009).
[35] I. Aznauryan and V. Burkert, Prog. Part. Nucl. Phys. 67, 1 (2012)
36] K. M. Watson, Phys. Rev. 95, 228 (1954)

[^0]: * Current address: Christopher Newport University, Newport News, Virginia 23606
 \dagger Current address: Skobeltsyn Nuclear Physics Institute, 119899

[^1]: \ddagger Current address: Institut de Physique Nucléaire ORSAY, Orsay France
 § Current address: INFN, Sezione di Genova, 16146 Genova, Italy
 『 Current address: Università di Roma Tor Vergata, 00133 Rome Italy

