
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Time-dependent Monte Carlo calculations of recoil-in-
vacuum g-factor data for ^{122,126,130,132}Te

X. Chen, D. G. Sarantites, W. Reviol, and J. Snyder
Phys. Rev. C 87, 044305 — Published  4 April 2013

DOI: 10.1103/PhysRevC.87.044305

http://dx.doi.org/10.1103/PhysRevC.87.044305


CT10321

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Time-dependent Monte-Carlo calculations of recoil-in-vacuum

g-factor data for 122,126,130,132Te

X. Chen1, D. G. Sarantites1, W. Reviol1, and J. Snyder2

1Department of Chemistry, Washington University, St. Louis, MO. 63130

2Department of Physics, Washington University, St. Louis, MO 63130

(Dated: March 5, 2013)

Abstract

A method for extracting nuclear g factors from the attenuation coefficients Gk (k = 2 ,4) of

γ-ray angular distributions or particle-γ angular correlations measured with the recoil-in-vacuum

(RIV) technique is presented. The method uses time-dependent Monte-Carlo simulations for Gk,

as a function of the g factor for given nuclear lifetime. It is based on atomic-structure calculations

from first principles using the GRASP2K code by Jönsson et al. The simulations are compared

with results of RIV measurements for the first excited states (2+1 ) in
122,126,130,132Te. The choice of

the electronic configurations and the effect of the charge-state distributions on Gk are discussed.

New 2+1 g-factor values are obtained. These are compared with nuclear-model calculations.

PACS numbers: 27.10.Ky, 31.30.Gs, 31.15.A-,23.20.En
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I. INTRODUCTION

The recoil-in-vacuum (RIV) technique [1] utilizing the magnetic hyperfine interaction be-

tween the nucleus and its orbital electrons was first introduced in the 1970’s to measure g

factors of excited nuclear states with ps lifetimes. At that time RIV studies focused on light

elements [2–4] and a few medium-mass nuclei [5] had been studied as well. The technique is

quite straightforward. It is based on the measured attenuation of the γ-ray angular distribu-

tion (AD) or particle-γ angular correlation (AC) due to the magnetic hyperfine interaction.

Typically, in a Coulomb-excitation experiment the AC attenuation is determined from a

thin-target measurement (perturbation due to recoiling of the γ-ray emitter in vacuum) and

a measurement with a thin target backed by a thick non-magnetic layer (no perturbation)

by dividing the respective AC coefficients. The corresponding attenuation coefficients are

denoted Gk(k = 2, 4). The fact that the technique was seldom used in the past was probably

due to the complexity of the electronic configurations of the recoiling ions and the associ-

ated difficulty in calibrating the magnetic hyperfine interaction. In 2005, Stone et al. [6]

reported the first result of a RIV analysis of a radioactive-ion beam experiment and the g

factor of the first excited state , 2+1 , of
132Te was determined. The experimental success and

the recent progress in atomic theory (see below) indicate that the RIV technique has been

revived and is a promising method to measure g factors. This is of particular interest for

studies of exotic nuclei, which can be accessed now by projectile Coulomb excitation.

For g-factor measurements of short-lived states, the transient field (TF) technique [7] has

been widely used. It has the advantage of being able to measure both the magnitude and sign

of the g factor. However, this technique requires using a thick target with a ferromagnetic

layer as backing and an external magnetic field. For projectile g-factor measurements, this

condition causes a problem: the thick target may induce a large radioactive background.

On the other hand, with a thin target as used for a RIV experiment the background is

comparatively small. Moreover, the AD or AC attenuation in RIV experiments can be mea-

sured utilizing all the detectors in a near 4π detector array, whereas the optimal precession

sensitivity for the TF technique is achieved only for detectors in the plane perpendicular to

the direction of the external magnetic field [6]. Thus, the RIV technique has the potential

of performing g-factor measurements with higher statistical accuracy than the TF technique

does. However, the RIV technique is insensitive to the sign of the g factor and relies on
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systematics and/or a measurement of the sign by the TF method.

Since the pioneering measurement of Stone et al. [6], many efforts have been made to

calibrate and model the RIV hyperfine interaction. The interaction was usually described by

the strength of the hyperfine magnetic field at the nucleus where the field was approximated

with an empirical model. This seemed to be the best procedure, since the relation between

the electronic configurations and the field is complicated. Specifically, a static model was

used where Gk was calculated under the assumption that the electronic-state lifetimes are

much longer than the nuclear lifetime. In 2007, Stuchbery and Stone [8] reexamined the

calibration of the RIV interaction for previously published RIV data on Te ions [6] and

reevaluated the g factor for 2+1 state of 132Te. They introduced a modified static model,

using an average electronic-state lifetime and a time range for the multi-step decay to the

ground state as free parameters, that improved the fit to the data (cf. Sec. II B).

A recent experimental development, using a recoil-distance device (plunger), is the mea-

surement of differential attenuation coefficients Gk(d) where d represents the target-to-

stopper distance [9]. This indicates once more the increasing interest in the RIV technique.

With the availability of an advanced atomic theory for many-electron ions [10], it is

possible to calculate the hyperfine interaction from first principles rather than relying on

an estimated hyperfine-field strength. The paper by Stone et al. [11] may be viewed as

a pioneering contribution in this sense. The calculations of Gk in Ref. [11] have been

made with the original static model based on the assumption of long-lived electronic states.

However, as shown in Ref. [12], many relevant atomic states have lifetimes comparable to

or shorter than the nuclear lifetimes. In Ref. [11], it is pointed out that transitions between

the electronic states may be important in Gk calculations as the hyperfine interaction may

change when the highly excited, short-lived electronic states decay within a time period

comparable with the nuclear lifetime. Also, it is suggested in Ref. [8] that the RIV data

for certain Te isotopes can be fitted better with the modified static model if in the Gk

calculations several atomic transitions were allowed on a timescale compatible with the

nuclear lifetime.

We have taken an approach different from the static model. Here the contributions from

a large number of electronic states are taken into account according to their lifetimes and

partial widths. The approach is still in the spirit of Ref. [11] in that the hyperfine interaction

is calculated from first principles. The approach is applied to the data from the projectile
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Coulomb-excitation studies of 122,126,130,132Te, for which Gk values are reported in Ref. [8]. In

these cases the present approach is validated and new values for the g factors are obtained.

The set of stable and neutron-rich Te isotopes is attractive both from a theoretical and

an experimental point of view. First, these isotopes are located near the doubly-magic

132Sn, a region important for the development of nuclear theory, and the measured g factors

help to test various theoretical models. Second, the RIV data for 122,126,130,132Te represent

a prototype g-factor measurement for new studies with other radioactive-ion beams, where

the data could be analyzed with the present approach.

II. RIV TECHNIQUE

A. The Principle

The basics of the RIV technique are described in Refs. [1, 6] and are briefly summarized

hereafter. The excited nucleus, as obtained from e.g. Coulomb excitation, recoils with a

few percent of the speed of light (β ∼ 0.03 to 0.1) where the atom is ionized. The hyperfine

interaction couples the atomic spin, J, to the nuclear spin, I, making them precess about

the resultant vector F = I + J. Thus the initial alignment of the nuclear spin, formed by

Coulomb excitation, will be reduced. The Gk coefficients introduced in Sec. I are measured

as the ratios A
(a)
k /A

(u)
k , the attenuated AC coefficients divided by the unattenuated ones. The

Gk coefficients are functions of the mean lifetime of the nuclear state, τ , and the precession

frequency, ωFF ′ , which is proportional to the g factor and where F and F ′ represent initial

and final couplings.

Following Goldring’s presentation [1], the time dependent attenuation coefficients Gk(t)

for a given pair of quantum numbers I and J can be expressed as

Gk(t) = 1− 2×
∑

F>F ′

(2F + 1) (2F ′ + 1)

(2J + 1)







F F ′ k

I I J







2

[1− cos (ωFF
′ t)] , (1)

where ωFF ′ is related to the hyperfine interaction constant A and the g factor via the

expressions

ωFF ′ =
A

~
· [F (F + 1)− F ′(F ′ + 1)] /2, (2)
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A = g
Bµ

N

J
, (3)

where µN and B denote the nuclear magneton and the magnetic hyperfine field at the

nucleus, respectively.

The time-integral attenuation coefficients Gk(∞) that refer to the static model are ob-

tained by the integration

Gk(∞) =
1

τ

∫

∞

0

e−t/τGk(t)dt, (4)

and are given in Ref. [6] as

Gk (∞) =
∑

FF ′

(2F + 1) (2F ′ + 1)

(2J + 1)







F F ′ k

I I J







2

1

(ωFF
′τ)2 + 1

. (5)

The various implementations of the static model and the present approach differ in the

evaluation of ωFF
′ . In the approach of Ref. [8] the expression for A according to Eq. (3)

is used and the field B is treated as a parameter. In the approach taken in Ref. [11] for

the static model, and in the time-dependent approach of the present work, the hyperfine

constant A of Eq. (2) is evaluated, according to Ref. [10], as

A = g · Aint, Aint=

〈

ΓJJ
∥

∥T (1)
∥

∥ΓJJ
〉

[J(J + 1)(2J + 1)]1/2
, (6)

where
〈

ΓJJ
∥

∥T (1)
∥

∥ΓJJ
〉

is the reduced matrix element for the magnetic-dipole operator in

the atomic-wavefunction space. This space is defined by J , and a set of quantum num-

bers, ΓJ , which represent the electron configuration for a given J . The T (1) represents the

magnetic-dipole tensor operator, the explicit expression of which is given by Eq. (8.50) in

Ref. [10].

In the static model the electron configuration is assumed not to change during the nuclear

lifetime. Since ωFF ′ is proportional to the g factor and the coefficients Gk(∞) are explicit

functions of ωFF ′τ according to Eq. (5), the Gk (∞) factors can be expressed as functions

of the product gτ . This is done in the literature where the static model is used.
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B. Uses of the static model

In the experiments of Ref. [6], Gk coefficients were extracted for the 2+1 states of the

“calibration” isotopes 122,126,130Te. They were then fitted with the static model. The J-state

distribution and the magnitude of the hyperfine interaction were adjusted such that the

Gk(gτ) functions fit the Gk values for 122,126,130Te. From these functions and the Gk values

for 132Te the gτ value for the 2+1 state of 132Te was determined. With the known lifetime

for this state [13], a g factor 0.35(5) was obtained, where the positive sign was based on

systematics. Recently, a revised g-factor value of 0.46(5) has been reported, as a consequence

of a correction of the nuclear lifetime [14].

As mentioned in Sec. I, the results for the Te isotopes [6] were reexamined in Ref.

[8]. Gaussian shapes were assumed for both the J-state and B-field distributions, and the

corresponding centroids and widths were discussed. To improve the fits to the data, atomic

fluctuations were allowed in the modified static model. Here the parameters τE and τA

were introduced, with τE determining how often the ensemble of the many-electron ions

tries to make a transition and τA determining whether the atom is allowed to make the

transition. The fact that the RIV data for the Te isotopes with longer nuclear lifetimes can

be fitted better with the modified static model indicates that the atomic transitions during

the nuclear lifetime may play an important role in the calculations of the coefficients Gk.

This seems especially true for the nuclear states with longer lifetimes, where the Gk may

approach the so-called hard-core value (see Sec. I of Ref. [1] ).

It should be reemphasized that in the static model all relevant electronic lifetimes are

assumed to be much longer than τ . This is not always true, many electronic states may

have lifetimes comparable to or shorter than τ . Some of the short-lived electronic states

may contribute strongly to the hyperfine interaction.

In Ref. [11], in order to determine the coefficients Gk, the hyperfine interaction is calcu-

lated with the advanced atomic-structure package, GRASP2K, by Jönsson et al. [15]. This

package uses multi-configuration Dirac-Hartree-Fock theory [10] for many-electron ions to

calculate atomic-level wavefunctions, level energies, and transition probabilities among other

quantities. The results show great promise in that such calculations could provide parameter

free, “a-priori” analyses of RIV experiments. Notably, the authors in Ref. [11] question the

assumption that the hyperfine interaction is “static” during the nuclear lifetime, they state
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that the original model sometimes gives poor agreement with experiment, and that allowing

for decay improves the agreement.

C. Time-dependent Monte-Carlo simulations for the RIV g factors

Following Ref. [11], we are using GRASP2K to calculate the properties of the excited

atomic states. We have devised a procedure where Monte-Carlo simulations based on the

time dependent attenuation formula of Eq. (1) are carried out. To estimate the Gk contribu-

tion from each atomic state to the average Gk more precisely than previous approaches did,

we take into account transitions between atomic states and their associated state lifetimes.

That is, level energies, parameters Aint (according to Eq. (6)), and transition probabilities

of the states are calculated.

The procedure to determine the average value of Gk includes five steps: (1) The distri-

bution of the charge states wQ in the recoiling ion with nuclear charge Z is calculated with

the code CHARGE [16]. (2) For each charge state Q of the stripped ion, the appropriate

atomic states are chosen by specifying a reference electronic configuration and the number

of excitations. The reference configuration represents the lowest energy manifold of atomic

states determined in the j-j coupling scheme with Z – Q electrons. The number of excita-

tions, nE , has to be specified which is equivalent to the number of electrons to be excited.

For example, if nE = n, it means that electronic configurations with non-electron excita-

tion (ground state configuration), one-electron excitation, and up to n-electron excitation

are included in the atomic structure calculation. The corresponding level energies and Aint

parameters, are calculated. (3) The transition probabilities and subsequently the lifetimes

τai for all atomic states are calculated. The lifetime of an atomic state is the inverse of

the sum of the transition probabilities from this level to all lower-lying levels [10]. (4) A

Monte-Carlo simulation is performed in order to get Gk,Q(τ , g) as a function of the g factor

for a given value τ , and for each charge state. (5) The final attenuation coefficient Gk(τ , g)

is computed as a weighted average over all the charge states Gk,Q(τ , g).

In step (3), only E1 transitions are allowed; M1 and higher-multipole transitions are

considered as too slow and are omitted. Here a Python code is used to calculate the lifetimes

and store these in a database, together with the transition probabilities between every pair

of atomic states of opposite parity. Notably, the Monte-Carlo simulation in step (4) is
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performed with another Python code.

The time sequence on which the simulation of an event is based is illustrated in Fig.

1. The corresponding expressions for choosing the appropriate hyperfine interaction for

each event are presented below. The sequence of steps in the simulation of an event is the

following: (A) A nuclear survival time, tn, is chosen randomly, weighted according to the

decay function e−tn/τ . (B) To start an event, an atomic state dubbed the ”first” state is

randomly chosen from a list of states which were generated in step (2) above. The list of

atomic states for a given charge state may include up to 4,000 entries. These originate from

a significantly smaller number of electronic configurations. The weight given to a state with

spin J is taken as (2J + 1). (C) Depending on the mean lifetime τa1 of the “first” atomic

state, a value for its survival time, ta1 , is chosen randomly that is weighted according to

the exponential decay e−ta1/τa1 . The hyperfine-interaction time, tint1 , is determined by the

smaller of the two times tn and ta1 . The hyperfine interaction parameter for this state is

denoted Aint1 , and the corresponding time-dependent attenuation coefficient Gk(tint1), is

calculated from Eq. (1). (D) The following decision is made. If the chosen interaction time

is found to be longer than tn (tn < ta1), then the nuclear state has decayed before the atomic

state and the simulation of the event is finished. Otherwise, a “second” atomic state will

be chosen randomly from the possible states below the “first” state, based on the decay

probability to the possible atomic states below. (E) The two previous steps, (C) and (D),

are repeated as many times as necessary, with the parameters Ainti and tinti of the i
th atomic

state, until the “last” atomic state is reached. Note that tinti is equal to the survival time

tai , if tai 6= talast . The condition

talast > tn −

last−1
∑

i=1

tai, (7)

determines the interaction time for the last state with talast , and the interaction time becomes

tintlast = tn −

last−1
∑

i=1

tai. (8)

The coefficient for an event, Gs
k(τ , g), where s denotes the number of the event in the

simulation, is the product of coefficients Gk(tinti)

Gs
k(τ , g) =

last
∏

i=1

Gk(tinti). (9)
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The coefficient Gk,Q(τ , g) for each charge state is the average of the Gs
k(τ , g) values of all

events m in the simulation

Gk,Q(τ , g) =

m
∑

s=1

Gs
k(τ , g)

m
. (10)

The final Gk(τ , g) values are calculated as weighted averages over all charge states, i.e.,

Gk(τ , g) =

Q=Qmax
∑

Q=Qmin

wQGk,Q(τ , g), with

Q=Qmax
∑

Q=Qmin

wQ = 1.

III. TESTS AND RESULTS

A. Tests of the simulation procedure

The RIV experiment for 122Te [6] is chosen for testing the simulation procedure. Com-

pared to other Te isotopes, the previous measurements for 122Te gave consistent g-factor

values for the 2+1 state. The Gk values for the 2+1 state of 122Te is closer to the hard-core

value than those of the other Te isotopes; this is due to the longer 122Te nuclear lifetime.

The experimental details and measured Gk coefficients for four Te isotopes (122,126,130,132Te)

are listed in Table I. The β values reported in the table have been used to calculate the

charge-state distributions for the RIV nuclei using CHARGE [16]. These distributions are

listed in Table II. Since the β values for these systems vary only between 0.060 and 0.061

the charge distributions are very similar and peak near Q = 31. The Gk,Q values (cf. Eq.

(10)) are calculated, as a function of the g factor, as averages over a large number of events.

Typically m = 50, 000 events per charge state are sufficient. The inset of Fig. 2 shows a

sample charge-state distribution calculated with β = 0.06 for the 122Te ions (Table II). The

main part of Fig. 2 shows the G2(g) and G4(g) functions for a number of the most probable

charge states and for the average of all charge states for the 122Te ions. The data points,

determined by the g-factor and the Gk values from Ref. [8] (Table I), are also shown in

the figure. The effect different charge-state distributions have on the RIV g factors will be

discussed in Sec. III C.

At this point, a test of the choice of electronic configurations used in the simulation is in

order. Here the crucial input parameter is nE , used in step (2) of the simulation procedure.

Calculations have been performed for configurations with nE = 1, 2 and 3 in the valence

shell. The calculations are compared to the data of Ref. [8]. The comparison is shown in
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TABLE I: Conditions and parameters for the RIV experiments in Ref. [6] and G2 and G4 values

according to Ref. [8].

Isotope Ebeam Target Thick. β Erecoil E2+ τ2+ G2 G4

(MeV) (mg/cm2) Rec. ion (MeV) (keV) (ps)

122Te 366 12C 0.956 0.060 205.45 564.1 10.8(1) 0.358(19) 0.217(11)

126Te 378 ” 0.956 0.061 216.63 663.3 6.5(2) 0.506(20) 0.370(12)

130Te 390 ” 0.956 0.061 227.83 839.5 3.3(1) 0.628(19) 0.506(12)

132Te 396 ” 1.130a 0.060 220.45a 973.9 2.16(20)a 0.701(26) 0.532(17)

a Corrected value due to revision in Ref. [14].

TABLE II: Charge-state distributions in (%) for ions of 122,126,130,132Te used in the simulations

aimed at determining g factors. The β value used in each case is listed in Table I.

Isotope\Q= 25+ 26+ 27+ 28+ 29+ 30+ 31+ 32+ 33+ 34+ 35+ 36+

122Te 0.21 0.82 2.55 6.24 11.91 17.68 20.33 18.03 12.28 6.39 2.53 0.76

126Te 0.16 0.66 2.13 5.44 10.84 16.82 20.23 18.78 13.39 7.29 3.02 0.95

130Te 0.13 0.53 1.80 4.76 9.86 15.94 19.99 19.36 14.40 8.18 3.53 1.15

132Te 0.23 0.89 2.74 6.58 12.35 18.00 20.33 17.70 11.84 6.05 2.35 0.69

Fig. 3, using a Gk versus g-factor representation for both the simulation curves and the

experimental data.

The Gk(g) curves for nE = 2 (black) are in agreement with the data points, while the

nE = 1 and 3 curves are substantially below these points. For the Te isotopes (β = 0.06),

the observation can be explained as following: For the nE = 1 case, the simulation includes

a large fraction of the electronic states and correspondingly large hyperfine interaction,

and the calculated Gk coefficients are smaller than they should be. For the nE = 2 case,

the simulation includes now more electronic states than before and due to the transitions

between these states the contributions from all electronic states are properly evaluated. For

the nE = 3 case, the simulation again includes a large fraction of electronic states with a

larger hyperfine interaction, and the calculated Gk coefficients become smaller again. These

remarks come from a close examination of the distributions of the hyperfine interactions for
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different nE values. Further investigations are needed to identify the physics that determines

the choice of electronic configurations. Presumably, this choice varies between different

regions of the periodic table. For the remaining discussion, only configurations with nE = 2

will be considered when extracting g factors for Te isotopes.

B. Simulations for previously measured g factors for 122,126,130,132Te

Since the hyperfine interaction is essentially independent of the isotope mass, the same

electronic configurations (nE = 2) are used in simulations for the four Te isotopes. The Gk

curves for the 2+1 states of the various Te isotopes are calculated by changing only the value

of τ (cf. Table I). Columns two to nine of Table III list the previously reported g factors,

the remaining columns the present results.

The simulated Gk versus g-factor curves are plotted in Fig. 4. These are compared with

all the g factors from previous measurements [8, 19, 20]. For 122Te, the present simulations

agree with all previously reported values within the error bars. For 126Te, however, the

previous results are either too small or too large. For 130Te, the simulations agree with the

previous reported g factors of Refs. [21–23]. For 132Te, the simulations agree with the g

factors of Refs. [19, 20]. By using the G2 and G4 values from Ref. [8], the present simulations

allow the extraction of new g factors for the 2+1 states in 122,126,130,132Te. The final results

were obtained as weighted averages of the g factors from G2 and G4 (cf. Table III).

TABLE III: The g factors for the first 2+ states of Te isotopes from previous work and the present

analysis.

Isotope g [21] g[22] g[24] g[23] g[23] g[19] g [8] g [20] g this worka

122Te 0.33(3) 0.28(5) 0.34(2) 0.33(2) 0.36(2) 0.361(46) 0.331+0.024, 0.024
−0.026, 0.026

126Te 0.19(3) 0.34(3) 0.31(4) 0.338(17) 0.251+0.015, 0.023
−0.012, 0.019

130Te 0.29(6) 0.33(8) 0.29(5) 0.351(18) 0.280+0.015, 0.028
−0.011, 0.017

132Te 0.42(6)b 0.46(5)b 0.28(15) 0.359+0.024, 0.045
−0.024, 0.041

Method TF TF TF TF IPAC RIV RIV TF RIV

a The first entries for the uncertainties include only the errors from the Gk values, while the second ones

incorporate also those from lifetimes.
b Corrected values due to change of the nuclear lifetime [14].
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C. Comparisons of various charge-state calculations

The available prescriptions for calculating the charge-state distributions vary somewhat.

For comparisons with the charge-state distributions used in this paper, two other types of

calculations have been considered, using the Schiwietz and Grande formula [25] (denoted as

SG calculations) and the Nikolaev and Dmitriev formula [26] (denoted as ND calculations).

These are used hereafter to get charge-state distributions for 122,126,130,132Te respectively.

The ND calculations result in almost the same distributions as those in Sec. III A, while

the distributions obtained with SG calculations are one unit lower. In Fig. 5 the Gk curves

calculated for 122Te with β = 0.06 are shown. The different charge-state distributions are

plotted in the inset. For the four Te isotopes, simulations with SG calculations will result

in about 5% differences in g factors, while those with ND calculations result in less than 1%

differences. Since both the formula for ND calculations and the arithmetic in CHARGE are

based on using carbon targets, the applicability of the charge-state calculation in Sec. III A

is justifed.

D. Use of g factor as a function of τ

With the present method a Gk versus g-factor curve is calculated for a fixed value τ .

At some future time the nuclear lifetime may be revised, i.e., may have a different value

or different uncertainties. Hence it would be helpful to have curves calculated for a set of

τ values, which allow recalculation of the g factor. Such curves are provided below. The

static model does not have this problem, since Gk values are calculated as functions of the

quantity gτ . Nevertheless, when the nuclear-lifetime information changes the results of the

static model are subject to re-evaluation as well.

For a set of Gk(g) values from a given experiment the g factors are calculated for a series

of τ values. An example for the 132Te case is shown in Fig. 6 where the simulations for G2

and G4 are shown as circles and squares, respectively. The calculated values were fitted to

the empirical function

g(τ) = ak · τ
bk , for k = 2, 4. (11)

The values are a2 = 0.7328, b2 = −0.8994 and a4 = 0.7145, b4 = −0.9068 for the G2 and G4

simulations, respectively. This simple function, which is nearly a hyperbola with bk = −1,

12



fits the simulations quite well. Note that the g(τ) curves in Fig. 6 from the G2 and G4

measurements are different because they cross the simulated Gk(g) lines at different g values

[see Fig. 4(d)]. If the Gk values are remeasured with the same reaction conditions and are

found to deviate somewhat from those used in the simulations for the g(τ) functions, then

the Gk(g) curves of Fig. 4(d) can be used to obtain new g values. If the lifetime is found to

be different, then the g factor can be corrected incrementally via expression (11) with the

ak and bk values given above. If a different reaction is used to obtain new Gk values, then

new simulations have to be made to provide the appropriate Gk(g) curves. This is because

different β values and/or recoil media, such as the target material, need to be considered

which give different charge-state distributions.

IV. COMPARISON WITH THEORETICAL MODELS

In this section, the g factors obtained from the present analysis are compared with sys-

tematics for g factors of the same states in the neighboring Te isotopes and with predictions

from various theoretical models. The measured 2+1 g factors for a series of Te isotopes are

shown in Fig. 7, together with the g factors for the respective Xe isotones. The low-energy

structure of the Te and Xe isotopes under discussion can be characterized as vibrational like,

as indicated by level-energy ratios E(4+1 )/E(2+1 ) ∼ 2. However, their 2+1 g factors indicate

a somewhat different trend as a function of N , as suggested by linear fits to the data in

Fig. 7. The trend for the Te isotopes is consistent with a sort of Z/A behavior, i.e., it is

down-sloping with N . In contrast, the Xe isotopes show an up-sloping trend.

The additional line (dashed-dotted) in Fig. 7(a) represents such Z/A behavior and has

been constructed based on the following considerations. Nilsson and Prior [27] showed that

the lowering of the g factor from the hydrodynamical, collective Z/A value, seen in several

mass regions, is due to a difference in the pairing forces for protons and neutrons. Greiner

introduced a transparent procedure for scaling the Z/A value accordingly [28]. We have

used the expression in Ref. [28] applicable for vibrational-like nuclei,

g =
Z

A

[

1−
4

3

N

A

(

√

Gπ

Gν

− 1

)]

, (12)

Here, the pairing-force parameters with the values Gπ = 25 MeV/A and Gν = 18 MeV/A

[27] are used. The resulting function, shown as dashed-dotted line, is sufficiently close to
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the data, given that its slope is the important feature. A somewhat lower-lying function for

g would be obtained with the set of parameters Gπ = 30 MeV/A, Gν = 20 MeV/A [29], but

the principal observation of a Z/A behavior remains unchanged.

The trend of the 2+1 g factors, as a function of N , for the Xe isotopes has been discussed

by Otsuka [30], and later by Jakob et al. [31], in the framework of the IBM-2 approach of

the Interacting Boson Model. For the Xe isotopes under discussion, this approach leads to

a parabolic dependence from which the rising branch gives an up-sloping g with increasing

N . Even though the present discussion uses the Xe isotopes only to contrast the behavior of

the Te isotopes, it is instructive to elaborate on the IBM-2 approach for the g factors [30],

g =
Nπ

Nπ +Nν

gBπ +
Nν

Nπ +Nν

gBν , (13)

where the number of proton and neutron bosons Nπ and Nν , respectively, are counted from

the nearest major shell closure. The g factors of the proton and neutron bosons to first

approximation are gBπ = 1 and gBν = 0, respectively. They are subject to adjustments that

lead then to somewhat smaller values for both bosons. For example, for the Xe isotopes

with N ≤ 72 the original gBπ value is kept, but gBν = −0.1 [30]. In the Xe region, the term

with gBπ is the leading term. Hence, it seems logical that the Xe isotopes show an IBM-2

like behavior rather than the Te isotopes do, as the former have twice the number of proton

bosons (Nπ = 2 versus Nπ = 1).

TABLE IV: Calculated g factors for the first 2+ states of Te isotopes compared to experimental

values obtained from the present analysis.

Isotope BCSa SMIIb QRPAc CD-Bonnd CD-Bonne NPSM
f

Experimentg

Vlow−k Eff. Free gs,eff gs,free this analysis

122Te 0.32 0.331+0.024
−0.026

126Te 0.26 0.251+0.023
−0.019

130Te 0.31 0.445 0.341 0.180 0.241 0.188 0.280+0.028
−0.017

132Te 0.40 0.448 0.491 0.35 0.480 0.288 0.337 0.283 0.359+0.045
−0.041

a Ref. [32], b Ref. [31], c Ref. [33], d Ref. [36], eRef. [34], fRef.[35]
g The uncertainties include the errors from the Gk values and the lifetimes.

The 2+1 g factors for 122,126,130,132Te have been also subject of theoretical calculations that

are not based on an algebraic model. These calculations are summarized in chronological
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order in Table IV, and reviewed hereafter. Lombard carried out calculations for low-lying

states of even-even nuclei with 90 ≤ A ≤ 150 using the pairing-plus-quadrupole model with

BCS wavefunctions [32]. The results for the relevant Te isotopes are listed in the column

labeled BCS. The already cited paper by Jakob et al. also contains shell-model calculations

for 130,132Te [31]. These authors use surface-delta interactions, to describe the two-body

residual interactions. Their results are listed in the column labeled SMII. Terasaki et al. [33]

used a separable quadrupole-plus-pairing Hamiltonian and the quasiparticle random phase

approximation to calculate g factors for the lowest 2+ states near 132Sn. The result for 132Te

is shown in column labeled QRPA. Brown et al. did shell-model calculations of g factors

for Sn to Xe nuclei, including 130,132Te [34]. The authors used a residual interaction based

on the CD-Bonn nucleon-nucleon interaction. They determine the single-particle spin and

orbital effective g factors by including both core-polarization and meson-exchange current

effects. Two different g factors are given, one obtained with an effective and one with a free-

nucleon magnetic-moment operator. These are listed in a group of two columns, labeled

CD-Bonn-Eff and CD-Bonn-Free. Jia et al. carried out calculations for low-energy spectra

of even-even nuclei, including 130,132Te, with the so-called nucleon-pair approximation of the

shell model [35]. They performed two sets of calculations, one with the free-nucleon spin g

factor, gs, the other one with a quenched gs value assuming a reduction factor of 0.7. Their

results are listed in a group of two columns, labeled NPSM-gs,eff and NPSM-gs,free, which

correspond to the “quenched” and free-nucleon cases, respectively. A recent calculation of

the 2+1 g factor for 132Te using the Monte-Carlo shell-model approach is communicated in

the literature [20]. In this calculation, gs is assumed to be quenched by 0.7, and a value

g = 0.29 is obtained.

The calculations of Ref. [32] agree overall with the present experimental results. The

overestimation of the 2+1 g factors for 130,132Te in Ref. [31] has been attributed to the strength

of the proton-neutron interactions, which is adjustable. Neither the QRPA calculations

nor the CD-Bonn-Free and the CD-Bonn-Eff calculations agree with the present results.

However, the approach of Ref. [36] using CD-Bonn potential through the so-called low

momentum Vlow−k approach labeled as CD-Bonn Vlow−k agrees with present result for 132Te.

The comparison also shows preference for the NPSM gs,eff calculations of Ref. [35].
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V. SUMMARY AND CONCLUSIONS

In summary, the present method of calculating attenuation coefficients Gk of γ-ray an-

gular distributions or particle-γ angular correlations is a time-dependent simulation where

the nuclear and atomic lifetimes are compared on an event-by-event basis and many atomic

states are sampled by random-number choices for each event (Monte-Carlo simulations).

A crucial input to the simulations is obtained from atomic-structure calculations with the

code GRASP2K. The simulation results are compared with previously reported g factors

measured with the RIV and TF techniques. Agreement is found with most of the previously

reported g factors of the 2+1 states of 122,130,132Te. The simulated result for the 2+1 state of

126Te does not agree with any of the reported values. On the other hand, this particular

data point lies systematically lower in several data sets including the present one and the

one of Ref. [21]. There is a similar trend between the g factors for 122,126,130,132Te in present

analysis and the values from Ref. [17], but the differences for 126,130,132Te are outside the

quoted uncertainties. The g factors obtained from the present simulations are also compared

with theoretical models, and some level of agreement is found. However, there is room for

improvement in the theoretical calculations.

Unlike the previously used methods to analyze the RIV measurements, the present sim-

ulation method is essentially parameter free. Once the electronic configurations are chosen,

they don’t need to be changed when the nuclear lifetime varies (or a different nuclear spin

state is considered).

The Te isotopes under discussion have been produced via inverse-kinematic Coulomb

excitation at recoil velocities of β = 0.06. Future experiments with radioactive-ion beams

similar to the RIV 132Te experiment are conceivable. If performed near the Coulomb barrier,

β values in the range 0.05 - 0.07 can be obtained, suggesting the use of the present type of

analysis in order to extract RIV g factors.
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FIG. 1: The concept for the Monte-Carlo simulations in the present work. The time sequence for

successive atomic transitions are indicated. The last transition has a time ta,last that exceeds the

nuclear time tn and that terminates the event. The equations for the calculations are given in the

text.
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FIG. 2: The averaged Gk versus g-factor curves (thick black lines) for 2+1 state of 122Te over all

charge states after recoiling into vacuum and the contributions of Gk (thin dashed lines) from

individual charge states. The data points are from Ref. [8]. The inset shows the charge-state

distribution calculated for an ion velocity β= 0.06 (see text). (Color online).
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FIG. 4: Calculated curves of G2 (solid curves) and G4 (dashed curves) as functions of the g

factor for 122,126,130,132Te. They are compared with previously reported g factors from different

measurements, mainly transient field method. The previously measured g factors are labeled as

”Sh81 TF” [21], ”Gr85 TF” [22], ”Th85 TF” [24], ”Du88 IPAC” [23], ”Du88 TF” [23], ”St07 TF”

[17], ”St07 RIV” [8], ”St05 RIV” [19] and ”Be08 TF” [20]. In panels (b), (c), and (d), the family of

curves for a certain Gk represents the average value (black) and the uncertainties in τ (red). The

uncertainties of Gk curves in panel (a) are very small due to small uncertainty of τ and thus is not

shown in the figure. (Color online)
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