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We discuss the effect of the hyperon-nucleon-nucleon interaction on the binding energy of a Λ
hyperon in closed shell hypernuclei from A=5 to 91. The Λ binding energy has been calculated
using the Auxiliary Field Diffusion Monte Carlo method that we have used, for the first time, to
study light and heavy hypernuclei within the same model. Our results show that including a three-
body component in the hyperon-nucleon interaction leads to a saturation of the Λ binding energy
remarkably close to experimental data. In contrast, the two-body force alone gives a very unphysical
binding energy.

PACS numbers: 21.80.+a, 26.60.Kp, 21.60.De

The onset of strange baryons (Σ− and Λ) in neu-
tron matter at densities of order (2 − 3)ρ0, where ρ0 =
0.16 fm−3, has been questioned for a long time. Recent
theoretical calculations based on the Brueckner-Hartree-
Fock theory suggest that any process generating new on-
shell degrees of freedom in high density Fermionic matter
leads to a substantial softening of its equation of state
(EoS) (see for example [1, 2] and references therein).
When occurring in the inner core of a neutron star, such a
mechanism would reduce the value of its predicted max-
imum mass and of its radius. Until a few years ago,
astrophysical observations of neutron stars were concen-
trated in a relatively narrow region in the neighborhood
of the Chandrasekhar limit (M ' 1.41 M�). Most of the
realistic EoS based on the hypothesis of matter made of
nucleons only, while compatible with these observations,
predict a maximum mass typically larger than 2 M�.
This result can be considered very robust. As an exam-
ple, recent Quantum Monte Carlo (QMC) calculations of
the equation of state of Pure Neutron Matter (PNM),
Symmetric Nuclear Matter (SNM) and baryonic matter
at β- and µ-equilibrium using realistic Density Depen-
dent Potentials (DDP) [3], essentially confirm the behav-
ior predicted by Akmal, Pandharipande and Ravenhall
with a full AV18+three-body interaction [4]. With such
nuclear Hamiltonian the predicted EoS supports a max-
imum neutron star mass larger than 1.97 M� recently
observed [5].

In so far as the appearance of strange baryons is con-
cerned, the situation is more controversial. Some au-
thors (see e.g. [6, 7]), suggest that the appearance of hy-
perons in the EoS does not lead to very strong effects.
Other recent papers, like Refs. [1, 2, 8–10], show a more
substantial influence, but with contradictory outcomes in
terms of the predicted maximum mass of neutron stars
not compatible with the observations [11]. Therefore, the
situation is far from being completely settled.

A combination of reasons leads to the uncertainty in
the analysis of the influence of strangeness degrees of free-
dom in the EoS. First of all, the interaction between nu-
cleons and hyperons is still far from being known with
sufficient accuracy. The prospective measurements of

properties of light hypernuclei should improve the qual-
ity of the available data, making possible a realistic phe-
nomenological analysis. Second, the theoretical tools em-
ployed are all affected by uncontrollable intrinsic approx-
imations as soon as one tries to push the study beyond
few body systems. As a consequence, so far it is not
clear how well the model hyperon-nucleon (YN) poten-
tials work in the limit of medium mass hypernuclei, and,
as a consequence, in the extrapolation to homogeneous
matter. However, in the last few years important ad-
vances have been made both on the experimental and on
the theoretical side. Several experiments aim to measure
the binding energy of different Λ-hypernuclei [12–14]. On
the theoretical side, the development of Quantum Monte
Carlo methods opened the way to study consistently nu-
clear systems from few-nucleons to infinite matter [15–17]
within the same scheme/model.

In this paper we discuss the use the Auxiliary Field Dif-
fusion Monte Carlo (AFDMC), to study a non-relativistic
Hamiltonian based on a phenomenological ΛN interac-
tion in order to show how the inclusion of explicit ΛNN
terms provides the necessary repulsion to realistically de-
scribe the separation energy of a Λ hyperon in hypernu-
clei of intermediate masses. This point makes very clear
the fact that the lack of an accurate Hamiltonian might
be responsible for the unrealistic predictions of the EoS
that would tend to rule out the appearance of strange
baryons in high density matter.

After the pioneristic work reported in Ref. [18], sev-
eral models have been proposed to describe the hyperon-
nucleon (YN) interaction. A number of potentials in the
Nijmegen soft-core form have been developed in the past
(like NSC89 and NSC97x). A recent review of these in-
teractions, together with HF calculations have been pub-
lished by Dapo et al. [19]. These potentials are accurate
in describing the available scattering two body data, and
have been used in the BHF studies previously quoted.
Starting in the 1980s, a class of Argonne-like interactions
have been developed by Bodmer, Usmani and Carlson on
the grounds of Quantum Monte Carlo calculations. A
possible form of a three-body YNN interaction was also
proposed in the same context [20–24]. More recently
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Polinder et al. [25] proposed a potential based on a chi-
ral perturbation theory expansion. As an alternative a
cluster model to study light hypernuclei has been recently
proposed by Hiyama and collaborators (see for example
Refs. [26, 27]). Interesting results on Λ-hypernuclei have
also been obtained within a Λ-nucleus potential model,
in which the need of a functional with a more than linear
density dependence was shown, suggesting the impor-
tance of a many–body interaction [28]. Finally, other
methods based on mean-field techniques has been used
to study medium and heavy mass hypernuclei [29, 30].

An important point that needs to be made is that ΛN
and ΛNN interactions are both at the two-pion exchange
order. Another important difference with respect the nu-
cleonic case is that the mass of the intermediate excited
state Σ compared to the Λ is much smaller than in the
pure nucleonic case, where the difference between the nu-
cleon and the ∆ is much larger. ΛN and ΛNN interactions
should therefore be considered necessary in any consis-
tent theoretical calculation. In 2002 Nogga et al. [31] per-
formed Fadeev-Yakubowsky calculations of the 0+ and
the 1+ state of 4

ΛH and 4
ΛHe in order to study charge

symmetry breaking effects. In both cases they predict a
Λ-separation energy that is too small, and claim that an
attractive ΛNN interaction is necessary.

We have revisited the problem from a slightly different
starting point. We employed a potential in coordinates
space, including an explicit repulsion between baryons,
with NN, ΛN and ΛNN components. Keeping the pa-
rameters of the ΛN interaction at the values determined
by Usmani et al., we computed the ground state energy
of a set of hypernuclei, and calculate for each the quan-
tity BΛ, i.e. the separation energy of the Λ hyperon, by
means of the AFDMC method, using a realistic nucleon-
nucleon interaction. We select one of the possible set of
parameters of the ΛNN interaction suggested in Bodmer
et al., and then by Usmani and collaborators, that rea-
sonably reproduces experimental data on a set of light
hypernuclei.

Within this model, nuclei and hypernuclei are de-
scribed as non-relativistic particles interacting via two-
and three-body forces:

Hnuc =

A−1∑
i=1

p2
i

2mN
+

A−1∑
i<j

vij , (1)

Hhyp = Hnuc +
p2

Λ

2mΛ
+

A−1∑
i=1

vΛi +

A−1∑
i<j

vΛij . (2)

Here A refers to the total number of baryons, nucleons
plus the Λ particle. In order to test the effect of using
different nuclear Hamiltonians on the Λ-separation en-
ergy, and to test the compatibility of the NN interaction
with the ΛN and ΛNN forces, we use three different two-
nucleon potentials vij : the Argonne AV4’ and AV6’ [32],
that are simplified versions of the Argonne AV18 [33] and
the Minnesota potential from Ref. [34].

Isospin conservation implies that a Λ hyperon can ex-

change a pion only with a ΛπΣ vertex. This fact leads
to the consequence that one pion exchange (OPE) pro-
cesses are not allowed. The lowest order ΛN coupling
must therefore involve the exchange of two pions, with
the formation of a virtual Σ hyperon, as illustrated in
Fig. 1(a). One meson exchange processes can only oc-
cur through the exchange of a K or K∗. This process
has the effect of exchanging the strangeness between the
two baryons, as shown in Fig. 1(b). The ΛN interac-
tion can therefore be modeled with a central term, which
includes the ΛN exchange operator ε(P̂x−1), plus a spin-
dependent contribution:

vΛi = v0(rΛi)(1− ε+ εP̂x) +
1

4
vσT

2
π (mπrΛi)σΛ ·σi , (3)

where P̂x, v0 and T 2
π are defined in Ref. [24] and refer-

ences therein, and σΛ and σi are Pauli matrices acting
on the Λ and nucleons. Both the spin-dependent and the
central terms contain the usual tensor operator Tπ act-
ing twice. All the pion exchange interaction is therefore
active at intermediate range. The short range contribu-
tions are as usual included by means of a phenomenolog-
ical central repulsive factor, included in v0(r). For more
details see for example Ref. [24].

The remaining diagrams in Fig. 1, are two-nucleon one-
hyperon interactions, which are at the same TPE order,
and should therefore be included together with the two-
body part in order to have a consistent description. The
three-body potential vΛij can be conveniently decom-
posed in a contribution that we label as v2π

Λij = vPΛij+v
S
Λij ,

and that corresponds to the p-wave and s-wave two-pion
exchange diagrams (respectively 1(c) and 1(d) in Fig. 1),
and a dispersive term that includes short range contribu-
tions, labeled as vDΛij . They can be expressed as:

vDΛij = WDT 2
π (mπrΛi)T

2
π (mπrΛj)

[
1 +

1

6
σΛ ·(σi + σj)

]
,

vPΛij = −
(
CP

6

)
(τi · τj)

{
XiΛ , XΛj

}
, (4)

vSΛij = CSZ (mπrΛi)Z (mπrΛj)(σi · r̂iΛ σj · r̂jΛ) τi · τj .

The definition of the functions XiΛ and Z(x) as well as
the range of parameters for the three-body force can be
found in [24] and references therein.

The ground-state energy of the many-body nuclear and
hypernuclear Hamiltonians, is computed by means of the
AFDMC method. The algorithm was originally intro-
duced by Schmidt and Fantoni [35] in order to deal in an
efficient way with spin-dependent Hamiltonians. A trial
wave function ΨT is propagated in imaginary-time τ by
sampling configurations of the system in coordinate-spin-
isospin space. Expectation values are computed averag-
ing over the sampled configurations. In the τ →∞ limit,
the evolved state approaches the ground-state of H and
thus the ground state properties of the system can be
obtained.



3

⇤

⇤

⌃

N

N

⇡

⇡

(a)

⇤

⇤

N

N

K, K⇤

(b)

⇤

⇤

⌃

⇡

⇡

N

NN

N

(c)

⇤

⇤

⇡

⇡

N

NN

N

(d)

⇤

⇤

⌃

N

N

⇡

⇡
N

(e)

Figure 1. Meson exchange processes between nucleons and hyperons. 1(a) and 1(b) represent the ΛN channels. 1(c), 1(d) and
1(e) are the three-body ΛNN channels included in the potential by Usmani et al. [22, 24].

For a system with A nucleons, the quadratic operato-
rial structure O2

n of the nuclear Hamiltonians leads to
a number of spin-isospin states in the propagated wave
function which grows exponentially with A. This num-
ber quickly becomes intractable as A gets large. Stan-
dard Green’s Function Monte Carlo (GFMC) calcula-
tions are in fact limited to up to 12 nucleons [36] or 16
neutrons [17]. By applying the Hubbard-Stratonovich
transformation the computational cost of the calculation
becomes proportional to A3 and systems with a larger
number of particles can be studied [16]. The AFDMC
algorithm can be applied to nuclear systems interacting
via the Argonne V6-type potentials, for which the two-
body force can be separated into a spin-independent and
a spin-dependent part. The latter can be written as a
sum of real matrices which contain proper combinations
of the components of V6. By means of the diagonaliza-
tion of such matrices it is possible to write the imaginary
time propagator in the Hubbard-Stratonovich form (see
Refs. [16, 37, 38] for a detailed discussion). However a
realistic three-body force cannot be included in the prop-
agator.

A straightforward variant of AFDMC can be applied to
Λ-hypernuclear systems, including the two-body (3) and
three-body (4) hyperon-nucleon interactions. It is indeed
possible to recast the ΛN and ΛNN interactions so that
they contain at most two-body operators. These terms
can directly be included in the AFDMC propagator. The
rest of the algorithm closely follows the nucleon-only ver-
sion [16].

We assume that the wave function of a single Λ-
hypernucleus is a nuclear Slater determinant (the same
of Ref. [38]), multiplied by a single particle wave function
for the Λ hyperon. As nucleon single particle states we
use the radial solutions of the Hartree Fock problem with
the Skyrme force and we consider a 1s1/2 single particle
state for the Λ particle. With the wave function defined
we consider nucleons and the hyperon as distinct parti-
cles. In this way, we do not include the ΛN exchange
term of the ΛN potential directly in the AFDMC prop-
agator, because it mixes hyperon and nucleon states. A
perturbative treatment of this factor is however possible.

A direct comparison of energy calculations with ex-

perimental results is given for the Λ-separation energy,
defined as:

BΛ = Bnuc −Bhyp, (5)

where Bnuc and Bhyp are respectively the total binding
energies of a nucleus with A nucleons and the correspond-
ing hypernucleus with A nucleons plus one Λ. The most
significant outcome of the calculation is the fact that the
inclusion of the three-body ΛNN interaction qualitatively
changes the saturation properties of the Λ-separation en-
ergy. However, this result might depend on the particu-
lar choice of the NN interaction used to describe both the
nucleus and the hypernucleus. In particular, one might
expect a strong influence from the different nucleon den-
sity generated by disparate models. In order to discuss
this possible dependence, we have performed calculations
with different NN interactions having very different sat-
uration properties. The nuclear Hamiltonians considered
here are semi-realistic, and can be easily implemented
within the AFDMC scheme. We should point out that
in neither case did we use a three nucleon interaction.

In Tab. I we show the results of the AFDMC sim-
ulations for the Λ-separation energy in 5

ΛHe and 17
ΛO.

For each hypernucleus, the two columns correspond to
calculations using the ΛN interaction only or both the
ΛN+ΛNN force of Ref. [24] with different NN interac-
tions. As it can be seen, for 5

ΛHe the extrapolated values
of BΛ with the two-body ΛN interaction alone are about
10% off, and well outside statistical errors. In contrast
the inclusion of the three-body ΛNN force gives a simi-
lar Λ binding energy independently to the choice of the
NN force. On the grounds of this observation, we feel
confident that the use of AV4’, that makes AFDMC cal-
culations less expensive and more stable, will in any case
return realistic estimates of BΛ for larger masses when
including the ΛNN interaction. We have checked this as-
sumption performing simulations in 17

ΛO, where the dis-
crepancy between the Λ-separation energy computed us-
ing the different NN interactions and the full ΛN+ΛNN
force is less than few per cent (last column of Tab. I). The
various NN forces considered here are quite different. The
AV6’ includes a tensor force, while AV4’ and Minnesota
have a simpler structure. We compared the AV4’ and
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Minnesota, which have a similar operatorial structure but
very different intermediate- and short-range correlations.
The fact that the inclusion of the ΛNN force does not
depend too much on the nuclear Hamiltonian is quite
remarkable, because the different NN forces produce a
quite different saturation point for the nuclear matter
EoS, suggesting that our results are pretty robust. The
discrepancies between our results and the experimental
data are likely due to the ΛNN force that could be im-
proved, while the term due to K-exchange not included
in our calculation are expected to be small.

5
ΛHe 17

ΛO

NN potential VΛN VΛN+VΛNN VΛN VΛN+VΛNN

Argonne V4’ 7.1(1) 5.1(1) 43(1) 19(1)

Argonne V6’ 6.3(1) 5.2(1) 34(1) 21(1)

Minnesota 7.4(1) 5.2(1) 50(1) 17(2)

exp 3.12(2) 13.0(4)

Table I. Λ-separation energies (in MeV) for 5
ΛHe and 17

ΛO ob-
tained using different nucleon potentials (AV4’, AV6’, Min-
nesota) and different hyperon-nucleon interaction (two-body
alone and two- plus three-body). In the last line the experi-
mental BΛ for 5

ΛHe is from Ref. [39]. Since no experimental
data for 17

ΛO exists, the reference separation energy is the
semiempirical value reported in Ref. [22].

The results on the Λ separation energies are summa-
rized in Fig. 2. We compare the prediction of the hyperon
binding energy in the AV4’+ΛN and AV4’+ΛN+ΛNN
models for a few closed shell hypernuclei with the exper-
imental values observed in the same mass range. While
the results for lighter hypernuclei might be inconclusive
in terms of the physical consistency of the ΛNN contri-
bution to the hyperon binding energy, the computations
for 41

ΛCa and 91
ΛZr reveal a completely different picture.

The saturation binding energy provided by the ΛN force
alone is completely unrealistic, while the inclusion of the
ΛNN force gives results that are qualitatively much closer
to the experimental behavior. We should notice that
the results might be further improved by a refitting of
the terms in the ΛNN force. In particular, according
to Ref. [22], in the present calculations the s-wave con-
tribution is not present. Moreover, we are missing the
explicit inclusion of the kaon exchange term. This con-
tribution (see Eq. (3)) can be estimated at first order in
perturbation theory by computing the expectation of the
corresponding term. As an example, the values of the cor-
rection on the total energy we obtained for ε = 0.1 [24] is
-0.33(6) MeV in 5

ΛHe and +0.2(4) MeV in 17
ΛO, the latter

negligible compared to the corresponding binding energy.
For 91

ΛZr we should also consider a charge symmetry
breaking (CSB) potential. The latter can be easily in-
cluded as a term of the form

vCSB

Λi = τzi C
CSB

0 T 2
π (mπrΛi) , (6)

amounting to an isospin dependent correction to the cen-

tral potential. The inclusion of the CSB term using per-
turbation theory would be zero in isospin-symmetric hy-
pernuclei. The value CCSB

0 = −0.050(5) MeV reported
in literature [23], is fitted in order to reproduce the dif-
ference in Λ-separation energy of the A = 4 mirror hy-
pernuclei (4

ΛH and 4
ΛHe). According to Eq. (6), the con-

tribution of the charge symmetry breaking term depends
on the difference between the number of neutrons and
protons. For N > Z the CSB term is strictly positive.
This implies a repulsive contribution per neutron excess
that would further lower the BΛ for 91

ΛZr, where there
are 10 more neutrons than protons, thereby reducing the
discrepancy with the experimental result.
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Figure 2. Λ-separation energy as a function of the baryon
number A. Plain green dots [dashed curve] are the avail-
able BΛ experimental values. Empty red dots [upper banded
curve] refer to the AFDMC results for the nuclear AV4’ po-
tential plus the two-body ΛN interaction alone. Empty blue
diamonds [lower banded curve] are the results with the inclu-
sion of the three-body hyperon-nucleon force.

In this paper we have presented the first accurate cal-
culation of the Λ-separation energy for closed-shell Λ-
hypernuclei using the available microscopic interactions.
Using the AFDMC method we were able to extend the
calculation in the medium-heavy range of hypernuclei up
to A=91, providing, for the first time, a consistent calcu-
lation of light and heavy hypernuclei. The main outcome
of the study is that the inclusion of the three-body ΛNN
interaction is fundamental in order to reproduce the satu-
ration properties of the Λ binding energy in hypernuclei.
The leading contribution to the three-body interaction
is strictly repulsive in the range of hypernuclei studied.
Within the model that we have studied, the inclusion
of the ΛN force without a three-body force gives a very
unphysical Λ binding energy.

We speculate that this would lead to a stiffer EOS for
the Λ-neutron matter when the presented interaction is
applied to the study of the homogeneous medium. This
fact might eventually reconcile the onset of hyperons in
the inner core of a neutron star with the observed masses



5

of order 2 M�. A study along this direction is in progress.
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