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The recently developed framework of anisotropic hydrodynamics is generalized to describe the
dynamics of coupled quark and gluon fluids. The quark and gluon components of the fluids are
characterized by different dynamical anisotropy parameters. The dynamical equations describing
such mixtures are derived from kinetic theory with the collisional kernel treated in the relaxation-
time approximation allowing for different relaxation times for quarks and gluons. Baryon number
conservation is enforced in the quark and anti-quark components of the fluid, but overall parton
number non-conservation is allowed in the system. The resulting equations are solved numerically
in the (0+1)-dimensional boost-invariant case at zero and finite baryon density.

PACS numbers: 25.75.-q, 25.75.Dw, 25.75.Ld

I. INTRODUCTION

The dynamics of soft matter produced in ultra-
relativistic heavy-ion collisions is well-described by rel-
ativistic viscous hydrodynamics [1–13]. However, due to
the large gradients in the early stages of the collisions,
viscous corrections to the ideal energy momentum tensor
become quite substantial and the system becomes highly
anisotropic in the momentum space, with the transverse
pressure, P⊥, typically much larger than the longitudi-
nal pressure, P‖. Large momentum-space anisotropies
pose a problem for 2nd-order viscous hydrodynamics,
since it relies on a linearization around an isotropic back-
ground. Large linear corrections generate unphysical re-
sults such as negative particle pressures, negative one-
particle distribution functions, etc. [14]. This has moti-
vated the development of reorganizations of viscous hy-
drodynamics in which one incorporates the possibility
of large momentum-space anisotropies at leading order.
The framework developed has been dubbed anisotropic

hydrodynamics [15–21]. We note that anisotropic sys-
tems have been studied recently within the AdS/CFT
correspondance framework [22–25].
In this paper we generalize the anisotropic hydrody-

namics treatment to describe the dynamics of coupled
quark and gluon fluids. Our approach closely follows the
formulation presented in Refs. [16, 18, 20] which is based
on kinetic theory with the collisional kernel treated in the
relaxation time approximation. In this work the quark,
antiquark, and gluon relaxation times are assumed to
be constant. We additionally assume that the system is
boost invariant and homogeneous in the transverse direc-
tions which results in (0+1)-dimensional dynamics. As a
result we can take the quark, antiquark, and gluon distri-
bution functions to be of spheroidal form [26]; however,
we allow for different dynamical anisotropy parameters
in the quark and gluon sectors.
We begin by setting up the problem in terms of ki-

netic theory and then obtain the necessary dynamical
equations by taking the zeroth and first moments of the
Boltzmann equation. We then require baryon number
conservation in the quark/anti-quark sector. After do-
ing this we find that the resulting system of equations
is underdetermined. In order to resolve this problem we
reduce the number of independent variables by requiring
that the quark and anti-quark anisotropy parameters are
equal.
The structure of the paper is as follows: In Sec. II we

introduce the kinetic equations for quarks, antiquarks,
and gluons in the relaxation time approximation. In
Sec. III we discuss the zeroth moments of the kinetic
equations. The baryon number and energy-momentum
conservation laws are analyzed in Secs. IV and V, re-
spectively. In Sec. VI the case of zero baryon density is
discussed in greater detail. The results of our numerical
calculations are presented in Sec. VII and VIII, for the
cases with zero and non-zero baryon density, respectively.
We conclude in Sec. IX.

II. KINETIC EQUATIONS

In this work, we consider kinetic equations for the
phase space distribution functions of quarks and anti-
quarks, Q±(x, p), and gluons, G(x, p), given in the relax-
ation time approximation

pµ∂µQ
±(x, p) = −pµUµ

Q±(x, p)−Q±
eq(x, p)

τq,eq
, (1)

pµ∂µG(x, p) = −pµUµ
G(x, p) −Geq(x, p)

τg,eq
. (2)

Here τq,eq and τg,eq are the relaxation times for quarks
and gluons, respectively, and Uµ is the flow four-vector

Uµ = γ(1, vx, vy, vz), γ = (1− v2)−1. (3)



2

In this paper we will consider a system that is trans-
versely homogenous and undergoing only boost-invariant
longitudinal expansion. In this case, the form of Uµ

is fixed by the symmetry, and hence, below we set
vx = vy = 0 and vz = z/t.
Herein we will assume that the distribution functions

are given by the covariant version of the Romatschke-
Strickland distribution with fiso given by a Boltzmann
distribution [26]

Q±(x, p) = exp





±λ−
√

(p · U)2 + ξ±q (p · V )2

Λ



 ,

G(x, p) = exp

(

−
√

(p · U)2 + ξg(p · V )2

Λ

)

, (4)

where the transverse-momentum scale Λ is common for
all of the distributions, while the anisotropy parameters
ξ±q and ξg are allowed to be different. The parameter λ
plays a role of the baryon chemical potential.
The corresponding equilibrium distributions Q±

eq(x, p)
and Geq(x, p) are defined by the expressions

Q±
eq(x, p) = exp

(

±µ− p · U
T

)

,

Geq(x, p) = exp

(

−p · U
T

)

, (5)

where T is the temperature of the background and µ is
the baryon chemical potential of quarks. The values of
T and µ follow from the Landau matching conditions
which originate from the energy-momentum and baryon
number conservation laws.
The four-vector V µ appearing in (4) defines the direc-

tion of the beam (z-axis)

V µ = γz(vz , 0, 0, 1), γz = (1− v2z)
−1/2. (6)

We note that the four-vectors Uµ and V µ satisfy the
normalization conditions

U2 = 1, V 2 = −1, U · V = 0. (7)

In the local rest frame of the fluid element, Uµ and V µ

have simple forms

Uµ = (1, 0, 0, 0), V µ = (0, 0, 0, 1). (8)

For the (0+1)-dimensional boost-invariant expansion
considered in this paper, we may use

Uµ = (cosh η, 0, 0, sinh η),

V µ = (sinh η, 0, 0, coshη), (9)

where η is the space-time rapidity

η =
1

2
ln

t+ z

t− z
. (10)

III. ZEROTH MOMENTS OF THE KINETIC

EQUATIONS

Integrating Eqs. (1) and (2) over three-momentum and
including the internal degrees of freedom we obtain the
three equations

∂µN
±µ
q =

Uµ

(

N±µ
q,eq −N±µ

q

)

τq,eq
, (11)

∂µN
µ
g =

Uµ

(

Nµ
g,eq −Nµ

g

)

τg,eq
, (12)

where N±µ
q and Nµ

g are particle currents

N±µ
q = n±

q U
µ, Nµ

g = ngU
µ, (13)

N±µ
q,eq = n±

q,eqU
µ, Nµ

g,eq = ng,eqU
µ. (14)

This leads to the equations for the densities

∂µ(n
±
q U

µ) =
n±
q,eq − n±

q

τq,eq
, (15)

∂µ(ngU
µ) =

ng,eq − ng

τg,eq
, (16)

where

n±
q =

gq
π2

e±λ/ΛΛ3

√

1 + ξ±q

, n±
q,eq =

gq
π2

e±µ/TT 3, (17)

ng =
gg
π2

Λ3

√

1 + ξg
, ng,eq =

gg
π2

T 3. (18)

The factors gq and gg in Eqs. (17) and (18) account for in-
ternal degrees of freedom connected with spin and color.
One can notice that they cancel out in (15) and (16).
Substituting (17) and (18) into (15) and (16), respec-
tively, we find the first dynamical equations, namely

3

Λ

dΛ

dτ
− 1

2(1 + ξ±q )

dξ±q
dτ

± d

dτ

λ

Λ
+

1

τ

=
1

τq,eq

(

e±(µ/T−λ/Λ) T 3

Λ3

√

1 + ξ±q − 1

)

, (19)

for quarks, and

3

Λ

dΛ

dτ
− 1

2(1 + ξg)

dξg
dτ

+
1

τ

=
1

τg,eq

(

T 3

Λ3

√

1 + ξg − 1

)

, (20)

for gluons.
Equations (19) and (20) are three equations for seven

unknown functions of the proper time: ξ+q , ξ−q , ξg, Λ,
λ, T , and µ. The remaining four equations will be ob-
tained from the baryon and energy-momentum conserva-
tion laws discussed in the next two Sections.



3

IV. BARYON NUMBER CONSERVATION

The difference of Eqs. (15) for quarks and antiquarks,
multiplied by a factor of 1/3, yields

∂µ(bU
µ) =

beq − b

τq,eq
, (21)

where b is the quark baryon density

b =
1

3

(

n+
q − n−

q

)

=
gqΛ

3

3π2





eλ/Λ
√

1 + ξ+q

− e−λ/Λ

√

1 + ξ−q



 , (22)

and beq is the baryon density of the equilibrium back-
ground

beq =
1

3

(

n+
q,eq − n−

q,eq

)

=
gqT

3

3π2

(

eµ/T − e−µ/T
)

. (23)

By demanding that the baryon number is conserved,

∂µ(bU
µ) = 0, (24)

we obtain the Landau matching condition for the baryon
density

b = beq. (25)

Equation (25) implies that the right-hand-sides of
Eqs. (22) and (23) are equal. This results in a constraint
connecting different parameters of our model.
To proceed further, we note that for (0+1)-dimensional

expansion, the conservation law (21) has the Bjorken-
type solution

b(τ) = bi
τi
τ
, (26)

which may be identified with the right-hand-side of (22).
Here τi is the initial proper time and bi is the correspond-
ing initial baryon number density.
One may check that the use of the baryon number con-

servation (25) implies that Eqs. (15) are no longer inde-
pendent. This suggests that the anisotropic distributions
(4) contain too many parameters to be determined within
our scheme. In order to have the same numbers of inde-
pendent equations and free parameters, from now on, we
assume that the quark and antiquark anisotropies are the
same,

ξ+q = ξ−q = ξq. (27)

As a consequence, we find

λ

Λ
= sinh−1(D) = ln

[

D +
√

1 +D2
]

, (28)

where, in order to simplify our notation, we have intro-
duced the quantity

D =
3π2b

√

1 + ξq

2gqΛ3
. (29)

Similarly, we find

µ

T
= sinh−1

(

D

κq

)

= ln

[

D

κq
+

√

1 +
D2

κ2
q

]

, (30)

where

κq =
T 3
√

1 + ξq

Λ3
. (31)

In an analogous way we define

κg =
T 3
√

1 + ξg

Λ3
. (32)

Using Eqs. (28) and (30) in the “quark” equation in
(19) one finds

(

1− D√
1 +D2

)[

3

Λ

dΛ

dτ
− 1

2(1 + ξq)

dξq
dτ

+
1

τ

]

(33)

=

(

1− D√
1 +D2

)

[

κq

√
1 +D2

√

1 + D2

κ2
q

−D2 − 1
]

τq,eq
.

Using Eqs. (28) and (30) in the “antiquark” equation in
(19) one finds the same equation except that the factor

1−D/
√
1 +D2 is replaced by 1+D/

√
1 +D2. Since the

factors 1 ± D/
√
1 +D2 may be canceled, Eqs. (19) can

be reduced to a single equation

3

Λ

dΛ

dτ
− 1

2(1 + ξq)

dξq
dτ

+
1

τ
(34)

=
1

τq,eq

[

κq

√

1 +D2

√

1 +
D2

κ2
q

−D2 − 1

]

.

V. ENERGY-MOMENTUM CONSERVATION

LAW

In order to introduce the energy-momentum conser-
vation law for our system, we first sum over the quark,
antiquark, and gluon degrees of freedom using Eqs. (1)
and (2), then we multiply this sum by pν , and finally
integrate over three-momentum. In this way, we obtain

∂µT
µν =

Uµ

(

T µν
q,eq − T µν

q

)

τq,eq
+

Uµ

(

T µν
g,eq − T µν

g

)

τg,eq
, (35)

where

T µν = T µν
q + T µν

g , (36)
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and [15, 20]

T µν
i = (εi + Pi,⊥)U

µUν − Pi,⊥g
µν

−(Pi,⊥ − Pi,‖)V
µV ν , (37)

where the index i stands for quarks (i = q) or gluons
(i = g). In the similar way, we write

T µν
i,eq = (εi,eq + Pi,eq)U

µUν − Pi,eqg
µν . (38)

The energy densities appearing in the formulas above
have the form

εq =
6gqΛ

4

π2
cosh(λ/Λ)R(ξq),

εg =
3ggΛ

4

π2
R(ξg), (39)

ε = εq + εg.

The function R(ξ) appearing in (39) has the form [16]

R(ξ) =
1

2(1 + ξ)

[

1 +
(1 + ξ) arctan

√
ξ√

ξ

]

. (40)

Similar expressions can be given for the transverse and
longitudinal pressures. In our case, the important quan-
tity is the (longitudinal) enthalpy, ε + P‖, which can be
written in the compact form

εq + Pq,‖ = −12gqΛ
4

π2
cosh(λ/Λ)(1 + ξq)R′(ξq),

εg + Pg,‖ = −6ggΛ
4

π2
(1 + ξg)R′(ξg), (41)

ε+ P‖ = εq + Pq,‖ + εg + Pg,‖.

Here, the prime denotes a derivative of the function R(ξ)
with respect to its argument. The transverse pressure
may be calculated from Eqs. (39) and (41). The trace of
the energy-momentum tensor is zero for massless parti-
cles. The latter condition gives ε = 2P⊥ + P‖.
In analogy to Eq. (39), we obtain the formula for the

energy density of the equilibrium background

εq,eq =
6gqT

4

π2
cosh(µ/T ),

εg,eq =
3ggT

4

π2
, (42)

εeq = εq,eq + εg,eq.

In order to conserve energy and momentum, the right-
hand-side of (35) should vanish. Hence, we obtain the
Landau matching condition for the energy density

εq +
τq,eq
τg,eq

εg = εq,eq +
τq,eq
τg,eq

εg,eq. (43)

This leads us to another constraint

T 4 = Λ4 2 cosh(λ/Λ)R(ξq) + r̄R(ξg)

2 cosh(µ/T ) + r̄
, (44)

where we have introduced the coefficient

r̄ =
τq,eq
τg,eq

r (45)

and

r =
gg
gq

. (46)

Clearly, when we compare the quark and gluon contribu-
tions to the thermalization processes, the value of r̄ gives
the relative weight of the gluon contribution. The gluons
are more important if their relaxation time is shorter.
The Casimir scaling suggests that the mean free paths
and, consequently, the relaxation times satisfy the rela-
tion

τq,eq
τg,eq

=
CA

CF
=

9

4
. (47)

Moreover, in our numerical calculations we use the values
gq = 2 · 2 · 3 = 12 and gg = 2 · 8 = 16, hence r = 4/3.
Equation (44) can be written in the equivalent form as

T 4

Λ4
=

2
√
1 +D2 R(ξq) + r̄R(ξg)

2
√

1 + (3π2b/2gqT 3)2 + r̄
. (48)

For a given set of the values of τ , ξq(τ), ξg(τ), and Λ(τ),
Eq. (48) may be used to calculate the temperature of the
equilibrium background, T (τ).
If the condition (43) is satisfied, the left-hand-side of

Eq. (35) yields the conservation law for energy and mo-
mentum

∂µT
µν = 0. (49)

In our (0+1)-dimensional case, Eq. (49) is reduced to the
expression

dε

dτ
= −

ε+ P‖

τ
. (50)

Substituting Eqs. (39) and (41) in (50) one finds

d

dτ

[

Λ4
(

2
√

1 +D2 R(ξq) + rR(ξg)
)]

(51)

=
2Λ4

τ

[

2
√

1 +D2 (1 + ξq)R′(ξq) + r(1 + ξg)R′(ξg)
]

.

Since we have eliminated the dependence on λ and µ,
Eqs. (20), (34), (48), and (51) represent four equations
for four unknown functions: ξq, ξg, T , and Λ.

VI. ZERO BARYON DENSITY

We consider first the special case of vanishing baryon
number. The condition b = 0 used in Eqs. (28) and (30)
leads to the conclusions

λ = 0, µ = 0. (52)
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Hence, we are left with the following four equations for
four unknown functions (ξq , ξg, T , and Λ)

3

Λ

dΛ

dτ
− 1

2(1 + ξq)

dξq
dτ

+
1

τ
=

κq − 1

τq,eq
, (53)

3

Λ

dΛ

dτ
− 1

2(1 + ξg)

dξg
dτ

+
1

τ
=

κg − 1

τg,eq
, (54)

T 4

Λ4
=

2R(ξq) + r̄R(ξg)

2 + r̄
, (55)

d

dτ

[

Λ4 (2R(ξq) + rR(ξg))
]

=
2Λ4

τ
[2(1 + ξq)R′(ξq) + r(1 + ξg)R′(ξg)] . (56)

The above system of equations can be reduced to two
equations, if we calculate the ratio T/Λ from Eq. (55) and

the derivative Λ̇ = dΛ/dτ from Eq. (56) and substitute
these two quantities into Eqs. (53) and (54). In this way
we obtain,

dξq
dτ

= 2(1 + ξq)

[

1

τ
+

pq(ξq , ξg)

τq,eq ∆(ξq, ξg)

]

(57)

and

dξg
dτ

= 2(1 + ξg)

[

1

τ
+

pg(ξq, ξg)

τg,eq∆(ξq , ξg)

]

, (58)

where

∆(ξq , ξg) =
π2(P⊥ − P‖)

3gqΛ4
= 4R(ξq) + 2rR(ξg)

+ 6 (1 + ξq)R′(ξq) + 3r(1 + ξg)R′(ξg), (59)

pq(ξq , ξg) = (1− κq) [4R(ξq) + 2rR(ξg)] (60)

+
3r

CF
[CF (1− κq)− CA(1− κg)] (1 + ξg)R′(ξg),

pg(ξq, ξg) = (1 − κg) [4R(ξq) + 2rR(ξg)] (61)

+
6

CA
[CA(1− κg)− CF (1− κq)] (1 + ξq)R′(ξq).

One may check that

pq
τq,eq

− pg
τg,eq

= ∆

(

κg − 1

τg,eq
− κq − 1

τq,eq

)

(62)

=
∆

CAτg,eq
[CA(κg − 1)− CF (κq − 1)] .

-0.2 -0.1 0.0 0.1 0.2
-0.2

-0.1

0.0

0.1

0.2

Ξq

Ξ g

FIG. 1: (Color online) Phase space plot of the late time dy-
namics of the coupled dynamical equations for ξq and ξg. The
black line shows the line ∆(ξq, ξg) = 0. The red line shows the
line ξg = −(2/r)ξq. The green line lindicates the line ξg = ξq.
The darker shaded region corresponds to ∆(ξq, ξg) < 0 and
the lighter shaded region to ∆(ξq, ξg) > 0. For this plot we
have used the Casimir scaling τq,eq/τg,eq = 9/4 corresponding
to Nc = 3.

A. Zero baryon density: late-time behavior

Before proceeding to numerical solutions we will in-
vestigate the late-time behavior of the dynamical equa-
tions for the quark and gluon fluids. In order to gain
a qualitative understanding of the dynamics one expects
at late times, in Fig. 1 we present a vector plot of the
right hand sides of Eqs. (57) and (58) when τ = 1012

fm/c. The vectors shown indicate the magnitude and
phase-space direction of the time derivatives of ξq and
ξg. The black line shows the line ∆(ξq, ξg) = 0 with
∆(ξq, ξg) defined in Eq. (59). The red line shows the line
ξg = −(2/r)ξq. The green line lindicates the line ξg = ξq.
The darker shaded region corresponds to ∆(ξq , ξg) > 0
and the lighter shaded region to ∆(ξq, ξg) < 0.

As can be seen from this figure, the line ∆(ξq , ξg) = 0
is a repulsive line, with points to the “right” of this
line flowing to the right and points to the “left” of this
line flowing to the left. In this way the system dynam-
ically avoids the line of singularities corresponding to
∆(ξq, ξg) = 0 (assuming that the system is not initial-
ized with exactly ∆(ξq, ξg) = 0).1

1 There is a subtle exception to this when τq,eq = τg,eq and ξq =
ξg . In this case, it is possible to cross the line corresponding to
∆ = 0; however, there is no singularity in this case since the
right hand sides of Eqs. (57) and (58) are finite at ξq = ξg = 0.
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Since at late times both anisotropy parameters tend
towards zero, one can perform small anisotropy expan-
sions in order to determine the precise nature of the
late-time behavior of the dynamical equations. Based
on empirical analysis of numerical solutions to Eqs. (53),
(54), and (56) there are two cases to be considered: (I)
limτ→∞ ξq 6= limτ→∞ ξg with limτ→∞ ξq/ξg < 0 and (II)
limτ→∞ ξq = limτ→∞ ξg = ξ > 0. We will analyze the
late-time solutions of the system in these two cases sep-
arately because the analytic expansions necessary turn
out to be quite different.

1. Case I

In this case we begin by taking the difference of
Eqs. (53) and (54) to obtain2

ξ̇q
1 + ξq

− ξ̇g
1 + ξg

=
2 [τg,eq(κg − 1)− τq,eq(κq − 1)]

τq,eq τg,eq
, (63)

where a dot indicates a derivative with respect to proper
time. Since both ξq and ξg are assumed to be small at
late times, we can Taylor expand the equations in order
to understand the late-time behavior. Using Eqs. (31),
(32), and (55) we can expand to linear order in ξq and ξg
to obtain

ξ̇q − ξ̇g = −γ(ξq − ξg) , (64)

where γ ≡ ατ−1
g,eq with

α ≡ 2 + r

2 + r̄
. (65)

We can use this to solve for ξq in terms of ξg

ξq = ξg +Ae−γτ , (66)

where A is an undetermined constant. To proceed, we
use Eq. (56) to eliminate Λ̇ in Eqs. (53) and (54) and
expand to linear order in ξq and ξg to obtain

ξ̇g − ξ̇q =

(

4

15τ
+ γ

)

ξq +

(

2r

15τ
− γ

)

ξg ,

ξ̇q − ξ̇g =

(

4

15τ
+ γ

)

ξg +

(

8

15rτ
− γ

)

ξq . (67)

Adding these two equations we find ξq = −rξg/2. Using
(66) we can then find the explicit forms for ξq and ξg

lim
τ→∞

ξq = −1

2
Bre−γτ ,

lim
τ→∞

ξg = Be−γτ , (68)

2 We could have also taken the difference of (57) over 1 + ξq and
(58) over 1 + ξg and obtained the same equation.

where B is a constant. Plugging these solutions back into
Eq. (56) and taking the large-τ limit one obtains

lim
τ→∞

Λ(τ) =
C

τ1/3
, (69)

where C is an undetermined constant. These results de-
scribe the late-time behavior of the numerical solutions
in Case I very well. As we can see from the expressions
above, in this case one finds that at late times the system
will, at some point, rapidly approach isotropy.
We note that in order to assess the stability of the solu-

tion obtained at leading order one can extend the solution
next-to-leading order in the anisotropy parameters. To
do this we expand ξq and ξg as

ξq = −1

2
Bre−γτ + δξq ,

ξg = Be−γτ + δξg , (70)

treating the first terms as O(ξq,g) and the second terms
as O(ξ2q,g). Inserting these and expanding the resulting
equations to quadratic order, one obtains the following
solution for δξg

δξg = De−γτ + Eτe−2γτ , (71)

where D and E are undetermined constants. Since the
first term can be absorbed into the leading-order late-
time behavior, we can set D = 0. One can also solve for
δξq in the same manner to obtain

δξq = Eτe−2γτ . (72)

Since both perturbations, δξg and δξq, decrease exponen-
tially, the leading order solution ξq = −rξg/2 is a stable
fixed point of the late-time dynamics in Case I.

2. Case II

In this case one finds power-law decays at late times,
so we instead search for power law solutions of the form

ξq = A1τ
−1 +A2τ

−2 +A3τ
−3 +O(τ−4) , (73)

ξg = B1τ
−1 +B2τ

−2 +B3τ
−3 +O(τ−4) . (74)

As in Case I we use Eq. (56) to eliminate Λ̇ in Eqs. (53)
and (54) and then plug in the ansatz above. We then
make a large-τ expansion of the equations. Requiring
the O(τ−1) to vanish results in A1 = B1. One then pro-
ceeds order by order requiring terms order in τ−n to van-
ish, which uniquely fixes the coefficients at the preceding
order. The resulting solutions through O(τ−2) are

A1 = B1 = 4ατq,eq , (75)

and

A2 =
8τq,eq
315

[

42(α− 1)τg,eq + (84 + 521α)ατq,eq

]

,

B2 =
8τq,eq
315

[

42(2α− 1)τg,eq + (42 + 521α)ατq,eq

]

.

(76)
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FIG. 2: (Color online) Time dependence of the anisotropy
parameters of gluons (solid blue lines) and quarks (solid red
lines) for the initial conditions ξg = 100 and ξq = 0 (a) and
ξq = 100 and ξg = 0 (b).

From this one can derive a compact expression for the
difference of ξ’s at large times

ξq − ξg =
16

15
ατq,eq(τq,eq − τg,eq)τ

−2 . (77)

Note that in the case τq,eq = τg,eq = τeq, this correc-
tion vanishes identically. In fact, one finds in this special
case that all power law corrections vanish and instead
the difference ξq − ξg goes to zero exponentially at late
times.
Inserting the general solutions obtained above for ξq

and ξg into Eq. (56) and taking the large-τ limit one
obtains

lim
τ→∞

Λ(τ) =
C

τ1/3
, (78)

where C is an undetermined constant.
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FIG. 3: (Color online) The same as Fig. 2 but for the initial
conditions ξig = 100 and ξiq = 10 (a) and ξiq = 100 and ξig = 10
(b).

We have compared the asymptotic solutions specified
above with direct numerical solution at late times in Case
II, and in all cases checked we found excellent agreement.

VII. RESULTS FOR THE ZERO BARYON

DENSITY

In this Section we discuss our results obtained in the
case of vanishing baryon number density, b = 0. The
solutions of Eqs. (57) and (58) are presented for a few
possible options for the initial conditions.
In Fig. 2 we show the time dependence of the

anisotropy parameters of gluons (solid blue lines) and
quarks (solid red lines). The initial time for anisotropic
hydrodynamic evolution is τi = 0.1 fm/c. The re-
laxation times in the kinetic equations are constant:
τg,eq = 0.25 fm/c and τq,eq = (9/4) τg,eq. In Fig. 2 (a),
the initial values are ξig = 100 and ξiq = 0, while in
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FIG. 4: (Color online) The time evolution of the quark and
gluon anisotropies for the initially mixed prolate-oblate con-
figurations: ξig = 100 and ξiq = −0.99 (a) and ξiq = 100 and

ξig = −0.99 (b).

Fig. 2 (b) the initial values are reversed, ξig = 0 and

ξiq = 100. The dotted lines indicate the time evolu-
tion of the anisotropy parameters in the case where the
two relaxation times are equal, τq,eq = τg,eq = 0.25 fm/c.
In the latter case the average relaxation time is shorter,
which is reflected in a faster decay of the gluon and quark
anisotropy in the cases (a) and (b), respectively.

Interestingly, Fig. 2 shows that the anisotropy of a less
anisotropic subsystem is increased through its interaction
with a more anisotropic subsystem. Only later, the two
systems equilibrate. This behavior is naturally expected,
on the grounds of the overall tendency of the whole sys-
tem to reach equilibrium.

In Fig. 3 we show again the time dependence of the
anisotropy parameters of gluons (solid blue lines) and
quarks (solid red lines). In this case the initial condi-
tions are ξig = 100 and ξiq = 10 in (a) and ξiq = 100 and

ξig = 10 in (b). Since now both the gluon and quark
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FIG. 5: (Color online) The time evolution of the quark and
gluon anisotropies for the initial prolate configurations: ξig =

−0.1 and ξiq = −0.99 (a) and ξiq = −0.1 and ξig = −0.99 (b).

initial anisotropies are large, the thermalization effects
are not so strong as to decrease the anisotropies at the
beginning of the evolution. The very early dynamics is
dominated by 1/τ terms in (57) and (58) which are re-
sponsible for free-streaming effects leading to an increase
of the anisotropy.

The systems described in Figs. 2 and 3 correspond to
systems which are initially oblate (the first anisotropy
parameter is very large and positive, while the second
parameter is positive or equals zero). For comparison,
it is interesting to consider also the cases where one or
two anisotropy parameters are negative. Such cases cor-
respond to mixed oblate-prolate or prolate configurations.

In Fig. 4 we show the results obtained for the initial
conditions ξig = 100 and ξiq = −0.99 (a) and ξiq = 100

and ξig = −0.99 (b). In this case, we observe a very
fast equilibration of matter. After about 0.5 fm/c, which
corresponds to the evolution time τ ≈ 2τg,eq, the scaling
solution ξq = −(r/2)ξg is reached with an exponential
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FIG. 6: (Color online) The same as Fig. 2 but with the in-
clusion of the finite baryon number density corresponding to
λi/Λi = 2. The dashed lines describe the time dependence of
the anisotropy parameters in the case b = 0.

decay of both anisotropies – see our earlier discussion
of the Case I. Similar scaling behavior is observed in the
cases where the two initial anisotropies are negative. This
is shown in Fig. 5. We note that the systems which are
initially oblate have the time asymptotics described by
the Case II.

VIII. RESULTS FOR THE FINITE BARYON

DENSITY

The equations valid for b = 0 may be also used to a
good approximation in the case of small baryon number
density, defined by the conditions

b

T 3
≪ 1,

µ

T
≪ 1, (79)
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FIG. 7: (Color online) The same as Fig. 3 but with the in-
clusion of the finite baryon number density corresponding to
λi/Λi = 2. The dashed lines describe the time dependence of
the anisotropy parameters in the case b = 0.

which, due to the Landau matching (25), imply also

b
√

1 + ξq

Λ3
≪ 1,

λ

Λ
≪ 1. (80)

This is so, because all corrections start with quadratic
terms in b. In practice, the results obtained with the
initial ratio λi/Λi ∼ 0.5 are still very well approximated
by the results obtained in the limit b = 0. Therefore, to
observe noticeable effects of baryon number conservation
on the anisotropy evolution, we have to consider large
initial values of the ratio λ/Λ.
In Fig. 6 we present our numerical results obtained for

the initial ratio λi/Λi = 2. We show the time depen-
dence of the anisotropy parameters of gluons (solid blue
lines) and quarks (solid red lines), with the same initial
values as those used in Fig. 2, i.e., ξig = 100 and ξiq = 0

in (a), and ξig = 0 and ξiq = 100 in (b). The dashed lines
describe the time dependence of the anisotropy parame-
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ters in the case b = 0 (with the same initial conditions
for anisotropy parameters). Compared to the case with
b = 0, we observe larger differences between the parts (a)
and (b). Clearly, the baryon number conservation affects
more strongly the evolution of quarks than the evolution
of gluons — see the differences between the red and blue
lines in the part (b). Figure 7 shows analogous results
obtained with λi/Λi = 2, ξig = 100, and ξiq = 10 in (a),

and ξig = 10 and ξiq = 100 in (b).
We have also performed numerical calculations for the

finite baryon density with the initial oblate-prolate and
prolate configurations for λi/Λi = 2. Our results are
similar to those obtained at zero baryon density and pre-
sented in Figs. 4 and 5.

IX. CONCLUSIONS

In this paper we have generalized the concept of
anisotropic hydrodynamics to describe the dynamics of
coupled quark and gluon fluids allowing for different dy-
namical anisotropy parameters for the quark and gluon
fluids. Our approach has followed closely the formulation
presented in [16, 18, 20] which is based on kinetic theory
with the collisional kernel treated in the relaxation time
approximation except herein we allowed for the possibil-
ity of different relaxation times for the quark and gluon
fluids. The resulting equations have been solved numer-
ically in the (0+1)-dimensional boost-invariant case at
zero and finite baryon density showing that both fluids

tend towards isotropic fixed points at late times. Ad-
ditionally, for the case of zero baryon density we made
a detailed analytic analysis of the late-time behavior of
the solutions and obtained the asymptotic behavior to
next-to-leading order.
In our opinion, the results presented in this paper may

be used to model the very early stages of ultra-relativistic
heavy-ion collisions, where large pressure anisotropies
are expected and the quark and gluon sectors may not
have the same degree of momentum-space anisotropy.
As a next step it would be interesting to generalize the
approach presented here to a non-boost-invariant case,
where the rapidity profiles of the baryon density and the
energy density are different. This may be done along the
lines presented in [17, 18]. It is also possible to relax
the assumption that the isotropic distribution function
is given by a Boltzmann distribution. This will not af-
fect the dynamical equations qualitatively, and should
only require the generalization of some of the dynamical
equations presented herein. In addition, in the future one
can also study the effect of including a relaxation time
which is proportional to the inverse transverse momen-
tum scale. We leave these interesting problems for future
work.
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