This is the accepted manuscript made available via CHORUS. The article has been published as:

Unexpected $5 / 2^{\wedge}\{-\}$ spin of the ground state in $\wedge\{147\} \mathrm{Ba}$: No octupole deformation in ground states of odd-A Ba isotopes

T. Rząca-Urban, W. Urban, A. G. Smith, I. Ahmad, and A. Syntfeld-Każuch Phys. Rev. C 87, 031305 — Published 12 March 2013 DOI: 10.1103/PhysRevC.87.031305

Unexpected $5 / 2^{-}$spin of the ground state in ${ }^{147} \mathrm{Ba}$. No octupole deformation in ground states of odd- A Ba isotopes.

T. Rza̧ca-Urban, ${ }^{1}$ W. Urban, ${ }^{2,1}$ A. G. Smith, ${ }^{3}$ I. Ahmad, ${ }^{4}$ and A. Syntfeld-Każuch ${ }^{5}$
${ }^{1}$ Faculty of Physics, University of Warsaw, ul.Hoża 69, PL-00-681 Warszawa, Poland
${ }^{2}$ Institut Laue-Langevin, B.P. 156, F-38042 Grenoble Cedex 9, France
${ }^{3}$ Department of Physics and Astronomy, The University of Manchester, M13 9PL Manchester, UK
${ }^{4}$ Argonne National Laboratory, Argonne, Illinois 60439, USA
${ }^{5}$ National Centre for Nuclear Research, Radiation Detectors Division, Soltana 7 PL-05-400 Otwock-Swierk Poland

(Dated: February 10, 2013)

Abstract

The ${ }^{147} \mathrm{Ba}$ nucleus has been studied in prompt γ-ray spectroscopy using the EUROGAM2 Ge array. Spin and parity of the ground state has been determined to be $5 / 2^{-}$. The unexpected, $5 / 2^{-}$ ground state results from interaction with other negative-parity configurations. A new ground-state band has been established in ${ }^{147} \mathrm{Ba}$ and some previously reported levels have been arranged into a $3 / 2^{-}$band, which may correspond to the $3 / 2^{-}[532]$ configuration. The new spin assignments in ${ }^{147} \mathrm{Ba}$ suggest that the theoretical predictions of static octupole deformation in the ground state of ${ }^{147} \mathrm{Ba}$, may not be be valid. No candidates for parity doublets have been found in ${ }^{147} \mathrm{Ba}$. Instead, an octupole band built on the ground state has been proposed.

PACS numbers: $23.35 .+\mathrm{g}, 23.20 . \mathrm{Lv}, 27.70 .+\mathrm{q}, 21.10 . \mathrm{Tg}, 25.85 . \mathrm{Ec}, 25.85 . \mathrm{Ca}$

Usually in nuclei with strong octupole correlations pronounced $E 1$ transitions are present, which have $B(E 1)$ rates up to three orders of magnitude higher than the average value of $10^{-5} \mathrm{~W} . u$. observed in heavy nuclei [1]. Two effects, the single-particle coupling and the volume effect contribute to the $E 1$ strength. Remarkably, the two contributions may cancel [2]. Consequently, in nuclei with octupole deformation $B(E 1)$ rates could be low. Such low $B(E 1)$ rates observed in ${ }^{146} \mathrm{Ba}[3-5]$ are believed to indicate an octupole deformation in this nucleus, predicted there by calculations [6]. It may be expected that the ${ }^{147} \mathrm{Ba}$ nucleus, with one neutron outside the ${ }^{146} \mathrm{Ba}$ core, should also have octupole deformation and, therefore exhibit parity-doublet bands, predicted by theory in odd-A nuclei with octupole deformation [2]. Therefore, studying the band structure of ${ }^{147} \mathrm{Ba}$, one could test the presence of octupole deformation in these nuclei.

In a reflection-asymmetric potential positions of singleparticle orbitals are changed as compared to their positions in a reflection-symmetric potential. A specific prediction for ${ }^{147} \mathrm{Ba}$ is that due to octupole interactions the ground state of ${ }^{147} \mathrm{Ba}$ should have spin and parity of $3 / 2^{-}$ [6]. In a β-decay study of ${ }^{147} \mathrm{Ba}$ [7] a $\left(3 / 2^{-}\right)$spin and parity for the ground state in ${ }^{147} \mathrm{Ba}$ has been assumed based on systematics (see Fig. 5 of Ref. [7], indicating the $3 / 2^{-}$[532] neutron configuration for the ground state of ${ }^{147} \mathrm{Ba}$). In subsequent fission works, first spin and parity $3 / 2^{+}$has been proposed for the ground state in ${ }^{147} \mathrm{Ba}$ [8], but later spin and parity $7 / 2^{-}$has been assigned to this level and some unspecified, low-energy levels were introduced [9]. Later fission work [5] has assigned again spin and parity $\left(3 / 2^{-}\right)$to the ground state of ${ }^{147} \mathrm{Ba}$. In a recent β-decay work [10], significant changes of multipolarities of transitions have been reported. Several E1 transitions from Ref. [7], which suggested parity doublets, were shown to be M1+E2 in character. Although in Ref. [10] an octupole deformation was predicted for

FIG. 1: γ spectrum gated on the $2866-\mathrm{keV}$ line of ${ }^{134} \mathrm{Te}$. Lines are labeled with their energies in keV .
an $\Omega=5 / 2$ configuration, the ground state was reported with a tentative spin and parity of $3 / 2^{-}$. As summarized in Ref. [10], the spin of the ground state in ${ }^{147} \mathrm{Ba}$ is uncertain and spins of other levels remain unknown.

The measurement of prompt γ rays following spontaneous fission of ${ }^{248} \mathrm{Cm}$, has been performed using the EUROGAM2 array of Anti-Compton Spectrometers [11] and four low-energy photon spectrometers (LEPS). In this work we reinvestigated the ${ }^{147} \mathrm{Ba}$ nucleus using the same data as in Ref. [5] but applying now better analysis techniques [12]. The new sorting programs produced 2D and 3D histograms with higher dispersion (more channels on each axis). The constant-peak-width compression of the spectra, allowed to extend the energy range up to 4.5 MeV , maintaining the resolution. Gain matching of the individual detectors of the Eurogam array has been improved by applying more accurate calibration procedures. We also applied the so called add-back of signals in Clover detectors, which has significantly improved peak-

FIG. 2: γ spectrum doubly-gated on the $239.9-$ and $376.7-\mathrm{keV}$ lines of ${ }^{147} \mathrm{Ba}$. Label ' C ' marks unknown contamination lines.
to-background ratio. An example is shown in Fig. 1, which should be compared with the analogous spectrum, shown in Fig. 1 (a) of Ref. [13], obtained from the same data set but without add-back. Counts in lines are significantly higher in Fig. 1, as compared to Fig. 1 (a) of Ref. [13], which is primarily due to the restoration of counts in the $2866-\mathrm{keV}$ gated line, thanks to the add-back. All the improvements mentioned above allowed the observation of weaker lines and the improvement of angular correlations. Further details about the experiment and data analysis can be found in Ref. [14].

Figure 2 shows a γ spectrum doubly gated on the 239.9- and $376.6-\mathrm{keV}$ lines of the yrast cascade in ${ }^{147} \mathrm{Ba}$ [5]. Present are all the lines reported in Ref. [5]. Interestingly, the $90.7-\mathrm{keV}$ transition follows smoothly the energy trend of quadrupole transitions in the cascade. We can see additional transitions in this cascade with energies 583.8 and 652.8 keV . The $352-$ and $428-\mathrm{keV}$ transitions reported in [8, 9] are not observed in ${ }^{147} \mathrm{Ba}$ in fission of ${ }^{248} \mathrm{Cm}$, as already mentioned in Ref. [5] .

In Fig. 3(a) we show angular correlations for the 239.9-$376.6-$ and $239.9-90.7-\mathrm{keV}$ cascades. Both cascades are clearly consistent with quadrupole-quadrupole (QQ) solution. The DCO ratios reported in Ref.[5] were not conclusive about the multipolarity of the $90.7-\mathrm{keV}$ transition, though the α_{K} and $\alpha_{t o t}$ conversion coefficients were in favor of an E2 assignment to this transition. Angular correlation results and the $\alpha_{K}=2.4(4)$ value reevaluated in this work indicate a stretched E2 multipolarity for the $90.7-\mathrm{keV}$ transition. The observed properties of the 90.7keV transition indicate that this transition is a member of the yrast quadrupole cascade.

Very similar yrast bands of stretched E2 transitions, observed in the neighboring nuclei ${ }^{145} \mathrm{Ba}[15]$ and ${ }^{149} \mathrm{Ce}$ [16], have been interpreted as the $3 / 2^{+}$[651] neutron configuration. In Fig. 4 we show the aligned angular momentum in the discussed yrast band in ${ }^{147} \mathrm{Ba}$, relative to the alignment in the ground-state band of ${ }^{146} \mathrm{Ba}$. We have assumed that the spin of the $450.8-\mathrm{keV}$ level in ${ }^{147} \mathrm{Ba}$ is $13 / 2$. The observed alignment of $5.4 \hbar$, is only consistent

FIG. 3: Angular correlations for γ cascades in ${ }^{147} \mathrm{Ba}$, as observed in this work. Symbols QQ, QD, QUD and DD mark predicted angular correlations for cascades of stretched quadrupole(Q), stretched dipole(D) or unstretched, unmixed dipole (UD), respectively.

FIG. 4: Aligned angular momentum in bands of ${ }^{147} \mathrm{Ba}$. Bands in ${ }^{147} \mathrm{Ba}: \mathrm{K}^{\pi}=3 / 2^{+}$- on top of the $360.2-\mathrm{keV}$ level, $\mathrm{K}^{\pi}=5 / 2^{-}$ - on to of the $238.6-\mathrm{keV}$ level (with the $153.4-\mathrm{keV}$ transition included), $\mathrm{K}^{\pi}=3 / 2^{-}$- on top of the $46.0-\mathrm{keV}$ level, octupole - on $573.0-\mathrm{keV}$ level (here I_{x} was calculated taking $\mathrm{K}=5 / 2$). Alignments in bands of ${ }^{145} \mathrm{Ba}$ and ${ }^{146} \mathrm{Ba}$ are shown to help the discussion.
with a configuration originating from the neutron $\mathrm{i}_{13 / 2}$ orbital. This alignment is nearly identical with the alignment in the $3 / 2^{+}[651]$ band of ${ }^{149} \mathrm{Ce}$ and supports spin and parity $13 / 2^{+}$for the $450.8-\mathrm{keV}$ level in ${ }^{147} \mathrm{Ba}$. Consequently, considering the spontaneous fission populates predominantly yrast levels [17], and that the $90.7-\mathrm{keV}$ transition is a stretched E2, the spin and parity of the $360.2-\mathrm{keV}$ level in ${ }^{147} \mathrm{Ba}$ is $9 / 2^{+}$.

Angular correlations for the $239.9-250.5-\mathrm{keV}$ cascade, shown in Fig. 3(a) are consistent with the $250.5-\mathrm{keV}$ transition being a stretched dipole (the intermediate, stretched $90.7-\mathrm{keV}$ transition, does not influence angular correlations of the $239.9-250.5-\mathrm{keV}$ cascade). This is confirmed by the angular correlation for the 90.7-250.5keV cascade, shown in Fig. 3(b), which is consistent with
the stretched quadrupole-dipole(QD) solution. With a stretched dipole multipolarity of the $250.5-\mathrm{keV}$ transition the spin of the $109.7-\mathrm{keV}$ level in ${ }^{147} \mathrm{Ba}$ is $7 / 2$.

In Ref. [10] a M1 + E2 multipolarity has been reported for the $109.7-\mathrm{keV}$ transition, which is consistent with $\alpha_{K}=1.1(2)$ conversion coefficient obtained in this work for this transition. This indicates the same parity for the ground state and the $109.7-\mathrm{keV}$ level. If the spin of the ground state were also the same as that of the $109.7-\mathrm{keV}$ level then one would expect a decay from the $360.2-\mathrm{keV}$ level to the ground state. In Fig. 2 this decay is not observed and the limit for the intensity of this branch is lower than 0.007 fraction of the intensity of the $250.5-\mathrm{keV}$ transition. Therefore we concluded that the spin of the ground state is $5 / 2$. This spin is supported by the angular correlation for the $109.7-250.5-\mathrm{keV}$ cascade, shown in Fig. 3(b), which is consistent with both transitions being stretched dipoles. This result excludes spin $3 / 2$ for the ground state. The non-observation of the $360.2-\mathrm{keV}$ decay to the ground state indicates that, most likely, the parity of the ground state is opposite to the parity of the $360.2-\mathrm{keV}$ level. Consequently, we propose spin and parity $5 / 2^{-}$for the ground state in ${ }^{147} \mathrm{Ba}$. We note here that in a recent compilation [18] a strong decay branch from the $360.1-\mathrm{keV}$ level to the ground state is reported, with a remark that this decay is uncertain. The present data exclude such a branch.

We observe a new, 121.4-keV decay branch from the $360.1-\mathrm{keV}$ level, as seen in In Fig. 5, which displays the level scheme of ${ }^{147} \mathrm{Ba}$ as observed in this work (the properties of γ lines are listed in Table I). Angular correlation for the $121.4-239.9-\mathrm{keV}$ cascade is consistent with the $121.4-\mathrm{keV}$ transition being an unstretched dipole (QUD in Fig. 3). This result indicates spin and parity $9 / 2^{-}$ for the $238.6-\mathrm{keV}$ level, considering the negative parity of the ground state and the presence of the $238.6-\mathrm{keV}$ prompt decay, observed also in Ref. [10].

The M1 multipolarity of the $85.2-\mathrm{keV}$ transition, reported in Ref. [10] indicates negative parity for the 85.2keV level, while the absence of any decay from the 360.2keV level to the $85.2-\mathrm{keV}$ level suggests spin $5 / 2$ for the $85.2-\mathrm{keV}$ level. Such spin is consistent with angular correlations for the $308.7-153.4-\mathrm{keV}$ cascade, shown in Fig. $3(\mathrm{a})$. The prompt character of the $153.4-\mathrm{keV}$ decay supports further the negative parity for the $85.2-\mathrm{keV}$ level.

We observe the $174.6-\mathrm{keV}$ decay of the $360.2-\mathrm{keV}$ level, reported previously [5, 10]. The angular correlation for the $239.9-174.6-\mathrm{keV}$ cascade, shown in Fig. 3(a) is consistent with a stretched-dipole character of the $174.6-\mathrm{keV}$ transition, indicating spin $7 / 2$ for the $185.5-\mathrm{keV}$ level. We also observe a new $53.0-\mathrm{keV}$ decay from the 238.6 keV level to the $185.5-\mathrm{keV}$ level. This, together with the $100.4-\mathrm{keV}$ decay of the $185.5-\mathrm{keV}$ level supports spin $7 / 2$ for the $185.5-\mathrm{keV}$ level.

Spin $3 / 2$ or $5 / 2$ can be proposed for the $46-\mathrm{keV}$ level, based on the observed branchings. The $3 / 2$ solution is preferred because this "band" is weakly populated in fission, which suggests its non-yrast character. With the

FIG. 5: Level scheme of ${ }^{147} \mathrm{Ba}$, as observed in this work.

TABLE I: Properties of γ transitions in ${ }^{147} \mathrm{Ba}$, populated spontaneous fission of ${ }^{248} \mathrm{Cm}$, as observed in the present work. Intensities of γ lines are in relative units. Transitions of 24.4-, $39.2-$ and $46.0-\mathrm{keV}$, shown in the level scheme have been taken from Ref. [10].

$\left\lvert\, \begin{gathered} \mathrm{E}_{\gamma}\left(\Delta E_{\gamma}\right) \\ (\mathrm{keV}) \end{gathered}\right.$	$\begin{gathered} \mathrm{I}_{\gamma}\left(\Delta I_{\gamma}\right) \\ \text { (rel.) } \end{gathered}$	$\begin{gathered} \mathrm{E}_{\gamma}\left(\Delta E_{\gamma}\right) \\ (\mathrm{keV}) \end{gathered}$	$\begin{gathered} \mathrm{I}_{\gamma}\left(\Delta I_{\gamma}\right) \\ \text { (rel.) } \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{E}_{\gamma}\left(\Delta E_{\gamma}\right) \\ (\mathrm{keV}) \\ \hline \end{array}$	$\begin{gathered} \mathrm{I}_{\gamma}\left(\Delta I_{\gamma}\right) \\ (\mathrm{rel} .) \end{gathered}$
53.0(3)	8(3)	174.6(1)	20(2)	383.6(2)	4(1)
75.8(2)	7 (2)	185.6(1)	40(3)	391.0(2)	5(2)
80.8(2)	$3(1)$	194.4(2)	5(1)	424.2(1)	20(3)
85.2(1)	6(2)	238.6(2)	26(4)	463.0(3)	2(1)
90.7(1)	25(2)	239.9(1)	53(3)	468.4(2)	3(1)
100.4(2)	2(1)	241.6(3)	2(1)	488.1(3)	3(1)
109.7(1)	100(4)	250.5(1)	61(4)	490.5(2)	14(2)
121.4(2)	7(1)	270.0(1)	8(1)	497.3(3)	$1.3(5)$
128.8(2)	13(2)	293.7(1)	9(1)	504.8(2)	13(2)
139.6(3)	3(1)	308.6(3)	2(1)	531.7(3)	$9(2)$
153.4(2)	10(3)	308.7(1)	40(5)	583.8(3)	8(2)
169.6(1)	21(2)	376.6(1)	34(3)	652.8(3)	0.8(3)

FIG. 6: Angular correlations for γ cascades in ${ }^{147} \mathrm{Ba}$, as observed in this work. Symbols QQ, QD, QUD and DD mark predicted angular correlations for cascades of stretched quadrupole(Q), stretched dipole(D) or unstretched, unmixed dipole (UD), respectively.
$241.6-\mathrm{keV}$ transition on top of the $185.5-\mathrm{keV}$ level, the $46.0-185.5-427.1-\mathrm{keV}$ band resembles the $3 / 2^{-}$groundstate band in ${ }^{149} \mathrm{Ce}$. The alignment, $i 4=2.6 \hbar$, seen in this band in Fig. 4, is similar to the alignment in the $3 / 2^{-}$ground-state band of ${ }^{149} \mathrm{Ce}$.

In a γ spectrum doubly gated on the 169.6- and 239.9keV lines, the total intensity of the $90.7-$ and $80.8-\mathrm{keV}$ transitions should be the same, while γ intensities may differ due to the internal conversion. Indeed, γ intensity of the $80.8-\mathrm{keV}$ line, which is $28(4)$ in arbitrary units, is much higher than γ intensity of the $90.7-\mathrm{keV}$ line, which yields $10.0(2.6)$ in these units. Considering the E2 multipolarity of the $90.7-\mathrm{keV}$ transition (with the total conversion coefficient of 2.71 [19]), this observation is only consistent with the E1 multipolarity of the $80.8-\mathrm{keV}$ transition (the total conversion coefficients are $0.41,1.81$ and 4.13 for the E1, M1 and E2 multipolarities, respectively [19]). Thus the parity of the $279.3-\mathrm{keV}$ level is negative.

The cascade of 109.7-169.3-293.6-270.0-keV transitions in ${ }^{147} \mathrm{Ba}$, reported in Ref. [5] is confirmed and extended in this work by $383.6,468.4-$ and $497.3-\mathrm{keV}$ transitions. In Fig. 6(b) we show angular correlation for the 169.6-$109.7-\mathrm{keV}$ cascade. The strong positive anisotropy observed for this cascade, which is characteristic of two mixed, $\mathrm{M} 1+\mathrm{E} 2$ transitions in a cascade, excludes the quadrupole-dipole (QD) solution. Thus the $169.6-\mathrm{keV}$ transition is of dipole character. Similarly, the QD solution can be excluded for the $169.6-293.7-\mathrm{keV}$ cascade, indicating a dipole character for the $293.7-\mathrm{keV}$ transition. We propose spin $9 / 2$ rather than $7 / 2$ for the $279.3-\mathrm{keV}$ level and, consequently, spin $11 / 2$ for the $573.0-\mathrm{keV}$ level. Otherwise the band on top of $573.0-\mathrm{keV}$ level would be very non-yrast, contradicting its rather strong population in fission. The absence of any decay from the $279.3-\mathrm{keV}$ level to the ground state, further favors spin $9 / 2$ over $7 / 2$ for this level. A similar, second $9 / 2^{-}$level has been recently proposed in ${ }^{143} \mathrm{Xe}[21]$ and ${ }^{145} \mathrm{Ba}$ [15].

FIG. 7: γ spectrum doubly-gated on the $308.7-$ and $424.2-\mathrm{keV}$ lines of ${ }^{147} \mathrm{Ba}$. Label ' C ' marks unknown contamination lines.

In this work we have found a cascade of five transitions on top of the $238.6-\mathrm{keV}$ level, as shown in Fig. 5. A spectrum doubly-gated on the 308.7- and 424.2keV lines from this new cascade is shown in Fig.7. In the spectrum there are new lines at 504.8-, 531.7- and $488.1-\mathrm{keV}$ and known lines of ${ }^{147} \mathrm{Ba}$ at $53.0-$, 153.4- and $238.6-\mathrm{keV}$ as well as X-rays of Ba . There are also known lines from more than one of the complementary Zr isotope, which indicates that the new cascade belongs to a Ba isotope. Angular correlations shown in Fig. 6(a) are consistent with the quadrupole character of the 308.7and $424.2-\mathrm{keV}$ transitions. Due to their prompt character they are assumed to be E2 transitions. The 504.8and $531.7-\mathrm{keV}$ transitions which follow the regular trend of in-band transition energies, are also assumed to have an E2 multipolarity.

The alignment of $2.8 \hbar$ in the band on top of the 238.6keV level, seen in Fig. 4, is similar to the alignment in the ground-state band of ${ }^{145} \mathrm{Ba}$ (also shown in Fig.4) interpreted as the 5/2- [523] neutron configuration [15]. Moreover, the plot for the $238.6-\mathrm{keV}$ band shows a backbending at similar rotational frequency $h \omega \approx 270 \mathrm{keV}$. It is then likely that the band on top of the $238.6-\mathrm{keV}$ level corresponds to the $5 / 2^{-}$[523] neutron configuration, seen also in the Sm,Gd,Dy and Er, $\mathrm{N}=91$ isotones [22-25].

The $238.6-\mathrm{keV}$ level decays to both $5 / 2^{-}$levels, the ground state and the $85.2-\mathrm{keV}$ level. However, none of them fits the excitation energy of 65 keV , anticipated for the band head from the regular rotational pattern of the band on top of the $238.6-\mathrm{keV}$ level. The intensity of the $153.4-\mathrm{keV}$, E 2 transition, when corrected for its energy, is factor 3.5 larger than the intensity of the $238.6-\mathrm{keV}$, E2 transition.Thus, the $85.2-\mathrm{keV}$ level is a likely candidate for the bandhead.

Strong E2 decay branches from the $238.6-\mathrm{keV}$ level to the $85.2-\mathrm{keV}$ level and the ground state suggest a substantial mixing between the two $5 / 2^{-}$levels. Their interaction has probably pushed up the $85.2-\mathrm{keV}$ level by about 20 keV from its unperturbed position. In this picture the the $5 / 2^{-}$ground state was pushed down by the
same amount. Therefore, its original position, still 26 keV below the proposed $3 / 2^{-}$level at 46.0 keV , makes it an unlikely member of the $3 / 2^{-}$band. Also its association with the band on top of the $279.3-\mathrm{keV}$ level is unlikely, due to the absence of any decay of this level to the ground state. Thus, the nature of the ground state in ${ }^{147} \mathrm{Ba}$ remains unknown.

In calculation for ${ }^{145} \mathrm{Ba}$ [15] we have shown that negative-parity excitations in ${ }^{145} \mathrm{Ba}$ result from a complex mixing of four neutron orbitals, $1 / 2[541], 1 / 2[530]$, $3 / 2[532$] and $3 / 2[521]$, present near the Fermi surface. In this ensemble there should be four close-lying $5 / 2^{-}$levels. It is known that if more levels of the same spin can mix, they will produce one solution of that spin, which is pushed well down in energy while other solutions for this spin are pushed up [26]. The ground states in ${ }^{147} \mathrm{Ba}$ and ${ }^{145} \mathrm{Ba}$ might correspond to such a solution. The extra lowering could be the reason for the unexpected $5 / 2^{-}$ spin of the ground state in ${ }^{147} \mathrm{Ba}$, which otherwise would have spin $3 / 2^{-}$, as proposed in Ref. [6]. It would be very interesting to search for the remaining two $5 / 2^{-}$levels expected at low energies in ${ }^{147} \mathrm{Ba}$ (one of them should correspond to the $3 / 2^{-}$[532] configuration).

Although the above scenario for the ground state in ${ }^{147} \mathrm{Ba}$ is likely, one might still ask whether the observed lowering of the $5 / 2^{-}$level is rather due to an octupole deformation. In the single-particle neutron diagram calculated in Ref. [6] this would correspond to a sizable octupole deformation parameter $\beta_{3}>0.1$ and, consequently, the presence of parity doublets in ${ }^{147} \mathrm{Ba}$. In the limit of static octupole deformation the splitting between parity doublets is small. It grows when the potential barrier between the two octupole minima drops [2]. In the limit of octupole vibration (zero barrier) one observes an octupole band with the band head at an energy of the octupole-phonon vibration.

In the present work we did not identify any candidate for a low-energy parity doublet to the $5 / 2^{-}$ground state in ${ }^{147} \mathrm{Ba}$. The lowest possible candidate for an octupole
excitation is the $573.0-\mathrm{keV}$ level with a tentative $11 / 2$ spin assignment. The large alignment of $5.0 \hbar$ in the band on top of this level is difficult to explain with the available negative-parity neutron configurations. One might think that this band is the unfavored branch of the $3 / 2^{+}[651]$ neutron configuration. However, there is a clear upbend in this band, while in the favored branch, $\alpha=+1 / 2$, of the $3 / 2^{+}[651]$ configuration no backbending is seen. Thus, the $\alpha=-1 / 2,3 / 2^{+}[651]$ assignment may be questioned. We note that the backbending frequency in the band on top of the $573.0-\mathrm{keV}$ level is similar to the backbending frequency in the band on top of the $238.6-\mathrm{keV}$ level while the alignment is by $2.2 \hbar$ higher than in the 238.6 keV band. This closely resembles the properties of the $11 / 2^{+}$band in ${ }^{145} \mathrm{Ba}$ [15], shown in Fig. 4 for comparison. Therefore, we propose that the $573.0-\mathrm{keV}$ level corresponds to an octupole vibration coupled to either the ground state or the $85.2-\mathrm{keV}$ level.

Summarizing, in both ${ }^{145} \mathrm{Ba}$ and ${ }^{147} \mathrm{Ba}$ one sees octupole vibrations coupled to a low-lying $5 / 2^{-}$level. Energies of the 3^{-}octupole vibration in the even-even core nuclei ${ }^{144} \mathrm{Ba}$ and ${ }^{146} \mathrm{Ba}$, which are $838.0-$ and $775.0-\mathrm{keV}$, respectively, are higher than excitation energies of the proposed $11 / 2^{+}$octupole vibration in ${ }^{145} \mathrm{Ba}$ and ${ }^{147} \mathrm{Ba}$, which are $670.3-$ and $573.0-\mathrm{keV}$, respectively. This suggests an admixture of parity doublets, i.e. a small barrier in an octupole potential, which lowers energies of octupole excitations. Nevertheless, one can conclude that the dominating mode of octupole correlations in ${ }^{145} \mathrm{Ba}$ and ${ }^{147} \mathrm{Ba}$ are octupole vibrations and there is no static octupole deformation in these nuclei. It is possible, that nuclear rotation helps developing octupole deformation at medium spins, as seen in ${ }^{150} \mathrm{Sm}[20]$, and ${ }^{145} \mathrm{Ba}$ [27].

This work has been supported by the U.S. Department of Energy, Office of Nuclear Physics, under contract No. DE-AC02-06CH11357. The authors are indebted for the use of ${ }^{248} \mathrm{Cm}$ to the Office of Basic Energy Sciences, Dept. of Energy, through the transplutonium element production facilities at the Oak Ridge National Laboratory.
[1] I. Ahmad and P.A. Butler, Ann. Rev. Part. Sci. 43, 71 (1993).
[2] P.A. Butler and W. Nazarewicz, Nucl. Phys. A533, 249 (1991).
[3] W. R. Phillips, et al., Phys. Rev. Lett.57, 3257 (1986).
[4] W. Urban et al., Nucl. Phys. A613, 107 (1997).
[5] M.A. Jones et al., Nucl. Phys. A605, 133 (1996).
[6] G. A. Leander et al., Phys. Lett.152B, 284 (1985).
[7] F. Schussler et al., Proc. 4-th Int. Conf. on Nuclei far From Stability, Helsingor, Denmark 1981, pp. 589-597.
[8] S. J. Zhu et al., Phys. Lett. B 357, 273 (1995).
[9] B. R. S. Babu et al., Phys. Rev. C 54 (1996).
[10] A. Syntfeld et al., Eur. Phys. J. A 23, 481 (2005).
[11] P.J. Nolan, F.A. Beck and D.B. Fossan, Ann. Rev. Nucl. Part. Sci. 44, 561 (1994).
[12] W. Urban et al., Eur. Phys. J. A 5, 239 (1999).
[13] C. T. Zhang et al., Phys. Rev. Lett. 88, 3743 (1996).
[14] W. Urban et al., Z. Phys. A 358, 145 (1997).
[15] T. Rza̧ca-Urban et al., Phys. Rev. C, in print (2012).
[16] W. Urban et al., Phys. Rev. C 86, 017301 (2012).
[17] I. Ahmad and W.R.Phillips, Rep. Prog. Phys. 58, 1415 (1995).
[18] N. Nica, Nuclear Data Sheets 110, 749 (2009).
[19] T. Kibédi et al., Nucl. Instr. Meth. A 589, 202 (2008).
[20] W. Urban et al., Phys. Lett. B185, 331 (1987).
[21] T. Rzạca-Urban et al., Phys. Rev. C 83, 067301 (2011).
[22] R. G. Helmer, Nuclear Data Sheets 107, 507 (2006).
[23] C. W. Reich, Nuclear Data Sheets 104, 1 (2005).
[24] R. G. Helmer, Nuclear Data Sheets 103, 565 (2004).
[25] C. W. Reich, Nuclear Data Sheets 113, 157 (2012).
[26] R. F. Casten "Nuclear Structure from a Simple Perspective", Oxford University Press, 1990.
[27] Y. J. Chen et al., Chin. Phys. Lett. 22, 1362 (2005).

