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We present the first results for the neutron matter equation of state (EOS) using nucleon-nucleon
and three-nucleon chiral effective field theory interactions that are consistently evolved in the frame-
work of the Similarity Renormalization Group (SRG). The dependence of the EOS on the SRG
resolution scale is greatly reduced when induced three-nucleon forces (3NF) are included and the
residual variation, which in part is from missing induced four-body interactions, is comparable to
estimated many-body perturbation theory truncation errors. The relative growth with decreasing
resolution of the 3NF contributions to the energy per neutron is of natural size, but it accelerates at
the lowest resolutions where strong renormalization of the long-range 3NF matrix elements is also
observed.
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Chiral effective field theory (EFT) [1] offers a sys-
tematic expansion of nuclear forces well suited to meet
the calculational challenges of neutron matter, which
span the extremes of low-density universal properties
to the dense matter in neutron stars. Conversely, neu-
tron matter provides a powerful laboratory for testing
chiral EFT power counting at relevant nuclear densi-
ties, since only long-range three-nucleon forces (3NF)
contribute at next-to-next-to-leading order (N2LO) [2]
and there are no new parameters for three-nucleon (3N)
and four-nucleon interactions at next-to-next-to-next-to-
leading order (N3LO) [1]. For example, it was recently
shown that 3NF at N3LO give relatively large contribu-
tions to the neutron matter equation of state (EOS) [3, 4],
which may indicate that a chiral EFT with explicit delta
degrees of freedom would be more efficient.

At present, the largest uncertainties in microscopic cal-
culations of neutron matter based on chiral EFT interac-
tions are because the low energy constants in the Hamil-
tonian are not all well determined. This leads to uncer-
tainties in observables such as the nuclear symmetry en-
ergy and radii of neutron stars [5]. However, direct calcu-
lations based on chiral interactions using many-body per-
turbation theory (MBPT) also have non-negligible the-
oretical uncertainties due to truncations of the many-
body expansion [3, 4]. Renormalization group (RG) evo-
lution of nuclear interactions to lower resolution scales
significantly improves the convergence of MBPT, but
in prior calculations three-nucleon interactions have not
been evolved consistently [2]. Here we present the first
results for the neutron matter equation of state based on
consistently evolved chiral nucleon-nucleon (NN) and 3N
forces (see Fig. 1). These results show how RG transfor-
mations can enable simplified and efficient many-body
calculations for neutron matter with controlled theoreti-
cal error bars.

We build upon Ref. [6], which presented a framework
for the simultaneous evolution of nuclear NN and 3N in-
teractions in a continuous plane-wave (momentum) basis
via the Similarity Renormalization Group (SRG). This is

an alternative to using a harmonic oscillator basis [7]. It
provides independent checks of the SRG evolution, easier
access to alternative SRG generators (see Refs. [8, 9]) and
a means to test approximations for induced 3NF [6]. The
momentum-space matrix elements can be easily trans-
formed to an oscillator basis for use in calculations of
finite nuclei by configuration interaction [10], coupled
cluster [11, 12], in-medium SRG methods [13, 14], self-
consistent Gorkov Green’s function theory [15] or for nu-
clear shell-model calculations [16].

Most important in the present context is that these
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FIG. 1. (Color online) Energy per neutron as a function of
neutron density for different SRG resolution scales. The re-
sults are grouped according to whether no induced 3NF are
included (NN-only), the induced 3NF are included but no
initial 3NF (3N-induced), or initial and induced 3NF are in-
cluded (3N-full). The initial interaction is the 500 MeV N3LO
NN potential from Ref. [17] combined with the N2LO 3NF
using the consistent low-energy constants c1 = −0.81 GeV−1

and c3 = −3.2 GeV−1 [2].
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FIG. 2. (Color online) Partial-wave convergence of the Hartree-Fock 3NF-only energy per neutron as a function of density
at two different resolution scales. Panel (a) shows the results before evolution (λ = ∞) and panel (b) at λ = 2.0 fm−1. The
Hamiltonian is the same as for the 3N-full results in Fig. 1. For λ =∞, only J ≤ 5/2 give significant contributions so the lines
for the higher partial waves are nearly indistinguishable from the exact result.

evolved interactions can be directly applied in micro-
scopic calculations of the nuclear EOS. Applications to
the triton in Ref. [6] verified that nuclear interactions
at low resolution scales contain much weaker couplings
between low and high-momentum states. This renders
the nuclear many-body problem more perturbative and
therefore more tractable, with all low-energy observables
preserved exactly when all induced contributions are in-
cluded. However, recent results for finite nuclei using
oscillator-evolved 3NF found that high-momentum parts
of the chiral two-pion-exchange 3NF led to significant
resolution-scale dependence and overbinding in medium-
mass nuclei [18, 19]. Neutron matter provides a test
laboratory (although limited, because only neutrons) to
study if these systematics carry over to infinite matter in
MBPT with the new evolution scheme. We have direct
access to the form of the 3NF and the scaling behavior
of their contributions to the energy as a function of the
resolution scale.

The SRG flow equations we solve can be written in the
form [20]

dHs

ds
= [ηs, Hs] , (1)

where Hs = Trel +Vs denotes the Hamiltonian as a func-
tion of the flow scale parameter s, and ηs labels the gener-
ator of the RG transformations. In practice it is more in-
formative to replace s with the resolution (or decoupling)
scale λ = s−1/4, which has units of momentum. Here we
choose ηs = [Trel, Hs] with the relative kinetic energy Trel,
as in Ref. [6] and most prior investigations. With this ηs
the flow equation generates a continuous series of unitary
transformations that renormalizes the Hamiltonian (and
all other operators), driving Hs towards a diagonal form

in momentum space [21]. We recast Eq. (1) into separate
flow equations for the matrix elements of the NN and 3N
interactions [6, 20] and solve them simultaneously in a
momentum partial-wave basis.

For the NN forces we use a standard partial-wave basis
of the form |p; (LS)JT 〉, where p is the relative momen-
tum and L, S, J and T are the orbital angular momen-
tum, spin, total angular momentum and isospin of the
interacting pair. For the three-body basis we choose

|piqi; [(LS)J(lsi)j]JJz(Tti)T Tz〉 ≡ |pqα〉i , (2)

where pi and qi are the three-body Jacobi momenta of
particle i. The quantum numbers l, si = 1/2, j and
ti = 1/2 are the orbital angular momentum, spin, to-
tal angular momentum and isospin of particle i relative
to the center-of-mass of the pair with momentum p. J
and T are the total three-body angular momentum and
isospin quantum numbers (for details see Refs. [22, 23]).
The 3NF at chiral order N2LO are independent of the
projections Jz and Tz [1]. We use α to abbreviate the
angular momentum and isospin quantum numbers.

In the SRG evolution we take all NN interaction ma-
trix elements up through Jmax = 7 into account, and for
the 3NF matrix elements we include all interactions up
through J = 9/2 and Jmax = lmax = 5. In Fig. 2 we
show the convergence of the partial-wave 3NF contribu-
tions in the Hartree-Fock approximation as a function of
density for the initial interaction and after evolution to
λ = 2.0 fm−1. While the convergence pattern is some-
what altered after evolution, the partial-wave truncation
is reliable at both scales and the results are well con-
verged. The exact Hartree-Fock energy can be calculated
without a partial wave expansion for the unevolved in-
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teraction [2, 24, 25], and in this case the energy through
J = 9/2 is converged within 0.4 percent at nuclear sat-
uration density.

The RG evolution of the 3NF can be performed in-
dependently for different values of J , T and three-body
parity π3 = (−1)L+l. For applications to neutron mat-
ter we only need matrix elements for the isospin channel
T = 3/2. Our calculations are based on antisymmetrized
matrix elements of the form〈
pqα|V 123|p′q′α′

〉
≡ i

〈
pqα|A123V

(i)
123A123|p′q′α′

〉
i , (3)

where V
(i)
123 is the i-th Faddeev component of the three-

body interaction, A123 = (1+P123 +P132) is an antisym-
metrizer, and P123(P132) is the cyclic (anti-cyclic) per-
mutation operator (see Ref. [22]). Such antisymmetrized
matrix elements with two antisymmetrizers, in contrast
to partially antisymmetrized matrix elements typically
used in Faddeev calculations (see, e.g., Ref [26]), are
particularly suitable for solving the SRG flow equations
for 3NF (see Ref. [6]). The initial matrix elements are
generated directly in this form using a novel automa-
tized partial-wave decomposition for the 3NF [26, 27].
This new method ensures that the interaction is anti-
symmetrized exactly in spin and isospin space.

Due to the softening of NN and 3N forces during the
RG evolution, it is possible to apply MBPT for the calcu-
lation of the neutron matter equation of state at low res-
olution scales. In the present calculations we resum con-
tributions from NN forces in the ladder approximation by
averaging the Pauli operator over all angles (for details
see Ref. [28]) and using Hartree-Fock single-particle ener-
gies. Contributions from 3NF are calculated in Hartree-
Fock approximation. Based on results of Ref. [2] we ex-
pect this approximation to provide the dominant 3NF
contributions at low-resolution scales. We also compute
the NN second-order contributions for comparison, which
allows us to probe the perturbativeness of the NN inter-
actions as a function of the RG scale λ. The inclusion
of higher-order diagrams involving 3NF requires signif-
icant computational storage because of the coupling of
partial waves with different J and π. Such calculations
are currently in progress.

In the Hartree-Fock approximation, the 3NF contribu-
tions to the energy per volume is given by:

EHF
V

=
1

18

3∏
i=1

Trσi

∫
dki

(2π)3

×〈123|A123V123A123|123〉nk1
nk2

nk3
, (4)

where nk are the zero-temperature occupation numbers.
Compared to the relations of Refs. [2, 28] an extra fac-
tor 1/3 appears because the 3NF are antisymmetrized in
the initial and final states. The spin sum in the Jacobi

momentum basis can be expressed in the form∑
S,µ,ν

〈pqSµ1

2
ν|A123V123A123|pqSµ

1

2
ν〉

=
1

(4π)2

∑
α,α′

δSS′

∑
L̄,S,L,J

ŜL̂Ĵ
√
Ĵ ĵĴ ′ĵ′L̂L̂′ l̂l̂′

×(−1)l+l
′+LCL̄0

l0l′0CL̄0
L0L′0PL̄(p̂ · q̂)

〈
pqα|V 123|pqα′

〉
×
{
L L′ L̄
l′ l L

} L S J
l 1/2 j
L S J


 L′ S J ′

l′ 1/2 j′

L S J

 ,(5)

using standard notation for the angular momentum cou-
pling, the Clebsch-Gordan coefficients Cl3m3

l1m2l2m2
, and

x̂ ≡
√

2x+ 1.
In Fig. 1 we show the results for the energy per neutron

at four different resolution scales λ as a function of neu-
tron number density n. This range of resolution scales
has also been used in previous studies of neutron matter
and nuclear matter [2, 29] based on Vlow k-evolved NN
interactions. The present calculations use the N3LO NN
potential (Λ = 500 MeV) of Ref. [17] plus the consistent
3NF at N2LO with the couplings c1 = −0.81 GeV−1 and
c3 = −3.2 GeV−1 at the initial resolution scale λ = ∞
(s = 0). The other components of the full N2LO 3NF give
no contributions in neutron matter [2]. We calculate the
EOS in three ways: NN-only, 3N-induced and 3N-full (see
Ref. [7] and the caption to Fig. 1). The NN contributions
are resummed and the 3NF contributions are calculated
in Hartree-Fock approximation. When induced 3NF are
taken into account, we find a dramatically reduced λ de-
pendence over the entire density range compared to in-
cluding only NN forces. When initial 3NF are also in-
cluded the spread of the results increases, but remains
still significantly smaller than the spread of the NN-only
results. The 3N-full energy per neutron for λ = 2.0 fm−1

at saturation density is about 0.5–1.5 MeV higher than
found in calculations with the same initial NN interac-
tion but with the unevolved N2LO 3NF included with a
cutoff ranging from 2.0–2.5 fm−1 [2]. More detailed com-
parisons will be made in a future publication.

In Fig. 3 we show the energy per neutron at nuclear
saturation density for two different NN interactions as
a function of the resolution scale. Panel (a) uses the
NN and 3N interactions as in Fig. 1 and panel (b) uses
the N2LO potential (Λ/Λ̃ = 450/500 MeV) of Ref. [30]
plus the consistent 3NF with the low-energy constants
c1 = −0.81 GeV−1 and c3 = −3.4 GeV−1. The bands in
both panels at the right side indicate the size of unevolved
second-order contributions containing NN and 3N forces;
these diagrams can be evaluated at the initial RG scale
using the framework of Ref. [2]. The band is smaller
in panel (b) due to the smaller initial cutoff of the NN
potential.

The variation of the energy in the 3N-full case is always
within the width of the band. This suggests that the in-
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FIG. 3. (Color online) Energy per neutron as a function of the resolution scale λ at nuclear matter saturation density
ns = 0.16 fm−3 for two different interactions. Panel (a) uses the NN and 3N potentials as in Fig. 1 and panel (b) uses the

N2LO potential (Λ/Λ̃ = 450/500 MeV) of Ref. [30] plus the consistent 3NF with the low-energy constants c1 = −0.81 GeV−1

and c3 = −3.4 GeV−1. The same three calculations (NN-only, 3N-induced, and 3N-full) from Fig. 1 are used here. The solid
lines are energies using a resummed particle ladder sum of the NN contributions, with the straight dotted lines marking the
energies at λ = 3.0 fm−1. The dashed lines are energies including up to second-order for the NN contributions. The shaded
areas at the right indicate the magnitude of the attractive second-order contribution from unevolved NN and 3N forces.

clusion of neglected second-order diagrams with 3NF at
finite λ, which are attractive and should decrease in mag-
nitude with decreasing λ [2], may systematically reduce
the observed variation with λ above 2.0 fm−1. The small
increase in energy below λ = 2.0 fm−1 for both 3N-full
and 3N-induced curves might be attributed to induced
four-body forces. However, although the size of the vari-
ation is of comparable size to contributions from chiral
4N forces in delta-less EFT (see Refs. [3, 31]), it would
be premature to draw quantitative conclusions.

The inclusion of induced 3NF contributions greatly re-
duces the resolution-scale dependence of the EOS even
at the present truncation of the many-body expansion.
In the left/right panel of Fig. 3 we find a maximal energy
variation of about 390/470 keV for the 3N-induced cal-
culations and 650/450 keV for the 3N-full calculations at
saturation density. In comparison, we find a total vari-
ation of about 3.6/4.2 MeV when 3NF are completely
neglected. Furthermore, Fig. 3 also demonstrates the
increased perturbativeness of the many-body expansion.
The solid lines show results using the NN ladder sum
while the dashed lines use diagrams up to second order.
For the NN interaction at N2LO (right panel), diagrams
beyond second order in the particle-particle channel give
only very small contributions.

The net relative growth of two- and three-body con-
tributions to the energy at two densities are shown in
Fig. 4, with and without initial 3NF. The solid lines are

for the N3LO 500 MeV NN potential while the dashed
lines are for the N2LO 450/500 MeV potential. The size
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ratio of these two contributions based on the 500 MeV N3LO
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MeV N2LO potential [30] (see also Fig. 3).
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FIG. 5. (Color online) Matrix elements of the evolved 3N potential
〈
ξα = 1|V 123|ξ′α′ = 1

〉
(see main text) for J = 1/2,

T = 3/2 and positive total parity π3 at the hyperangle θ = π/8. The interactions are the same as in Fig. 1.

of the initial 3NF sets the scale of a natural ratio at that
density. It is evident that the change of the net ratio
with λ remains natural even down to the smallest values.
There is no obvious trend with density; such a trend may
be obscured by cancellations among contributions to the
net energies.

We can also examine the evolution of the 3NF by look-
ing at slices of the matrix elements. To do this we intro-
duce the hyperradius ξ2 = p2 +3/4q2 and the hyperangle
tan θ = 2p/(

√
3q) and visualize the matrix elements as a

function of ξ at a fixed hyperangle. A representative ex-
ample is shown in Fig. 5 for θ = π/8 for the dominant
partial wave with α = α′ and L = J = S = l = 0, T = 1,
j = 1/2, J = 1/2 and π3 = 1. In this case we observe
softening from λ = ∞ to λ = 2.0 fm−1. Further evolu-
tion causes a strongly attractive part to appear at small
momenta; however, its impact will be mitigated by phase
space factors. This renormalization merits further study.

In this paper we have presented the first neutron mat-
ter calculations based on a fully consistent RG evolution
of two- and three-body chiral EFT interactions. Includ-
ing induced 3NF greatly reduces the resolution scale de-
pendence of the neutron EOS compared to NN-only cal-
culations, with the residual dependence comparable to
the expected magnitude of omitted many-body correc-
tions. Thus we are not able to make a definitive state-
ment about the size of induced four-body contributions,
but there are no indications of unnatural growth. Future
calculations will include both neutron and nuclear mat-
ter with higher-order (beyond Hartree-Fock) diagrams
including 3NF, which will allow a more complete assess-
ment of higher-body contributions and the range in den-
sity for which this framework is reliable. We will also
calculate error bands based on uncertainties in the 3NF
input. In the future it will be also straightforward to
include contributions from 3NF at N3LO [32, 33] once
initial matrix elements in partial wave representation are
available. This work is currently in progress.
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[23] A. Stadler, W. Glöckle and P. U. Sauer, Phys. Rev. C

44, 2319 (1991).
[24] L. Tolos, B. Friman, A. Schwenk, Nucl. Phys. A 806, 105

(2008).
[25] J. W. Holt, N. Kaiser and W. Weise, Phys. Rev. C 87,

014338 (2013).
[26] R. Skibinski et al., Eur. Phys. J 47, 48 (2011).
[27] J. Golak et al., Eur. Phys. J. A 43, 241 (2010).
[28] S. K. Bogner el al., Nucl. Phys. A 763, 59 (2005)
[29] K. Hebeler et al., Phys. Rev. C 83, 031301(R) (2011).
[30] E. Epelbaum, Prog. Part. Nucl. Phys. 57, 654 (2006).
[31] N. Kaiser, Eur. Phys. J. A 48, 135 (2012).
[32] V. Bernard et al., Phys. Rev. C 77, 064004 (2008).
[33] V. Bernard et al., Phys. Rev. C 84, 054001 (2011).


