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We show that fluctuations of the fireball shape in the longitudinal direction generate nontrivial
rapidity correlations that depend not only on the rapidity difference, y1−y2, but also on the rapidity
sum, y1 + y2. This is explicitly demonstrated in a simple wounded nucleon model, and the general
case is also discussed. It is argued that rapidity fluctuations are large compared to normal statistical
fluctuations. We show how to extract different components of the fluctuating fireball shape from
the measured two-particle rapidity correlation function. The experimental possibility of studying
the longitudinal initial conditions in heavy-ion and proton-proton collisions is emphasized.

I. INTRODUCTION

When a fireball produced in heavy-ion collisions is studied in an azimuthal angle, it is very useful to parametrize
its initial shape with the help of the Fourier decomposition [1–3]. This decomposition clarifies trends in the elliptic
flow, the fluctuations in elliptic flow, and the higher harmonics flows, which are associated with the triangularity and
other shape parameters of the fireball [4, 5].
The harmonic analysis gives important information about the transverse initial conditions in heavy-ion collisions,

and the mechanism of the subsequent evolution of the produced fireball – see e.g. [6]. In particular, the success of
the hydrodynamic model in describing the vn data at RHIC and LHC places new constraints on the initial conditions
in the transverse direction.
A similar idea can be applied to study the shape of the fireball in the longitudinal direction. In this paper we will

focus on rapidity, y, but our arguments hold for any longitudinal variable. This study was initiated in Ref. [7] (see also
[8]) where it was argued that long-range rapidity correlations can be interpreted in terms of the fluctuating rapidity
density of the produced fireball. When this analysis was applied to the STAR data [9], a significant asymmetric
component in the fireball’s rapidity shape was found in the most central Au+Au collisions.
In addition, the event-by-event asymmetry in the rapidity profile has been studied by quantifying the fluctuations

in the center-of-mass rapidity [10, 11]. Further, the imprint of certain longitudinal fluctuations on the measured
two-particle correlation function was investigated in hydrodynamic models [12, 13].
In this paper we extend the discussion presented in Ref. [7]. We demonstrate that the fluctuations in the fireball

rapidity density result in a nontrivial structure of the rapidity correlation function, and propose to study the additional
components beyond asymmetry described above. The experimental method to extract various components is also
discussed.
The structure of this paper is following. In the next section we discuss the problem in a simple model. We show

that an event-by-event difference between the number of wounded nucleons in the target and the projectile results
in a long-range asymmetry of the fireball. We derive the correlation function and show that it depends on both the
rapidity difference and the rapidity sum. In section 3, we decompose the different components of the fireball rapidity
density with Chebyshev polynomials, and show how to extract the strength of these components from the measured
rapidity correlation function. The practical application of this idea is discussed in section 4, where we also include
several comments. We summarize our paper with the conclusions in section 5.
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II. SIMPLE MODEL

In this section we explicitly demonstrate in a simple model that an event-by-event global fluctuations of the fireball
rapidity shape lead to a nontrivial two-particle rapidity correlation function.
For a given heavy ion event, we denote the number of wounded nucleons moving to the left and to the right with

wL and wR respectively. The average over many events will be denoted by 〈wL〉 and 〈wR〉. In collisions characterized
by 〈wL〉 6= 〈wR〉, the single particle rapidity distribution is asymmetric with respect to y = 0, where y represents the
rapidity in the center-of-mass frame. This asymmetry is clearly evident in d+Au collisions as measured at RHIC [14],
and is easily reproduced by practically all models of heavy-ion collisions – see e.g. [15–18].
In symmetric heavy ion collisions (Au+Au for example) we have 〈wL〉 = 〈wR〉, and the single particle rapidity

distribution is obviously symmetric with respect to y = 0 [19]. However, this distribution is symmetric only when
averaged over many events. In a single event the shape (in rapidity) of the fireball may be asymmetric since wL 6=
wR.[34] Indeed, in a single event the number of wounded nucleons going to the left may differ from the number of
wounded nucleons going to the right. As discussed below, the asymmetry can be quantified by

〈

(wL − wR)
2
〉

, which
is significantly larger than zero in Au+Au collisions.
It is a useful exercise to calculate in a simple model the two-particle rapidity correlation function originating

from fluctuations in wL − wR. Here we consider the wounded nucleon model [20], which is a very useful model
for understanding many features of heavy-ion data [15, 21, 22]. To simplify our considerations, let us assume that
the single particle rapidity distribution measured in d+Au collisions can be approximated by a linear function of
rapidity[35]. Consequently the distribution from a single wounded nucleon is also a linear function of rapidity. In the
wounded nucleon model, the single particle distribution at a given wL and wR is given by [21]

ρ(y;wL, wR) = wR(a+ by) + wL(a− by)

= a (wL + wR)− by (wL − wR) , (1)

where a+ by is the rapidity distribution from a right-mowing wounded nucleon, and a− by is the contribution form
a left-mover. As seen from above equation we have an asymmetric component that is proportional to y. Assuming
further that at a given wL and wR there are no correlations in the system[36], the two-particle rapidity distribution
at a given wL and wR is

ρ2(y1, y2;wL, wR) = ρ(y1;wL, wR)ρ(y2;wL, wR)

= a2 (wL + wR)
2 − ab(w2

L − w2
R)(y1 + y2) + y1y2b

2(wL − wR)
2. (2)

Summing Eq. (2) over wL and wR with an appropriate probability distribution, P (wL, wR), we obtain the exper-
imentally accessible two-particle rapidity distribution. Taking

〈

w2
L

〉

=
〈

w2
R

〉

, corresponding to symmetric Au+Au
collisions, we obtain

ρ2(y1, y2) = a2
〈

(wL + wR)
2
〉

+ y1y2b
2
〈

(wL − wR)
2
〉

. (3)

Consequently, the two-particle rapidity correlation function reads

C(y1, y2) ≡ ρ2(y1, y2)− ρ(y1)ρ(y2) ,

= a2
[

〈

w2
+

〉

− 〈w+〉2
]

+ y1y2b
2
〈

w2
−

〉

, (4)

where w+ = wL + wR and w− = wL − wR. As seen from Eq. (4) the fluctuations in wL − wR result in a nontrivial
rapidity structure of the two-particle correlation function. C(y1, y2) depends not only on the rapidity difference,
y− = y1 − y2, but also on the rapidity sum, y+ = y1 + y2. Indeed, the correlation function

C(y1, y2) ∼ y1y2b
2
〈

w2
−

〉

=
1

4
b2(y2+ − y2−)

〈

w2
−

〉

, (5)

decreases as a function of rapidity difference, y−, and increases as a function of rapidity sum, y+. This dependence
on y+ can distinguish fluctuations of the fireball shape from well known sources of correlations (such as resonance
decays) that depend mainly on y1 − y2.
Eq. (4) should be taken as an illustration of the problem we would like to address in this paper. Despite its

simplicity, the model result shows quite convincingly that the event-by-event asymmetry of the fireball shape that
is present in symmetric heavy-ion collisions can lead to interesting rapidity correlations [7]. Obviously there can be
more complicated sources of this asymmetry in more realistic models, e.g. the difference in the number of flux-tubes
in the CGC/Glasma approach [23, 24].
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FIG. 1: Asymmetry in wounded nucleons in p+Au (left) and Au+Au (right) collisions at
√

s = 200 GeV as a function of the
impact parameter b.

In Fig. 1 we present
〈

(wL − wR)
2
〉

divided by the total number of wounded nucleons 〈wL + wR〉. We performed
our calculations at

√
s = 200 GeV in Au+Au and p+Au collisions in the Monte-Carlo Glauber model. It is interesting

to notice that
〈

(wL − wR)
2
〉

in Au+Au collisions is quite large and comparable in magnitude to the total number

of wounded nucleons. Thus, event-by-event rapidity fluctuations are of order ∼ 1/(wL + wR)
1/2 compared to the

average, and this is large compared to normal statistical fluctuations of order ∼ 1/N1/2, where N is the number of
particles.
In the next section we generalize Eq. (4) to analyze arbitrary rapidity fluctuations of the fireball shape.

III. GENERAL SHAPE FLUCTUATIONS

In the previous section we discussed the asymmetric component of the fireball rapidity density, originating from
a non-zero values of wL − wR. As seen in Eq. (1) for the simple model of the previous section, the single particle
rapidity distribution at a given wL − wR is proportional to rapidity y, i.e. the fireball is denser on one side of the
rapidity window than on the other. There may be different sources of this asymmetry such as the left-right difference
in the number of collisions, or the difference in the number of asymmetric long-range flux-tubes in the CGC/Glasma
approach [23, 24].
Let us denote the parameter that characterizes this asymmetry by a1. In our simple model, a1 ∝ wL − wR. a1 is

directly sensitive to the fluctuations of the center-of-mass rapidity [10].
Equation (1) also contains a term that is proportional to the total number of wounded nucleons. Fluctuations of

this quantity lead to symmetric, rapidity independent, fluctuations of the whole fireball. This can naturally originate
from impact parameter fluctuations, which are always present in heavy-ion collisions. Let a0 denote the parameter
that characterizes this source of fluctuation. In our simple model, a0 ∝ wL + wR.
The natural question arises if there are more components in the fluctuating shape of the fireball. For example, a

“butterfly” component would characterize a symmetric fireball with higher (or lower) density on both sides of the
midrapidity region, and lower (or higher) density at mid-rapidity.[37] The single particle rapidity distribution affected
by this component would be proportional to y2. Let us denote by a2 the parameter that characterizes the strength
of this effect. We will parametrize the fireball asymmetry and the butterfly component with the two Chebyshev
polynomials, T1(y/Y ) and T2(y/Y ), which are shown in Fig. 2.
Similarly, we can introduce additional components to fully parametrize shape fluctuations in rapidity. Thus, it is

tempting to expand the single particle rapidity distribution at a given a0, a1, ... in terms of the orthogonal polynomials

ρ(y; a0, a1, ...) = ρ(y)
[

1 +
∑

i=0
aiTi (y/Y )

]

, (6)

where ρ(y) is the single particle distribution averaged over a0, a1, . . . . Here we have expanded the distribution in
Chebyshev polynomials[38], but other choices are certainly possible. The parameter Y characterizes the scale of
long-range rapidity fluctuations in the system. We will discuss reasonable values of Y in the next section. Averaging



4

both sides of Eq. (6) over a0, a1, ... with an appropriate probability distribution, P (a0, a1, ...), we obtain 〈ai〉 = 0 for
all i ≥ 0.
Assuming that at a given a0, a1, ... there are no other large sources of long-range rapidity correlations, the two-

particle rapidity distribution is

ρ2(y1, y2; a0, a1, ...) = ρ(y1; a0, a1, ...)ρ(y2; a0, a1, ...) . (7)

Taking an average over ai and subtracting ρ(y1)ρ(y2), we obtain the two-particle rapidity correlation function

C(y1, y2) = ρ(y1)ρ(y2)
[

∑

i,k=0
〈aiak〉Ti (y1/Y )Tk (y2/Y )

]

. (8)

It is useful to recall the physical meaning of the first few terms in Eq. (8):
〈

a20
〉

represents the rapidity independent
fluctuations of the fireball as a whole, 〈a0a1〉 y2 describes the correlation between rapidity independent fluctuations
of the fireball and its asymmetry,

〈

a21
〉

y1y2 is the asymmetric component discussed in the previous section, and
〈

a22
〉

[2 (y1/Y )
2 − 1][2 (y2/Y )

2 − 1] represents the butterfly contribution, etc. .

From the previous section, we know that the asymmetric component,
〈

a21
〉

, introduces a long-range rapidity cor-
relation that is a decreasing function of the rapidity difference, y− = y1 − y2, and an increasing function of the
rapidity sum, y+ = y1 + y2. It is a straightforward to verify that the rapidity structure originating from the butterfly
component leads to a correlation function that is decreasing both in y− and y+.
To conclude this section, we point out that the values of 〈aiak〉 can be extracted directly from the correlation

function C(y1, y2). Using the orthogonality of Chebyshev polynomials

∫ 1

−1

Ti(x)Tk(x)
(

1− x2
)−1/2

dx = ciδi,k , (9)

where c0 = π and ci = π/2 for i > 0, we obtain

〈aiak〉 =
1

cick

∫ Y

−Y

C(y1, y2)

ρ(y1)ρ(y2)

Ti(y1/Y )Tk(y2/Y )

[1− (y1/Y )2]
1/2

[1− (y2/Y )2]
1/2

dy1dy2
Y 2

. (10)

In the next section we will discuss how Eq. (10) can be used in practice.

IV. COMMENTS

In this section we list several comments to clarify the analysis presented in this paper. In deriving Eq. (8) and Eq.
(4), we assumed that at a given a0, a1, ... there are no correlations in the system. In other words, the only sources of
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FIG. 2: Two components of the fluctuating fireball rapidity density: An asymmetry (solid black line) and a butterfly (dashed
blue line).
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correlations are fluctuations in the fireball rapidity density. Unfortunately, short-range correlations may contribute to
the left-hand side of Eq. (8), and contaminate the signal coming from the shape fluctuations. Particularly problematic
may be the correlations from resonance decays and local local charge conservation [27, 28]. These problems can be
mitigated by studying Eq. (8) for positive and negative particles separately, which significantly reduces these unwanted
backgrounds. Moreover, the dependence of the correlation function on the rapidity sum, y+, can be used to distinguish
between rapidity density fluctuations and the short-range correlations of the background.
One could also worry that at a given wL+wR the distribution of final particles is given approximately by a negative

binomial distribution (NBD) [29, 30] which introduces long-range rapidity correlations into the system. This concern
is unfounded, however, because the NBD leads to the following two-particle rapidity distribution[39]

ρ2(y1, y2) = ρ(y1)ρ(y2) (1 + 1/k) , (11)

where k measures deviation from Poisson distribution. As seen from Eq. (8), the NBD ρ2 influences only
〈

a20
〉

. In
fact, this is the expected result, since the NBD can be viewed as a rapidity independent fluctuation of the whole
fireball.
As pointed out in the previous section, it is not obvious what is the appropriate value of Y in the preceding

formulas. Clearly, Y parametrizes the range of global rapidity fluctuations in the fireball density. For instance, at√
s = 200 GeV the single particle distribution in d+Au collisions [14] is approximately linear as a function of y for

|y| < 2. Thus, for the asymmetric component parametrized by a1, Y ≈ 2 is a reasonable choice. For higher and lower
energies, this parameter can be rescaled by the ratio of beam rapidities. This value of Y roughly corresponds to the
size of the thermal fireball, and it is plausible that higher components, if they exist, are present in this region. If the
measurement is performed in the smaller window than [−Y, Y ], fitting the measured correlation function with Eq. (8)
can determine the parameters of interest, 〈aiak〉.
Another choice is to assign Y to the rapidity interval of the measurement, and to investigate how the components

〈aiak〉 change when this rapidity scale is varied. It is possible that the different fluctuating components are visible at
different rapidity scales, and a systematic study of this sort can sort out these differences.
It would be very interesting to compare the strengths of different components, 〈aiak〉, between heavy-ion and

proton-proton collisions. This could reveal interesting differences in the longitudinal initial conditions between these
two systems. For instance, in Ref. [7] it was shown that the asymmetric component is significantly stronger in p+p
collisions than in central Au+Au collisions.
The center-of-mass rapidity shift for a given event is recorded by a1 [10] – see Eq. (6). As has been emphasized

recently [11], the rapidity shift is correlated with the harmonic planes. Thus, correlations between am and
〈

rneinφ
〉

will record how the longitudinal fluctuations change the transverse initial conditions, and the associated azimuthal
response. Specifically, the center-of-mass rapidity for each event can be determined from a1, which then can be
correlated with vn and its associated angle, Ψn.
Further, the ideas presented in this paper could be extended by incorporating the multi-bin analysis proposed in

Refs. [31–33]. This multi-bin analysis can be used to investigate the different sources of particles production, providing
a detailed picture of the fireball in the longitudinal direction. Finally, we point out that the results obtained in this
paper can be easily generalized to three- and many-particle correlation functions.

V. CONCLUSIONS

In conclusion, we showed that event-by-event fluctuations of the fireball rapidity density introduce interesting rapid-
ity correlations that depend both on the rapidity difference, y1 − y2, and the rapidity sum, y1 + y2. We demonstrated
this explicitly in the wounded nucleon model, where an event-by-event difference between the number of wounded
nucleons in a target and a projectile, wL − wR, leads to the long-range asymmetry of the fireball. The resulting
correlation function in symmetric A+A collisions is given in Eq. (4).
We further proposed to expand the measured two-particle rapidity correlation function in a series of the Chebyshev

polynomials (see Eq. (8)), where each polynomial represents a different component of the fireball’s fluctuating rapidity
density. The quadratic polynomial in this expansion describes the “butterfly” fluctuations described above, which are
suggested by recent measurements at RHIC. The coefficients of this expansion, 〈aiak〉, characterize the strength of
various components, and we propose to extract these coefficients from the measured correlation function. This can
reveal nontrivial information about the structure of the fireball in the longitudinal direction, and can test various
models of particle production in hadronic collisions.
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