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1. Introduction

The study of collective modes in nuclei has been the subject of extensive
theoretical and experimental studies during several decades [1-3], since it contributes
significantly to our understanding of bulk properties of nuclei, their non-equilibrium
properties and properties of the nuclear force. Of particular interest is the equation of
state (EOS), i.e. the binding energy per nucleon as a function of the neutron (V) and
proton (Z) densities, of infinite nuclear matter (no Coulomb interaction). The EOS is an
important ingredient in the study of properties of nuclei at and away from stability, the
study of structure and evolution of compact astrophysical objects, such as neutron stars
and core-collapse supernovae, and the study of heavy-ion collisions (HIC) [4,5]. The
saturation point of the equation of state (EOS) for symmetric (N=2) nuclear matter (NM)
is well determined from the measured binding energies and central matter densities of
nuclei, by extrapolation to infinite NM [1,2]. To extend our knowledge of the EOS
beyond the saturation point of symmetric NM, an accurate value of the NM
incompressibility coefficient Kny, which is directly related to the curvature of the EOS of
symmetric NM, is needed. An accurate knowledge of the dependence of the symmetry
energy, Eqym(p), on the matter density p is needed for the EOS of asymmetric NM.

There have been many attempts over the years to determine Knv and Egym(p) by
considering physical quantities which are sensitive to the values of Kyvm and Egym(p)
[3,4,6,7]. In this work we investigate the sensitivity of the strength function distributions
of the isoscalar and isovector giant resonances with multipolarities L = 0-3 of the isotopes
40Ca and *®Ca to bulk properties of NM, such as Knm, Esym and the effective mass m*. It

is well known that the energies of the compression modes, the isoscalar giant monopole



resonance (ISGMR) and isoscalar giant dipole resonance (ISGDR), are very sensitive to
the value of Knm [1,3,8]. Also the energies of the isovector giant resonances, in
particular, the isovector giant dipole resonance (IVGDR), are sensitive to the density
dependence of Egym [9,10], commonly parameterized in terms of the quantities J, L and
Kgym, which are the value of Egm(p) at saturation density (also known as symmetry
energy coefficient), and the quantities directly related to the derivative and the curvature
of Egym(p) at the saturation density, respectively. Furthermore, information on the density
dependence of Eym can also be obtained by studying the isotopic dependence of strength
functions, such as the difference between the strength functions of *°Ca and **Ca and
between ''*Sn and '**Sn. We note that the value of the neutron-proton asymmetry
parameter & = (N-Z)/A increases from *’Ca to *®Ca by a value of 0.167 which is
significantly larger than the change of 0.087 between ''*Sn and '**Sn.

In early analysis of the experimental data on the ISGMR [11,12], a semiclassical
model was adopted in order to relate the energy of the ISGMR to an incompressibility

coefficient K4 of the nucleus and carry out a Leptodermous (477

) expansion of Ka,
similar to a mass formula, to parameterize K, into volume (Knwm), surface (Ks), symmetry
(K;) and coulomb (K¢) terms [11,13,14]. Shlomo and Youngblood [14] showed that this
type of analysis could not provide a unique solution even including all available world
data as of that time. More recently [15] a semiclassical analysis of the ISGMR data in the
Sn isotopes demonstrated that the value obtained for K, is quite sensitive to the number of
terms employed in the Leptodermous expansion. In this work we adopt the microscopic

approach of fully self consistent Hartree-Fock (HF) based random phase approximation

(RPA), employing an effective nucleon-nucleon interaction. In the HF-RPA approach,



the values of Kyv and the density dependence of Egyn are then deduced from the
interaction that best reproduces the experimental data on the strength functions of the
giant resonance. (see the review in Ref. [3]). It is important to note that ground state
properties of nuclei are well described by the HF approximation, using an effective
nucleon-nucleon interaction, such as the Skyrme type interaction [16-18], with
parameters obtained by a fit to a selected set of experimental data on binding energies
and radii of nuclei [1,2]. It has also been demonstrated that HF-based RPA nicely
reproduces the properties of low lying collective states as well as of giant resonances
[1,2].

Recently the giant resonance region from 9.5 MeV < E, < 40 MeV in *Ca was
studied with inelastic scattering of 240 MeV a particles at small angles, including 0°.
Close to 100% of the ISGMR (E0), ISGDR (E1) and isoscalar giant quadrupole
resonance (E2) strengths have been located between 9.5 and 40 MeV in **Ca [19]. To
study the effect of neutron-proton asymmetry, a comparison with the available data for
*Ca [20-22], as well as with the results obtained within the HF-based RPA, was carried
out in Ref. [19]. The ISGMR has been found at somewhat higher energy in **Ca than in
*Ca, whereas self consistent HF-RPA calculations obtained using the SGII [23], KDEO
[24], SKM* [25] and SK255 [26] Skyrme interactions predict a centroid energy in this
neutron rich Ca isotope lower than in *'Ca .

In this work we extend our theoretical investigation by considering the isoscalar
and isovector giant resonances of multipolarities L = 0 - 3 in *°Ca and **Ca. In the next
section we review the basic elements of the self-consistent HF-based RPA theory for the

strength functions of isoscalar (7' = 0) and isovector (7' = ) giant resonances. In section 3



we present results of our calculations for the strength functions S(E) and centroid
energies Ecgn obtained for giant resonances of 7 = 0, / and multipolarities L = 0 - 3 in
*Ca and *Ca, using a wide range of 18 commonly used Skyrme type nucleon-nucleon
effective interactions. We pay attention to the issue of self-consistency and investigate
the sensitivities of Ecpy and of the isotopic differences Ecen(**Ca) - Ecpn(*°Ca) to
physical quantities, such as nuclear matter incompressibility coefficient, symmetry
energy density and effective mass, associated with the effective nucleon-nucleon
interactions, and compare the results with available experimental data. In the last section,

we discuss our results and present our conclusions.

2. Self-consistent HF based RPA Approach

In numerical calculations of the properties of giant resonances in nuclei within the
HF-based RPA theory, one starts by adopting an effective nucleon-nucleon interaction
Vi2, such as the Skyrme interaction, with parameters determined by a fit of the HF
predictions to experimental data on ground state properties, such as binding energies and
radii, of a selected set of a wide range of nuclei. Then, the RPA equations are solved
using the particle-hole interaction deduced from V;,, by employing a certain numerical
method [27-29], and the physical quantities of interest, such as the strength functions
S(E) and transition densities, are calculated. We point out that in a fully self-consistent
HF-based RPA calculations, one should include all the components of V;, in the RPA
calculations and use a sufficiently large particle-hole configuration space to insure

convergence. Necessary conditions for fully self consistent calculations are; (i) The



spurious isoscalar dipole state (due to center of mass motion) is obtained at zero energy;

and (ii) The energy weighted sun rules (EWSR) are fulfilled.

2.1 Skyrme Energy Density Functional
In our calculations we have adopted the following form for the Skyrme type

effective nucleon-nucleon interaction [30]:
- - 1 b - - - > N\7T
Vig = to(1 + xoP2)6 (7, — 75) + Eto(l + 1, PO)[kE,6(Fy — 7)) + 6 (7 — )k, ]
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where #;, x;, a, and W) are the parameters of the interaction and P is the spin exchange
operator, &, is the Pauli spin operator, Elz = —i(V)l — Vz) /2, and (lglz = —i((ﬁl — VZ) /
2. Here, the right and left arrows indicate that the momentum operators act on the right

and on the left, respectively. The corresponding mean-field V' and the total energy E of

the system are given by

o)
Var =%,  E=[HD)d, )

respectively, where H(r) is the Skyrme energy-density functional [31], obtained using Eq.

(1). It is given by [30],

H :K+HO+H3 +Heff+Hfin+Hso +Hsg+HC0ul’ (3)
where,
hZ
K=2q, @

is the kinetic-energy term. For the Skyrme interaction of Eq. (1), we have



Hy = %to[(z + xo)Pz - (2xo + 1)(95 + Przz)]a (5)
Hy = —t3p%[(2 + x3)p? — (23 + D (pZ + p2)]. (6)

Hepp = 2 [t1(2 + x1) + 12 + x)]1p + 2 [t,(22, + 1) = £12x1 + DI(Tp0p + Tupn),

(7)

1
Heip = 32 [3t;(2 +x) —t,(2 + xz)](Vp)z

— 36,23, + 1) + 6,22, + D[ (Vp,)” + (Vp,)?], (8)
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and

1 2, 1 2 2

Heg = —— (tyxs + )] + — (ts = t)(J5 +J3) - (10)

Here, Hy is the zero-range term, Hj is the density dependent term, H, s is an effective-
mass term, Hp;y, s a finite-range term, Hy, is a spin-orbit term, Hg, is a term that is due to
tensor coupling with spin and gradient and H,,,; is the contribution to the energy-density
that is due to the Coulomb interaction. In Egs. (5) — (10) p = p, + p,, T =1, + 7y, and
] = Jp + Jn, are the particle number density, kinetic-energy density and spin-density with
p and n denoting the protons and neutrons, respectively [30]. Note that the additional
parameter x,,, introduced in Eq. (9), allows us to modify the isospin dependence of the
spin-orbit term.
The contribution to the energy-density, Eq. (3), from the Coulomb interaction can
be written as a sum of a direct and an exchange terms:
Heow(r) = HE () + HER, (). (11)

For the direct term it is common to adopt the expression



() ,
HET () = S e2py (r) [ 22 dBr (12)

Irrl

and for the corresponding exchange term to use the Slater approximation

- 1/3
Coul (T) 4 ezpp (T) [3'%7()] . (13)

It is very important to emphasize that the definitions of Eqgs. (12) and (13) are not for the
bona fide direct and exchange terms since each of them includes the contributions of the
self-interaction term, which appear in opposite signs and cancel out in Eq. (11), see Ref.
[32].

The HF approach applied to finite nuclei violates translational invariance,
introducing a spurious center of mass (CM) motion. Thus, one must extract the
contributions of the CM motion to the binding energy B, rms radii and other observables.
To account for the CM correction to the total binding energy, one must subtract from it

the so-called CM energy given as,

Ecm :—(Pz) (14)

2mA

where, P = —ih },; V; is the total linear momentum operator.

During the last four decades, many Skyrme type effective nucleon-nucleon
interactions of different forms were obtained by fitting the HF results to selected sets of
experimental data [33,34]. We emphasize that in this work we consider the specific form
of Eq. (1) for the Skyrme type interaction. The values of the Skyrme parameters of the
interactions adopted in this work are listed in Table 1. It is very important to note that in
determining the parameters of the Skyrme interaction, Eq. (1), several approximations,

concerning the terms of Egs. (4), (10), (11) and (14), were made in the HF calculations.



These approximations, which should be taken into account for a proper application of the

specific interaction in fully self-consistent HF based RPA calculations, are:

(@)

(ii)

(iii)

(iv)

The Kkinetic term, Eq. (4). In some interactions the mass of the proton is
taken to be equal to that of the neutron and a certain value for the nucleon
mass is adopted. In other interactions the mass of the proton is taken to be
different than that of the neutron.

The spin-density terms, Eq. (10). In some interactions the contributions from
the spin-density term as given by Eq. (10), are ignored. We note that

contributions from Eq. (10) are crucial for the calculation of the Landau

parameter G,.

The Coulomb term, Eq. (11). In some interactions the Coulomb term of Eq.
(13) is omitted. It is important to note that by neglecting the term of Eq. (13),
one neglects the bona fide Coulomb exchange term together with the spurious
contribution of the self-interaction term. This leads to a contribution to
Coulomb displacement energies, obtained from Eq. (12), which is in better
agreement with experimental data [35], since in the HF calculations with
Skyrme interactions one neglects the contributions due to charge symmetry
breaking in the nucleon-nucleon interaction and the contribution to Coulomb
energy associated with long range correlations. Also, in some interactions the
charge density is used in Eq. (11), instead of the point proton density.

The center of mass correction, Eq. (14). Traditionally, one simplifies the

computation of Eq. (14) by taking into account only the one-body parts of it,

which can be easily achieved by replacing %_)%[1 —ﬂ in the kinetic-



energy term. In this case, the effects of neglecting the two-body part of Eq.
(14) are compensated by renormalization of the force parameters. This may
induce in the forces an incorrect trend with respect to the nucleon number A
that becomes visible in the nuclear matter properties. A more appropriate
approach, used in some interactions, is to take into account the contribution of
the two body terms by using the HF single particle wavefunctions or by
employing a simple scheme to evaluate Eq. (14).

The approximations that were used to obtain the Skyrme interactions adopted in this

work are listed for each interaction in Table 2.

2.2 RPA calculations of strength functions

In this work we have carried out fully self-consistent HF-based RPA
calculations for electric giant resonances in *’Ca and **Ca using the effective energy
density functionals (EDF) given by Egs. (3) to (14) with Tables 1 and 2 and employing
the numerical method for RPA described in Ref. [28,36,37], which is formulated in
terms of coordinate like Q (time-even) and momentum like P (time-odd) particle-hole (p-
h) operators and adapted for a given EDF. We point out that in order to insure self-
consistency we have carried out the calculations using a large p-h space and included all
the terms of the p-h residual interaction (time-even and time-odd) which are associated
with the EDF used in the HF calculations. No additional time-odd residual interactions

were added. For a given scattering operator £, we have calculated the strength function

S(E) = X,I(0IF,I)I?8(E; — Eo). (15)



Here, |0) is the RPA ground state and the sum is over all RPA excited states [j) with the
corresponding excitation energies £;. We adopt the single particle scattering operator
Fp =% f(r)Y, (@), (16)
for isocalar (7 = 0) excitations and
Fy =230 f0)Yio(m) =52 £ (1) Yo () (17)
for isovector excitations (7= 1). In Egs. (16) and (17) we use the operator f(r) = r, for
the isovector dipole (=1, L=1) and f(r) =13 — (5/3)(r?)r for the isoscalar dipole
(T=0, L=1), to eliminate possible contribution of the spurious state mixing [38,39]. For
the isoscalar and isovector monopole (L = 0), quadrupole (L = 2) and octopole (L=3)

2

excitations we use the operators 72, r2, and r3, respectively. We then determine the

energy moments of the strength function,
my = [” E*S(E) dE . (18)

The centroid energy, Ecgy, is then obtained from

m

Ecen =—. (19)

mo
The energy moment m, can also be calculated using the HF ground state wave function,
thereby leading to an energy weighted sum rule (EWSR) [1, 10]. For the isoscalar F; in

Eq. (16), the EWSR is given by,

1

my(L,T = 0) = —

hZ
2 [ gu(r) p(r)anrar, (20)
where p(r) is the HF ground-state matter density distribution and
ar)? £\?
9. = (L) +La+n (L) @1)
For the isovector (7=1) operator F; of Eq. (17), the EWSR is given by

my(L,T=1) = %WH(L;T = 0)[1+x— Ky, (22)



where x is the enhancement factor which is due to the momentum dependence of the

effective nucleon-nucleon interaction and is given by

K = (1/2)[t1(A+x1/2)+t(1+x1/2)] %
(h%2/2m)(4NZ/A2)

2 [ gL pp(r)pp(r)amrdr
J9LMp(r)anridr

, (23)
where t; and x; are the parameters of the Skyrme interaction. The correction ky,, which
arises because of the difference in the profiles of the neutron and proton density
distributions [i.e., because p, (1) — p, (1) # %p(r)], is given by

_ =2) A [91(M)[Zpn()-Npp(r)]4mr?dr
Knp = A NZ [gL(Mp(r)anridr ’ (24)

We have carried out fully self-consistent Hartree-Fock (HF) based RPA
calculations of the isoscalar giant monopole resonance (ISGMR), dipole (ISGDR),
quadrupole (ISGQR), and the octopole (ISGOR) strength functions, adopting the
scattering operator of Eq. (16), and for the isovector giant monopole resonance
(IVGMR), dipole (IVGDR), quadrupole (IVGQR) and octopole (IVGOR) strength
functions, adopting the scattering operator of Eq. (17), for “°Ca and for **Ca, using a wide
range of 18 Skyrme type effective interactions (Table 1). In the next section we present

the results of our calculations and compare with available experimental data.

2.3 Equation of state of nuclear matter
In the vicinity of the saturation density p, of symmetric NM, the EOS can be

approximated by

Eolp] = Elpo] + & Ky (520)’, (25)

Po




where Ey[p] is the binding energy per nucleon and Kyy is the incompressibility

9%E,
dp?

coefficient which is directly related to the curvature of the EOS, Kyy = 9p3
Po

Similarly, the EOS of asymmetric NM, with proton density p, and neutron density py,

can be approximated by

E[0p pn] = Eolp] + Eqymlp] (222) 26)

where Egypy[p] is the symmetry energy at matter density p, approximated as

1, (o 1 00 )?
Esym[p] =]+ EL (%) + EKsym (Pp::o) > (27)
. . . a sym

where J = Egym[po] is the symmetry energy at saturation density py, L = 3p, Ea:)' ,

Po
62Es m
and Kgym = 9p —ap;'

Po

Table 3 contains the values of the physical quantities of symmetric nuclear matter
associated with these Skyrme interactions: the binding energy per nucleon E/A, the
saturation matter density p,, the effective mass m*/m, the incompressibility coefficient of
SNM, Knw, the coefficients associated with the symmetry energy density J, L and Ky,
at saturation density po (Eq. (27)) and «x , the NM value of the enhancement factor of the
EWSR of the IVGDR, Egs (22), obtained from (23) with using the NM saturation matter

density.

3. Results
We now present results of our fully self-consistent HF based RPA calculations of
the strength functions and centroid energies of isoscalar and isovector giant resonances of

multipolarities L = 0 - 3 in *°Ca and *Ca, obtained for 18 widely used Skyrme type



interactions shown in Table 1: SGII [23], KDEO [24], KDEOv1 [24], SKM* [25], SK255
[26], SkI3 [40], SkI4 [40], SKIS [40], SV-bas [41], SV-min [41], SV-m56-O [42], SV-
m64-0 [42], SLy4 [43], SLy5 [43], SLy6 [43], SKMP [44], SkP [45], and SkO’ [46].
These interactions are associated with the ranges of NM properties (see Table 3): E/A =
15.56 — 16.33 MeV, po = 0.156 - 0.165 fm™, Kny = 201 — 258 MeV, J = 26.80 — 37.40
MeV, L =31 - 129 MeV, Kym = -267 — 160 MeV, m*/m = 0.56 — 1.00 and x = 0.08 —
0.71.

In Figures 1-4 we display the HF-based RPA results (solid lines) for the
distribution of the energy-weighted strength normalized to one (ES(E)/EWSR) for the
isoscalar and isovector giant resonances of multipolarities L = 0-3 in *Ca and **Ca,
obtained using the KDEO [24] interaction that is representative of the strength
distributions for the rest of the interactions. For the purpose of comparison with
experiment a Lorenzian smearing of a 3 MeV width was used in the calculation. The
experimental data [19,21] are shown as histograms.

To investigate the sensitivity of the energies of the giant resonances in *°Ca and
®Ca to NM properties (Table 3) we calculated the Pearson correlation coefficients (a
measure of linear correlation) between the centroid energies Ecpn, Eq. (19), and the
properties of NM. We used a small smearing width (0.05 MeV) to insure accuracy for
Ecen. For a proper comparison with experiment, we used the experimental excitation
energy ranges in determining the centroid energies. We use the excitation energy range of
9.5 — 40 MeV [19,21] for the ISGMR and the ISGQR and the range of 20 — 40 MeV
[19,21] for the ISGDR. For the ISGOR we use the appropriate excitation energy range of

20 — 60 MeV. We use the excitation energy range of 0 — 60 MeV for the IVGMR [10,47],



the range of 0 — 40 MeV for the IVGDR [48,49,50], the range of 9 — 60 MeV for the
IVGQR [51] and the range of 25— 60 MeV for the IVGOR (see also Figures 1-4).
ISGMR

In Figure 5 we compare the experimental data [19,21] of the ISGMR centroid
energies of YCa (a), *Ca (b), and the energy difference, AEcpn = Ecen(*Ca) —
Ecen(*’Ca), between **Ca and *°Ca (c) with the results of fully self-consistent HF-based
RPA calculations (full circles), obtained using the 18 Skyrme interactions of Table 1. The
results obtained with violation of self-consistency, by the neglecting the Coulomb and the
spin orbit particle-hole interactions in the RPA calculations, are shown in Fig. 5d. The
calculated values are plotted as a function of Kny. The experimental values of Ecpn =
19.18 +/- 0.37 MeV for “’Ca, Eceny = 19.88 +/- 0.16 MeV for **Ca [19,21] and their
difference are shown in Figure 5 as the regions between the dashed lines. A very strong
correlation between Ecpny of “0Ca and Ecgn of Ca can be seen with Kxm. This is
expected, since the ISGMR centroid energy is very sensitive to the value of Kywm [1,3,8].
The ISGMR centroid energies for **Ca are all higher than the experimental value 19.18
+/- 0.37 MeV. The *Ca ISGMR centroid energies are more consistent with the
experimental value 19.88 +/- 0.16 MeV. While the experimental data show that the
ISGMR in *Ca lies at lower energy than in **Ca, 17 of the Skyrme interactions (Table 1)
show the ISGMR in *°Ca at a higher energy than in **Ca, while the 18" interaction (SkI3)
shows them at essentially the same energy in *’Ca and **Ca. For not fully self-consistent
RPA calculations, the results for some interactions leads to spurious agreement with the
experimental data for the **Ca — **Ca energy difference as can be seen in Fig. 5d. We also

found a medium correlation between the ISGMR energies and the effective mass m*/m,



which is a reflection of the strong correlation between Kxy and m*/m seen in Figure 6
(see also Ref. [8]). Figure 6 also shows the correlation of the saturation symmetric NM
density po and the symmetry energy coefficient J with Ky .

To investigate the dependence of the energy difference AEcgn = Ecen(*Ca) —
Ecen(*°Ca) between the ISGMR in **Ca and in *°Ca on the symmetry energy density,
Figure 7 shows the results of our fully self-consistent HF based RPA calculations (full
circles), using the Skyrme interactions (Table 1) having nuclear matter symmetry energy
coefficient J = 26.80 —36.7 MeV. No correlation is found between AEcgn and J. Similar
results were obtained for L, Ky and Knw, which can be easily understood as a reflection
of the correlation of Kgym, J and Kym with L shown in Figure 8.

Figure 9 shows the correlation of the ISGMR centroid energies with Wy, the
strength of the spin-orbit interaction. There is a positive strong correlation between the
*Ca - *Ca energy difference and W,. Similar results were obtained for the ISGDR,
ISGQR and the ISGOR.

ISGDR

In Figure 10 the results of the self-consistent HF-based RPA calculations (full
circles) for the ISGDR centroid energies of “Ca (a), **Ca (b), and the **Ca — *Ca energy
difference (c), are compared with the experimental data [19,21]. The experimental values
of Ecen = 23.36 +/- 0.70 MeV for “’Ca, Ecpy = 27.30 +/- 0.15 MeV for **Ca and their
difference are shown in Figure 10 as the regions between the dashed lines. The HF-RPA
energies, obtained for the interactions of Table 1, are plotted as a function of Kywm. For all
the Skyrme interactions of Table 1, the calculated ISGDR centroid energies are higher

than the experimental values by 1.5 — 6 MeV and the calculated **Ca - *°Ca energy



difference, although positive, are smaller than the experimental value. We note that the
experimental results for the fraction of the EWSR for the ISGDR in *Ca and *Ca are
137 +/- 20% and 62 +/- 20% [19,21], respectively, compared to the calculated values of
100%. Therefore, the comparison between the ISGDR in **Ca and *°Ca might be
misleading since only 62 +/- 20% of the EWSR of the ISGDR in **Ca was found
experimentally. A strong correlation is also found between the ISGDR energy of *’Ca
with both Kyyv and m*/m and similarly for BCa.
ISGQR

Figure 11 shows, as a function of m*/m, our HF based RPA results (full circles)
of the ISGQR centroid energies Ecgn, of YCa (a), BCa (b), and the BCa - YCa energy
difference (c), obtained using the Skyrme type interactions of Table 1. The experimental
values of Ecpxy = 17.84 +/- 0.43 MeV for “’Ca [19], Ecen = 18.61 +/- 0.24 MeV for *Ca
[21] and their difference are shown in Figure 11 as the regions between the dashed lines.
As seen in Figure 11, a very strong correlation exists between the ISGQR energy of *’Ca
with m*/m and similarly for **Ca. We find that interactions having m*/m = 0.65 — 0.8
reproducing the experimental data of the ISGQR.
ISGOR

Figure 12 shows our HF based RPA results (full circles) of the ISGOR centroid
energies Ecgn, of *Ca (a), *Ca (b), and the **Ca - *°Ca energy difference (c), using the
Skyrme type interactions of Table 1. A very strong correlation exists between the ISGOR
of **Ca and *Ca with m*/m as can be seen in Figure 12. Using the result that interactions
having m*/m = 0.65 — 0.8 reproduce the experimental data of the ISGQR we can predict

the values of the Ecgn of the ISGOR in “0Ca and *®Ca to be in the region of 30 — 34 MeV.



For completeness we present in Table 4 the values of the Pearson correlations
coefficients among the various NM properties and spin-orbit strength Wy with the
centroid energies of the isoscalar (T0O) giant resonances of multipolarities L= 0 — 3. We
find no correlations or very weak correlations between the **Ca — *’Ca centroid energy
differences of the isoscalar giant resonances with the coefficients J, L, or Ky, associated
with the density dependence of the symmetry energy and a strong correlation with the
value of W,.

IVGMR

For the IVGMR, an isovector compression mode, we show the HF-RPA results
(full circles), obtained using for the Skyrme interactions of Table 1, for the centroid
energies Ecpn of “Ca (a), **Ca (b) and the **Ca - *°Ca energy difference (c) as a function
of Kywm in Figure 13 and as a function of J in Figure 14. The experimental value of Ecpny =
31 +/- 2 MeV for *°Ca [10,46] is shown as the region between the dashed lines. We find a
medium correlation between Ecgy of the IVGMR with Ky and a weak correlation with
J, L or K¢m It can be seen from Figure 14 that a stronger correlation between the
IVGMR energy and Ky is obtained for a fixed value of J (at 27 and 30 MeV).

Figure 15 shows the IVGMR centroid energies as a function of Wy, the

strength of the spin-orbit interaction. A strong positive correlation between the **Ca -

*Ca energy difference and the value of Wy is seen. Similar results were obtained for the
IVGDR, and the IVGQR.
IVGDR

Figure 16 shows, as a function of J, our HF based RPA results (full circles) of the

IVGDR centroid energies Ecpn of *Ca (a), *Ca (b), and the **Ca - *°Ca energy difference



(c), obtained using the Skyrme type interactions of Table 1. The experimental values of
Ecen = 19.8 +/- 0.5 MeV for “’Ca, Ecex = 19.5 +/- 0.5 MeV for **Ca [48,49,50] and their
difference are shown in Figure 16 as the regions between the dashed lines. Weak
correlations can be seen between Ecgn of “0Ca and Ecgn of Ca with J. Similar results
were obtained for L and Kym.

Figure 17 shows the IVGDR centroid energies as a function of «, the
enhancement factor in the EWSR of the IVGDR. Strong positive correlations between the
IVGDR centroid energy of **Ca and of **Ca with « is seen in the Figure.
IVGQR
Figure 18 shows, as a function of m*/m, the HF based RPA results (full circles) of the
IVGQR centroid energies Ecgn of YCa (a), BCa (b) and the BCa -YCa energy difference
(c), obtained using the Skyrme type interactions of Table 1. The experimental data of
Ecen = 31 +/- 1.5 MeV for *°Ca [51] is shown as the region between the dashed lines.
Medium correlations between m*/m and Ecgn of “Ca and Ecgn of *Ca can be seen in
Figure 18.
IVGOR

Figure 19 shows, as a function of m*/m, the HF based RPA results (full circles) of
the IVGOR centroid energies Ecpn of *Ca (a), *Ca (b) and the **Ca - *Ca energy
difference (c), obtained using the Skyrme type interactions of Table 1. Medium
correlations between m*/m and Ecgy of “0Ca and Ecgn of *8Ca can be seen in F igure 19.

For completeness we present in Table 5 the values of the Pearson correlation
coefficients among the various NM properties and spin-orbit strength Wy, with the

centroid energies of the isovector (T1) giant resonances of multipolarities L= 0 — 3.



As shown in Table 5, only weak correlations exist between the Ecgy of the isovector giant
resonances of *’Ca or **Ca with J, L and Kqym. A strong correlation is found between the
*Ca - *Ca centroid energy difference of the IVGMRs, IVDGRs, and IVGQRs with W,

We also note the strong correlation between the Ecpy of the IVGDR and the value of k.

4. Conclusions

We have presented results of our fully self-consistent HF-RPA calculations using 18
commonly employed Skyrme type interactions of Table 1, for the centroid energies of
isoscalar and isovector giant resonances of multipolarities L = 0 — 3 in **Ca and **Ca and
compared with available experimental data. We have investigated and discussed the
sensitivity of the Ecgn of the giant resonances to various properties of NM. In particular
we point out that:

e For all the 18 Skyrme interactions used in our HF-based RPA calculations (Table 1)
the *Ca — *°Ca centroid energy differences of the ISGMR are smaller than the
experimental data. For 17 of the Skyrme interactions used in our HF-based RPA
calculations the *’Ca ISGMR lies above that for **Ca. The 18" interaction (SkI3)
predicts the ISGMR in about the same location in both nuclei.

e We have demonstrated the very strong to strong correlations of the Ecpn of the
compression modes, the ISGMR and the ISGDR, with the NM incompressibility
coefficient Ky and noted that the sensitivity of Ecpn to the effective mass is a
reflection of the correlation between m*/m and Ky, existing in the Skyrme

interactions used in our calculations.



For all the adopted Skyrme interactions, the calculated centroid energies of the
ISGDR in *°Ca and **Ca are consistently higher than the experimental data (by about
1.5—-6 MeV).

We have demonstrated the very strong correlation of Ecgy of the ISGQR and the
ISGOR with m*/m. We have found that an agreement with the experimental data for
Ecen of the ISGQR in “0Ca and *Ca is obtained for a value of the effective mass in
the range of m*/m = 0.65 — 0.8. Using this result we can predict that the values of
the Ecgy of the ISGOR in *°Ca and **Ca should be in the region of 30 — 34 MeV.

We find no correlations or very weak correlations between the **Ca — *°Ca centroid
energy differences of the isoscalar giant resonances of multipolariies L = 0 -3 with
the coefficients J, L, or Kym, associated with the density dependence of the
symmetry energy. Similar results were found for the isovector giant resonances of
multipolarities L =0 — 3.

We find positive strong correlations between the **Ca — *’Ca centroid energy
differences (AEcgn) of the isoscalar and isovector giant resonances with W,

For the IVGMR, the isovector compression mode, we find a medium correlation
with Knwv and a weak correlation with J, L or Kgym,

We find a weak correlation between the energies of the IVGDR of *°Ca (and **Ca)
and the quantities associated with the density dependence of the symmetry energy.
We find a strong correlation between the energies of the IVGDR of “Ca (and *Ca)
and the value of k.

For the IVGQR and IVGOR we find a strong correlation between Ecgy and m*/m.



The disagreement between the HF-RPA results and the experimental data for the centroid
energies of the ISGMR and ISGDR in **Ca and **Ca remain unsolved problems which
call for possible extension of the EDF used in the work, microscopic calculations of the
excitation cross sections of giant resonances [38,52] and/or going beyond the HF-RPA

theory [53].
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FIGURE CAPTIONS

Fig. 1. (Color online) Self-consistent HF-based RPA results (solid lines) for the

distribution of the energy-weighted strength, normalized to one (fraction of EWSR), for

the isoscalar monopole (EO0), dipole (E1), quadrupole (E2), and octopole (E3) in HCa,

obtained using the KDEO [24] Skyrme interaction. For the purpose of comparison with



experiment a Lorenzian smearing of a 3 MeV width was used in the calculation. The
experimental data [21] are shown as histograms.

Fig. 2. (Color online) Same as Fig. 1 except for **Ca. Experimental data is from Ref. [19].
Fig. 3. (Color online) Self-consistent HF-based RPA results (solid lines) for the
distribution of the energy-weighted strength, normalized to one (fraction of EWSR), for
the isovector monopole (E0), dipole (E1), quadrupole (E2), and octopole (E3) in OCa,
obtained using the KDEOQ [24] Skyrme interaction. A Lorenzian smearing of a 3 MeV
width was used in the calculation.

Fig. 4. (Color online) Same as Fig. 3 except for **Ca.

Fig. 5. Comparison of experimental data [19,21] of the ISGMR centroid energies of *’Ca
(a), *Ca (b) and the *Ca - *°Ca energy difference (c), shown as the regions between the
dashed lines, with the results of fully self-consistent HF based RPA calculations (full
circles) obtained using the Skyrme interactions of Table 1, plotted vis. Knym. The results
obtained with violation of self-consistency in the RPA calculations, are shown in (d).

Fig. 6. The values of py, m*/m, and J are plotted vs. Knv, for the Skyrme interactions of
Table 1.

Fig 7. The HF based RPA results (full circles) of the ISGMR centroid energies Ecgn of
*Ca (a), ®*Ca (b) and the *Ca — *°Ca energy difference (c), obtained using the Skyrme
type interactions of Table 1, as a function of the NM symmetry energy at saturation
density J. The limits on the experimental data are shown by the dashed lines.

Fig. 8. The values of Km, J, and Kxw are plotted vs. L, for the Skyrme interactions of
Table 1.

Fig. 9. Same as Fig. 7 except as a function of the strength Wy of the spin-orbit interaction.



Fig. 10. Same as Fig. 7 except for the ISGDR as a function of Knw.

Fig. 11. Same as Fig. 7 except for the ISGQR as a function of m*/m.

Fig. 12. Same as Fig. 11 except for the ISGOR.

Fig. 13. Same as Fig. 7 except for the IVGMR as a function of Ky The experimental
data is taken from Ref. [10,47]

Fig. 14. Same as Fig. 13 except as a function of J.

Fig. 15. Same as Fig. 13 except as a function of W,

Fig. 16. Same as Fig. 7 except for the IVGDR The experimental data is taken from Ref.
[48,49,50].

Fig. 17. Same as Fig. 16 except as a function of k.

Fig. 18. Same as Fig. 11 except for the IVGQR The experimental data is taken from Ref.
[51].

Fig. 19. Same as Fig. 18 except for the IVGOR.



Table 1. Values for the parameters for the following Skyrme interactions: SGII [23],

KDEO [24], KDEOv1 [24], SKM* [25], SK255 [26], SkI3 [40], SkI4 [40], SkI5 [40], SV-

bas [41], SV-min [41], SV-m56-O [42], SV-m64-O [42], SLy6 [43], SLy4 [43], SLy5

[43], SKMP [44], SkP [45] and SkO’ [46]. These parameters are given in the following

units: to [MeV fin’], t; [MeV fm’], t, [MeV fm’], t; [MeV fm* "], W, [MeV], and the

remaining parameters are dimensionless.

Force 1o

SGlII -2645.00
KDEO -2526.51
KDEOv1l  -2553.08
SKM* -2645.00
SK255 -1689.35
Ski3 -1762.88
Skl4 -1885.83
SkI5 -1772.91

SV-bas -1879.64
SV-min -2112.25
SV-m56-0 -1905.40

SV-m64-0O -2083.86
SLy4 -2488.91
SLy5 -2484.88
SLy6 -2479.50
SkMP -2372.24
SkP -2931.70
SkO' -2099.42

4
340.00
430.94
411.70
410.00
389.30
561.61
473.83
550.84
313.75
295.78
571.19
484.60
486.82
483.13
462.18
503.62
320.62
301.53

t, t3 W Xo X1 X2 X3 Xw
-41.90 15595.00 105.00 0.0900 -0.0588 1.4250 0.0604 1.0000

a
1/6

-398.38 14235.52 128.96 0.7583 -0.3087 -0.9495 1.1445 1.0000 0.1676
-419.87 14603.61 124.41 0.6483 -0.3472 -0.9268 0.9475 1.0000 0.1673

-135.00 15595.00 130.00 0.0900 0.0000 0.0000 0.0000 1.0000

1/6

-126.07 10989.60 95.39 -0.1461 0.1660 0.0012 -0.7449 1.0000 0.3563

-227.09 8106.20 188.51 0.3083 -1.1722 -1.0907 1.2926 0.0000
1006.86 9703.61 366.19 0.4051 -2.8891 -1.3252 1.1452 -0.9850
-126.69 8206.25 123.63 -0.1171 -1.3088 -1.0487 0.3410 1.0000

1/4
1/4
1/4

112.68 12527.38 124.63 0.2585 -0.3817 -2.8236 0.1232 0.5474 0.3000
142.27 13988.57 111.29 0.2439 -1.4349 -2.6259 0.2581 0.8255 0.2554
1594.80 8439.04 133.27 0.6440 -2.9737 -1.2553 1.7966 0.7949 0.2000
1134.35 10720.67 113.97 0.6198 -2.3327 -1.3059 1.2101 1.1042 0.2000

-546.39 13777.00 123.00 0.8340 -0.3440 -1.0000 1.3540 1.0000
-549.40 13763.00 126.00 0.7780 -0.3280 -1.0000 1.2670 1.0000
-448.61 13673.00 122.00 0.8250 -0.4650 -1.0000 1.3550 1.0000

57.28 12585.30 160.00 -0.1576 -0.4029 -2.9557 -0.2679 1.0000
-337.41 18708.97 100.00 0.2922 0.6532 -0.5373 0.1810 1.0000
154.78 13526.46 287.79 -0.0295 -1.3257 -2.3234 -0.1474 -0.5760

1/6
1/6
1/6
1/6
1/6
1/4



Table 2. Same as Table 1 with the following conditions defining the interactions: HBTM,
for proton and neutron h*/2m = 20.7525 MeV fm® for 0, for proton i*/2m = 20.7213 MeV
fm? and neutron h*/2m = 20.7498 MeV fm? for 1, and for proton and neutron h*/2m =
20.7355 MeV fm? for 2, JTM, contribution to the spin-orbit potential from t; and t; is
taken for 1 and not for 0, CEX, coulomb-exchange on for 1 and off for 0, RHOC, proton-
density is used for coulomb potential for 0 and charge-density is used for coulomb

potential for 1, and ZPE, center of mass correction is taken as (1-1/A) factor on the mass

for 1 and is computed explicitly a posteriori as Eqp = ﬁ (P?) for 0.

Force Ref. HBTM JTM CEX RHOC ZPE
SGlI [23] © 0 1 0 0
KDEO [24] 2 1 0 0 1
KDEOV1  [24] 2 1 0 0 1
SKM* [25] © 0 1 0 0
SK255 [26] 2 1 0 0 1
ski3 [40] o0 0 1 0 1
Skl4 [40] 0 0 1 0 1
Ski5 [40] o0 0 1 0 1
SV-bas [41] 1 0 1 0 1
SV-min  [41] 1 0 1 0 1
SV-m56-0 [42] 1 0 1 0 1
SV-m64-0 [42] 1 0 1 0 1
SLy4 [43] 2 0 1 0 0
SLy5 [43] 2 1 1 0 0
SLy6 [43] 2 0 1 0 1
SkmP [44 0 0 1 0 0
SkP [45] 2 1 1 0 0
sko' [46] 2 1 1 0 1



Table 3. Properties of symmetric nuclear matter at nuclear saturation density po [fm’]
associated with the Skyrme interactions of Table. Also shown are the total binding energy
per nucleon E/A [MeV], isoscalar effective mass m*/m, incompressibility modulus Knm
[MeV], the coefficients related to the symmetry energy density J [MeV], L [MeV] and

Ksym [MeV], and the enhancement factor of the EWSR of the IVGDR, «.

E/A Po m*/m  Kyw J L Ksym K
SGll 15.59 0.159 0.79 215.0 26.80 37.63 -145.90 0.49
KDEO 16.11 0.161 0.72 228.8 33.00 45.22 -144.78 0.30
KDEOv1 16.23 0.165 0.74 227.5 3458 54,70 -127.12 0.23
SKM* 1578 0.160 0.79 216.7 30.03 45.78 -155.94 0.53
SK255 16.33 0.157 0.80 255.0 37.40 95.00 -58.33 0.54
Ski3 1596 0.158 0.58 258.1 34.80 100.52 73.04 0.25
Skl4 15,92 0.160 0.65 2479 29.50 60.39 -40.56 0.25
SkiI5 15.83 0.156 0.58 255.7 36.70 129.33 159.57 0.25

SV-bas 1590 0.160 0.90 234.0 30.00 45.21 -221.75 0.40
SV-min 1591 0.161 0.95 222.0 30.01 44.76 -156.57 0.08
SV-m56-O 15.81 0.157 0.56 254.6 27.00 49.96 -45.04 0.60
SV-m64-0 15.82 0.159 0.64 2415 27.01 30.63 -144.76 0.60

SLy4 1597 0.160 0.70 2299 32.00 45.96 -119.73 0.25
SLy5 1598 0.160 0.70 2299 32.03 48.27 -112.76 0.25
SLy6 1592 0.159 0.69 2298 31.96 47.44 -112.71 0.25
SkMP 1556 0.157 0.65 2309 29.88 70.31 -49.82 0.71
SkP 1593 0.162 1.00 200.8 32.98 45.21 -266.60 0.30

SkO' 1575 0.160 0.90 2223 31.95 6893 -7882 0.15



Table 4. Pearson correlation coefficients among the various NM properties and spin-orbit
strength W, with the centroid energies of the isoscalar TO giant resonances of

multipolarities L= 0 — 3.

m*/m  Kym J L Kym K Wpo(Xw=1)
LOTO Ca40 Een -0.75 0.95 0.07 0.56 0.78 0.20 0.00
LOTO Ca48 Ecn -0.79 0.88 0.02 0.56 0.80 0.24 0.30
LOTO AEen -0.31  0.07 -0.11 0.16 0.25 0.18 0.73
L170 Ca40 Ecen -0.84 0.74 -0.20 0.30 0.64 0.47 0.24
L170 Ca48 Ecn -0.89 0.71 -0.11 0.25 0.62 0.25 0.46
L17T0 AEcen  -0.30  0.14 0.11 -0.02 0.12 -0.28 0.54
L2T0 Ca40 Ecn -0.97 0.81 -0.03 0.40 0.76 0.22 0.48
L2T0 Ca48 Ecn -0.97 0.75 -0.06 0.36 0.74 0.22 0.57

L2T0 AEcen  -0.20 -0.26 -0.20 -0.18 -0.02 0.00 0.52
L3T0 Ca40 Ecen -0.96 0.80 -0.05 0.35 0.73 0.23 0.41
L3T0 Ca48 Ecen -0.98 0.73 -0.08 0.33 0.72 0.27 0.59

L3T0 AEcen -0.11 -0.25 -0.13 -0.07 -0.01 0.16 0.56



Table 5. Pearson correlation coefficients among the various NM properties and spin-orbit
strength W, with the centroid energies of the isovector T1 giant resonances of

multipolarities L = 0 — 3.

m*/m  Kym J L Kym K Wpo(Xw=1)
LOT1 Ca40 Ecen -0.54 0.66 -0.33 0.10 0.31 0.61 0.01
LOT1 Ca48 Ecn -0.64 0.62 -0.35 0.17 0.40 0.74 0.36
LOT1 AEgen -0.25 -0.10 -0.06 0.16 0.22 0.31 0.70
L171 Ca40 Ecen -0.34 0.31 -0.58 -0.40 -0.17 0.66 -0.07
L17T1 Ca48 Ecn -0.36 0.28 -0.63 -0.40 -0.17 0.73 0.23
L1T1 AEcen  -0.01 -0.22 -0.09 0.09 0.07 0.14 0.67
L2T1 Cad40 Ecn -0.64 0.52 -0.47 -0.14 0.16 0.68 0.43
L2T1 Ca48 Ecn -0.70 0.49 -0.50 -0.14 0.19 0.73 0.66

L2T1 AEcen  -0.33 -0.10 -0.18 0.02 0.14 0.27 0.71
L1371 Ca40 Ecen -0.73 0.61 -0.33 0.04 036 0.60 0.37
L1371 Ca48 Ecen -0.71 0.56 -0.43 -0.07 0.26 0.65 0.42

L3T1 AEcen 034 -0.42 -0.21 -0.41 -0.47 -0.08 -0.11
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Fig. 1. (Color online) Self-consistent HF-based RPA results (solid lines) for the
distribution of the energy-weighted strength normalized to one (fraction of EWSR) for
the isoscalar monopole (E0), dipole (E1), quadrupole (E2), and octopole (E3) in *Ca,
obtained using the KDEO [24] Skyrme interaction. A Lorenzian smearing of a 3 MeV
width was used in the calculation. The experimental data [21] are shown as histograms.
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obtained using the KDEO [24] Skyrme interaction. A Lorenzian smearing of a 3 MeV
width was used in the calculation.
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