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incompressibility coefficient, symmetry energy density and effective mass, associated 

with the Skyrme interactions and compare the results with the available experimental 
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1. Introduction 

 The study of collective modes in nuclei has been the subject of extensive 

theoretical and experimental studies during several decades [1-3], since it contributes 

significantly to our understanding of bulk properties of nuclei, their non-equilibrium 

properties and properties of the nuclear force. Of particular interest is the equation of 

state (EOS), i.e. the binding energy per nucleon as a function of the neutron (N) and 

proton (Z) densities, of infinite nuclear matter (no Coulomb interaction). The EOS is an 

important ingredient in the study of properties of nuclei at and away from stability, the 

study of structure and evolution of compact astrophysical objects, such as neutron stars 

and core-collapse supernovae, and the study of heavy-ion collisions (HIC) [4,5]. The 

saturation point of the equation of state (EOS) for  symmetric (N=Z) nuclear matter (NM) 

is well determined from the measured  binding energies and central matter densities of 

nuclei, by extrapolation to infinite NM [1,2]. To extend our knowledge of the EOS 

beyond the saturation point of symmetric NM, an accurate value of the NM 

incompressibility coefficient KNM, which is directly related to the curvature of the EOS of 

symmetric NM, is needed. An accurate knowledge of the dependence of the symmetry 

energy, Esym(ρ), on the matter density ρ is needed for the EOS of asymmetric NM.  

 There have been many attempts over the years to determine KNM and Esym(ρ) by 

considering physical quantities which are sensitive to the values of KNM and Esym(ρ) 

[3,4,6,7]. In this work we investigate the sensitivity of the strength function distributions 

of the isoscalar and isovector giant resonances with multipolarities L = 0-3 of the isotopes 

40Ca and 48Ca to bulk properties of NM, such as KNM, Esym and the effective mass m*. It 

is well known that the energies of the compression modes, the isoscalar giant monopole 



resonance (ISGMR) and isoscalar giant dipole resonance (ISGDR), are very sensitive to 

the value of KNM [1,3,8].  Also the energies of the isovector giant resonances, in 

particular, the isovector giant dipole resonance (IVGDR), are sensitive to the density 

dependence of Esym [9,10], commonly parameterized in terms of the quantities J, L and 

Ksym, which are the value of Esym(ρ) at saturation density (also known as symmetry 

energy coefficient), and the quantities directly related to the derivative and the curvature 

of Esym(ρ) at the saturation density, respectively. Furthermore, information on the density 

dependence of Esym can also be obtained by studying the isotopic dependence of strength 

functions, such as the difference between the strength functions of 40Ca and 48Ca and 

between 112Sn and 124Sn. We note that the value of the neutron-proton asymmetry 

parameter δ = (N-Z)/A increases from 40Ca to 48Ca by a value of 0.167 which is 

significantly larger than the change of 0.087 between 112Sn and 124Sn. 

 In early analysis of the experimental data on the ISGMR [11,12], a semiclassical 

model was adopted in order to relate the energy of the ISGMR to an incompressibility 

coefficient KA of the nucleus and carry out a Leptodermous (A-1/3) expansion of KA, 

similar to a mass formula, to parameterize KA into volume (KNM), surface (KS), symmetry 

(Kτ) and coulomb (KC) terms [11,13,14]. Shlomo and Youngblood [14] showed that this 

type of analysis could not provide a unique solution even including all available world 

data as of that time. More recently [15] a semiclassical analysis of the ISGMR data in the 

Sn isotopes demonstrated that the value obtained for Kτ is quite sensitive to the number of 

terms employed in the Leptodermous expansion. In this work we adopt the microscopic 

approach of fully self consistent Hartree-Fock (HF) based random phase approximation 

(RPA), employing an effective nucleon-nucleon interaction. In the HF-RPA approach, 



the values of KNM and the density dependence of Esym are then deduced from the 

interaction that best reproduces the experimental data on the strength functions of  the 

giant resonance. (see the review in Ref. [3]). It is important to note that ground state 

properties of nuclei are well described by the HF approximation, using an effective 

nucleon-nucleon interaction, such as the Skyrme type interaction [16-18], with 

parameters obtained by a fit to a selected set of experimental data on binding energies 

and radii of nuclei [1,2]. It has also been demonstrated that HF-based RPA nicely 

reproduces the properties of low lying collective states as well as of giant resonances 

[1,2].  

 Recently the giant resonance region from 9.5 MeV < Ex < 40 MeV in 48Ca was 

studied with inelastic scattering of 240 MeV α particles at small angles, including 0º. 

Close to 100% of the ISGMR (E0), ISGDR (E1) and isoscalar giant quadrupole 

resonance (E2)  strengths have been located between 9.5 and 40 MeV in 48Ca [19].  To 

study the effect of neutron-proton asymmetry, a comparison with the available data for 

40Ca [20-22], as well as with the results obtained within the HF-based RPA, was carried 

out in Ref. [19]. The ISGMR has been found at somewhat higher energy in 48Ca than in 

40Ca, whereas self consistent HF-RPA calculations obtained using the SGII [23], KDE0 

[24], SKM* [25] and SK255 [26] Skyrme interactions predict a centroid energy in this 

neutron rich Ca isotope lower than in 40Ca .  

 In this work we extend our theoretical investigation by considering the isoscalar 

and isovector giant resonances of multipolarities L = 0 - 3 in 40Ca and 48Ca. In the next 

section we review the basic elements of the self-consistent HF-based RPA theory for the 

strength functions of isoscalar (T = 0) and isovector (T = 1) giant resonances. In section 3 



we present results of our calculations for the strength functions S(E) and centroid 

energies ECEN obtained for giant resonances of T = 0, 1 and multipolarities L = 0 - 3 in 

40Ca and 48Ca, using a wide range of 18 commonly used Skyrme type nucleon-nucleon 

effective interactions. We pay attention to the issue of self-consistency and investigate 

the sensitivities of ECEN and of the isotopic differences ECEN(48Ca) - ECEN(40Ca) to 

physical quantities, such as nuclear matter incompressibility coefficient, symmetry 

energy density and effective mass, associated with the effective nucleon-nucleon 

interactions, and compare the results with available experimental data. In the last section, 

we discuss our results and present our conclusions.  

 

2. Self-consistent HF based RPA Approach 

 In numerical calculations of the properties of giant resonances in nuclei within the 

HF-based RPA theory, one starts by adopting an effective nucleon-nucleon interaction 

, such as the Skyrme interaction, with parameters determined by a fit of the HF 

predictions to experimental data on ground state properties, such as binding energies and 

radii, of a selected set of a wide range of nuclei. Then, the RPA equations are solved 

using the particle-hole interaction deduced from , by employing a certain numerical 

method [27-29], and the physical quantities of interest, such as the  strength functions  

S(E) and transition densities, are calculated. We point out that in a fully self-consistent 

HF-based RPA calculations, one should include all the components of  in the RPA 

calculations and use a sufficiently large particle-hole configuration space to insure 

convergence. Necessary conditions for fully self consistent calculations are; (i) The 



spurious isoscalar dipole state (due to center of mass motion) is obtained at zero energy; 

and  (ii) The energy weighted sun rules (EWSR) are fulfilled.   

 

2.1 Skyrme Energy Density Functional 

In our calculations we have adopted the following form for the Skyrme type 

effective nucleon-nucleon interaction [30]: 

1   12 1  

 1   1  (1) 

 , 
where ti, xi, α, and W0 are the parameters of the interaction and  is the spin exchange 

operator,  is the Pauli spin operator, /2 , and /2. Here, the right and left arrows indicate that the momentum operators act on the right 

and on the left, respectively. The corresponding mean-field VHF and the total energy E of 

the system are given by 

 ,   ,          (2) 

respectively, where H(r) is the Skyrme energy-density functional [31], obtained using Eq. 

(1). It  is given by [30], 
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is the kinetic-energy term. For the Skyrme interaction of Eq. (1), we have 
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Here,  is the zero-range term,  is the density dependent term,  is an effective-

mass term,  is a finite-range term,  is a spin-orbit term,  is a term that is due to 

tensor coupling with spin and gradient and  is the contribution to the energy-density 

that is due to the Coulomb interaction. In Eqs. (5) – (10) ,  , and    

, are the particle number density, kinetic-energy density and spin-density with 

p and n denoting the protons and neutrons, respectively [30]. Note that the additional 

parameter , introduced in Eq. (9), allows us to modify the isospin dependence of the 

spin-orbit term.  

 The contribution to the energy-density, Eq. (3), from the Coulomb interaction can 

be written as a sum of a direct and an exchange terms: 

 . (11) 

For the direct term it is common to adopt the expression 



 | |  ,  (12) 

and for the corresponding exchange term to use the Slater approximation 

 
⁄

 .  (13) 

It is very important to emphasize that the definitions of Eqs. (12) and (13) are not for the 

bona fide direct and exchange terms since each of them includes the contributions of the 

self-interaction term, which appear in opposite signs and cancel out in Eq. (11), see Ref. 

[32].  

 The HF approach applied to finite nuclei violates translational invariance, 

introducing a spurious center of mass (CM) motion. Thus, one must extract the 

contributions of the CM motion to the binding energy B, rms radii and other observables. 

To account for the CM correction to the total binding energy, one must subtract from it 

the so-called CM energy given as, 

  ,  (14) 

where, ∑  is the total linear momentum operator.  

 During the last four decades, many Skyrme type effective nucleon-nucleon 

interactions of different forms were obtained by fitting the HF results to selected sets of 

experimental data [33,34]. We emphasize that in  this work we consider the specific form 

of Eq. (1) for the Skyrme type interaction. The values of the Skyrme parameters of the 

interactions adopted in this work are listed in Table 1.  It is very important to note that in 

determining the parameters of the Skyrme interaction, Eq. (1), several approximations, 

concerning the terms of Eqs. (4), (10), (11) and (14), were made in the HF calculations. 



These approximations, which should be taken into account for a proper application of the 

specific interaction in fully self-consistent HF based RPA calculations, are: 

(i) The kinetic term, Eq. (4).  In some interactions the mass of the proton is 

taken to be equal to that of the neutron and a certain value for the nucleon 

mass is adopted. In other interactions the mass of the proton is taken to be 

different than that of the neutron. 

(ii) The spin-density terms, Eq. (10). In some interactions the contributions from 

the spin-density term as given by Eq. (10), are ignored. We note that 

contributions from Eq. (10) are crucial for the calculation of the Landau 

parameter .  

(iii) The Coulomb term, Eq. (11). In some interactions the Coulomb term of Eq. 

(13) is omitted. It is important to note that by neglecting the term of Eq. (13), 

one neglects the bona fide Coulomb exchange term together with the spurious 

contribution of the self-interaction term. This leads to a contribution to 

Coulomb displacement energies, obtained from Eq. (12), which is in better 

agreement with experimental data [35], since in the HF calculations with 

Skyrme interactions one neglects the contributions due to charge symmetry 

breaking in the nucleon-nucleon interaction and the contribution to Coulomb 

energy associated with long range correlations. Also, in some interactions the 

charge density is used in Eq. (11), instead of the point proton density. 

(iv) The center of mass correction, Eq. (14). Traditionally, one simplifies the 

computation of Eq. (14) by taking into account only the one-body parts of it, 

which can be easily achieved by replacing 1  in the kinetic-

'
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energy term. In this case, the effects of neglecting the two-body part of Eq. 

(14) are compensated by renormalization of the force parameters. This may 

induce in the forces an incorrect trend with respect to the nucleon number A 

that becomes visible in the nuclear matter properties. A more appropriate 

approach, used in some interactions, is to take into account the contribution of 

the two body terms by using the HF single particle wavefunctions or by 

employing a simple scheme to evaluate Eq. (14). 

The approximations that were used to obtain the Skyrme interactions adopted in this 

work are listed for each interaction in Table 2.  

 

2.2 RPA calculations of strength functions   

                  In this work we have carried out fully self-consistent HF-based RPA 

calculations for electric giant resonances in 40Ca and 48Ca using the effective energy 

density functionals (EDF) given by Eqs. (3)  to (14) with Tables 1 and 2 and employing 

the numerical method for  RPA described in Ref. [28,36,37], which is formulated in 

terms of coordinate like Q (time-even) and momentum like P (time-odd) particle-hole (p-

h) operators and adapted for a given EDF. We point out that in order to insure self-

consistency we have carried out  the calculations using a large p-h space and included all 

the terms of the p-h residual interaction (time-even and time-odd) which are associated 

with the EDF used in the HF calculations. No additional time-odd residual interactions 

were added.  For a given scattering operator FL, we have calculated the strength function 

 ∑ | 0| | | . (15) 



Here, |0  is the RPA ground state and the sum is over all RPA excited states |  with the 

corresponding excitation energies Ej. We adopt the single particle scattering operator 

 ∑  , (16) 

for isocalar (T = 0) excitations and 

 ∑ ∑  , (17) 

for isovector excitations (T = 1). In Eqs. (16) and (17) we use the operator , for 

the isovector dipole (T = 1, L = 1) and  5 3⁄   for the isoscalar dipole 

(T = 0, L = 1), to eliminate possible contribution of the spurious state mixing [38,39]. For 

the isoscalar and isovector monopole (L = 0), quadrupole (L = 2) and octopole (L=3) 

excitations we use the operators , , and , respectively. We then determine the 

energy moments of the strength function, 

  . (18) 

The centroid energy, ECEN, is then obtained from 

 ECEN   . (19) 

The energy moment  can also be calculated using the HF ground state wave function, 

thereby leading to an energy weighted sum rule (EWSR) [1, 10]. For the isoscalar  in 

Eq. (16), the EWSR is given by,  

 , 0 ћ 4  , (20) 

where  is the HF ground-state matter density distribution and 

 1  . (21) 

For the isovector (T=1) operator  of Eq. (17), the EWSR is given by 

 , 1 , 0 1  , (22) 



where κ is the enhancement factor which is due to the momentum dependence of the 

effective nucleon-nucleon interaction and is given by 

 ⁄ ⁄ ⁄ћ ⁄ ⁄  

   , (23) 

where  and  are the parameters of the Skyrme interaction. The correction , which 

arises because of the difference in the profiles of the neutron and proton density 

distributions [i.e., because ], is given by 

  . (24) 

 We have carried out fully self-consistent Hartree-Fock (HF) based RPA 

calculations of the isoscalar giant monopole resonance (ISGMR), dipole (ISGDR), 

quadrupole (ISGQR), and  the octopole (ISGOR) strength functions, adopting the 

scattering operator of Eq.  (16), and for the isovector giant monopole resonance 

(IVGMR), dipole (IVGDR), quadrupole (IVGQR) and octopole (IVGOR) strength 

functions, adopting the scattering operator of Eq. (17), for 40Ca and for 48Ca, using a wide 

range of 18 Skyrme type effective interactions (Table 1). In the next section we present 

the results of our calculations and compare with available experimental data. 

 

2.3 Equation of state of nuclear matter 

 In the vicinity of the saturation density ρ  of symmetric NM, the EOS can be 

approximated by 

 E ρ E ρ KNM , (25) 



where E ρ  is the binding energy per nucleon and KNM is the incompressibility 

coefficient which is directly related to the curvature of the EOS, KNM 9ρ E . 

Similarly, the EOS of asymmetric NM, with proton density ρ  and neutron density ρ , 

can be approximated by 

 E ρ , ρ E ρ E ρ , (26) 

where E ρ  is the symmetry energy at matter density ρ, approximated as 

 E ρ J L K , (27) 

where J = E ρ  is the symmetry energy at saturation density ρ , L 3ρ E , 

and K 9ρ E . 

 Table 3 contains the values of the physical quantities of symmetric nuclear matter 

associated with these Skyrme interactions: the binding energy per nucleon E/A, the 

saturation matter density ρ , the effective mass m*/m, the incompressibility coefficient of 

SNM, KNM, the coefficients associated with the symmetry energy density  J, L and Ksym 

at saturation density ρ0 (Eq. (27)) and κ , the NM value of the  enhancement factor of the 

EWSR of the IVGDR, Eqs (22), obtained from (23) with using the NM saturation matter 

density. 

 

3. Results 

 We now present results of our fully self-consistent HF based RPA calculations of 

the strength functions and centroid energies of isoscalar and isovector giant resonances of 

multipolarities L = 0 - 3 in 40Ca and 48Ca,  obtained for 18 widely used Skyrme type 



interactions shown in Table 1: SGII [23], KDE0 [24], KDE0v1 [24], SKM* [25], SK255 

[26], SkI3 [40], SkI4 [40], SkI5 [40], SV-bas [41], SV-min [41], SV-m56-O [42], SV-

m64-O [42], SLy4 [43], SLy5 [43], SLy6 [43], SkMP [44], SkP [45], and SkO’ [46]. 

These interactions are associated with the ranges of NM properties (see Table 3): E/A = 

15.56 – 16.33 MeV, ρ  = 0.156 - 0.165 fm-3, KNM = 201 – 258 MeV, J = 26.80 – 37.40 

MeV, L = 31 – 129 MeV, Ksym = -267 – 160 MeV, m*/m = 0.56 – 1.00 and κ = 0.08 – 

0.71.  

In Figures 1-4 we display the HF-based RPA results (solid lines) for the 

distribution of the energy-weighted strength normalized to one (ES(E)/EWSR) for the 

isoscalar and isovector giant resonances of multipolarities L = 0-3 in 40Ca and 48Ca, 

obtained using the KDE0 [24] interaction that is representative of the strength 

distributions for the rest of the interactions. For the purpose of comparison with 

experiment a Lorenzian smearing of a 3 MeV width was used in the calculation. The 

experimental data [19,21] are shown as histograms. 

To investigate the sensitivity of the energies of the giant resonances in 40Ca and 

48Ca to NM properties (Table 3) we calculated the Pearson correlation coefficients (a 

measure of linear correlation) between the centroid energies ECEN, Eq. (19), and the 

properties of NM. We used a small smearing width (0.05 MeV) to insure accuracy for 

ECEN. For a proper comparison with experiment, we used the experimental excitation 

energy ranges in determining the centroid energies. We use the excitation energy range of 

9.5 – 40 MeV [19,21] for the ISGMR and the ISGQR and the range of 20 – 40 MeV 

[19,21] for the ISGDR. For the ISGOR we use the appropriate excitation energy range of 

20 – 60 MeV. We use the excitation energy range of 0 – 60 MeV for the IVGMR [10,47], 



the range of 0 – 40 MeV for the IVGDR [48,49,50], the range of 9 – 60 MeV for the 

IVGQR [51] and the range of   25 – 60 MeV for the IVGOR (see also Figures 1-4).  

ISGMR 

 In Figure 5 we compare the experimental data [19,21] of the ISGMR centroid 

energies of 40Ca (a), 48Ca (b), and the energy difference, ∆ECEN = ECEN(48Ca) – 

ECEN(40Ca),  between 48Ca and 40Ca (c) with the results of fully self-consistent HF-based 

RPA calculations (full circles), obtained using the 18 Skyrme interactions of Table 1. The 

results obtained with violation of self-consistency, by the neglecting the Coulomb and the 

spin orbit particle-hole interactions in the RPA calculations, are shown in Fig. 5d. The 

calculated values are plotted as a function of KNM. The experimental values of ECEN = 

19.18 +/- 0.37 MeV for 40Ca, ECEN = 19.88 +/- 0.16 MeV for 48Ca [19,21] and their 

difference are shown in Figure 5 as the regions between the dashed lines. A very strong 

correlation between ECEN of 40Ca and ECEN of 48Ca can be seen with KNM. This is 

expected, since the ISGMR centroid energy is very sensitive to the value of KNM [1,3,8]. 

The ISGMR centroid energies for 40Ca are all higher than the experimental value 19.18 

+/- 0.37 MeV. The 48Ca ISGMR centroid energies are more consistent with the 

experimental value 19.88 +/- 0.16 MeV. While the experimental data show that the 

ISGMR in 40Ca lies at lower energy than in 48Ca, 17 of the Skyrme interactions (Table 1) 

show the ISGMR in 40Ca at a higher energy than in 48Ca, while the 18th interaction (SkI3) 

shows them at essentially the same energy in 40Ca and 48Ca. For not fully self-consistent 

RPA calculations, the results for some interactions leads to spurious agreement with the 

experimental data for the 48Ca – 40Ca energy difference as can be seen in Fig. 5d. We also 

found a medium correlation between the ISGMR energies and the effective mass m*/m, 



which is a reflection of the strong correlation between KNM and m*/m seen in Figure 6 

(see also Ref. [8]). Figure 6 also shows the correlation of the saturation symmetric NM 

density ρ  and the symmetry energy coefficient J with KNM . 

To investigate the dependence of the energy difference ∆ECEN = ECEN(48Ca) – 

ECEN(40Ca)  between the ISGMR in 48Ca and in 40Ca on the symmetry energy density, 

Figure 7 shows the results of our fully self-consistent HF based RPA calculations (full 

circles), using the Skyrme interactions (Table 1) having nuclear matter symmetry energy 

coefficient J = 26.80 –36.7 MeV.  No correlation is found between ∆ECEN and J.  Similar 

results were obtained for L, Ksym and KNM, which can be easily understood as a reflection 

of the correlation of Ksym, J and KNM with L shown in Figure 8.  

 Figure 9 shows the correlation of the ISGMR centroid energies with W0, the 

strength of the spin-orbit interaction. There is a positive strong correlation between the 

48Ca - 40Ca energy difference and W0. Similar results were obtained for the ISGDR, 

ISGQR and the ISGOR.  

ISGDR 

In Figure 10 the results of the self-consistent HF-based RPA calculations (full 

circles) for the ISGDR centroid energies of 40Ca (a), 48Ca (b), and the 48Ca – 40Ca energy 

difference (c), are compared with the experimental data [19,21]. The experimental values 

of ECEN = 23.36 +/- 0.70 MeV for 40Ca, ECEN = 27.30 +/- 0.15 MeV for 48Ca and their 

difference are shown in Figure 10 as the regions between the dashed lines. The HF-RPA 

energies, obtained for the interactions of Table 1, are plotted as a function of KNM. For all 

the Skyrme interactions of Table 1, the calculated ISGDR centroid energies are higher 

than the experimental values by 1.5 – 6 MeV and the calculated 48Ca - 40Ca energy 



difference, although positive, are smaller than the experimental value. We note that the 

experimental results for the fraction of the EWSR for the ISGDR in 48Ca and 40Ca are 

137 +/- 20% and 62 +/- 20% [19,21], respectively, compared to the calculated values of 

100%. Therefore, the comparison between the ISGDR in 48Ca and 40Ca might be 

misleading since only 62 +/- 20% of the EWSR of the ISGDR in 40Ca was found 

experimentally. A strong correlation is also found between the ISGDR energy of 40Ca 

with both KNM and m*/m and similarly for 48Ca. 

ISGQR 

 Figure 11 shows, as a function of m*/m, our HF based RPA results (full circles) 

of the ISGQR centroid energies ECEN, of 40Ca (a), 48Ca (b),  and the 48Ca - 40Ca energy 

difference (c), obtained using the Skyrme type interactions of Table 1. The experimental 

values of ECEN = 17.84 +/- 0.43 MeV for 40Ca [19], ECEN = 18.61 +/- 0.24 MeV for 48Ca 

[21] and their difference are shown in Figure 11 as the regions between the dashed lines. 

As seen in Figure 11, a very strong correlation exists between the ISGQR energy of 40Ca 

with m*/m and similarly for 48Ca. We find that interactions having m*/m = 0.65 – 0.8 

reproducing the experimental data of the ISGQR. 

ISGOR 

 Figure 12 shows our HF based RPA results (full circles) of the ISGOR  centroid 

energies ECEN, of 40Ca (a), 48Ca (b),  and the 48Ca - 40Ca energy difference (c), using the 

Skyrme type interactions of Table 1. A very strong correlation exists between the ISGOR 

of 40Ca and 48Ca with m*/m as can be seen in Figure 12. Using the result that interactions 

having m*/m = 0.65 – 0.8 reproduce the experimental data of the ISGQR we can predict 

the values of the ECEN of the ISGOR in 40Ca and 48Ca to be in the region of 30 – 34 MeV. 



For completeness we present in Table 4 the values of the Pearson correlations 

coefficients among the various NM properties and spin-orbit strength W0 with the 

centroid energies of the isoscalar (T0) giant resonances of multipolarities L= 0 – 3. We 

find no correlations or very weak correlations between the 48Ca – 40Ca centroid energy 

differences of the isoscalar giant resonances with the coefficients J, L, or Ksym, associated 

with the density dependence of the symmetry energy and a strong correlation with the 

value of W0. 

IVGMR 

 For the IVGMR, an isovector compression mode, we show the HF-RPA results 

(full circles), obtained using for the Skyrme interactions of Table 1, for the centroid 

energies ECEN of 40Ca (a), 48Ca (b) and the 48Ca - 40Ca energy difference (c) as a function 

of KNM in Figure 13 and as a function of J in Figure 14. The experimental value of ECEN = 

31 +/- 2 MeV for 40Ca [10,46] is shown as the region between the dashed lines. We find a 

medium correlation between ECEN of the IVGMR with KNM and a weak correlation with 

J, L or Ksym. It can be seen from Figure 14 that a stronger correlation between the 

IVGMR energy and KNM is obtained for a fixed value of J (at 27 and 30 MeV).  

Figure 15 shows the IVGMR centroid energies as a function of W0, the  

 strength of the spin-orbit interaction. A strong positive correlation between the 48Ca - 

40Ca energy difference and the value of W0 is seen. Similar results were obtained for the 

IVGDR, and the IVGQR.  

IVGDR 

 Figure 16 shows, as a function of J, our HF based RPA results (full circles) of the 

IVGDR centroid energies ECEN of 40Ca (a), 48Ca (b), and the 48Ca - 40Ca energy difference 



(c), obtained using the Skyrme type interactions of Table 1. The experimental values of 

ECEN = 19.8 +/- 0.5 MeV for 40Ca, ECEN = 19.5 +/- 0.5 MeV for 48Ca [48,49,50] and their 

difference are shown in Figure 16 as the regions between the dashed lines. Weak 

correlations can be seen between ECEN of 40Ca and ECEN of 48Ca with J.  Similar results 

were obtained for L and Ksym. 

 Figure 17 shows the IVGDR centroid energies as a function of κ, the 

enhancement factor in the EWSR of the IVGDR. Strong positive correlations between the 

IVGDR centroid energy of 40Ca and of 48Ca with κ is seen in the Figure.  

IVGQR 

Figure 18 shows, as a function of m*/m, the HF based RPA results (full circles) of the 

IVGQR centroid energies ECEN of 40Ca (a), 48Ca (b) and the 48Ca - 40Ca energy difference 

(c), obtained using the Skyrme type interactions of Table 1. The experimental data of 

ECEN = 31 +/- 1.5 MeV for 40Ca [51] is shown as the region between the dashed lines.  

Medium correlations between m*/m and ECEN of 40Ca and ECEN of 48Ca can be seen in 

Figure 18. 

IVGOR 

Figure 19 shows, as a function of m*/m, the HF based RPA results (full circles) of 

the IVGOR centroid energies ECEN of 40Ca (a), 48Ca (b) and the 48Ca - 40Ca energy 

difference (c), obtained using the Skyrme type interactions of Table 1. Medium 

correlations between  m*/m and ECEN of 40Ca and ECEN of 48Ca can be seen in Figure 19. 

For completeness we present in Table 5 the values of the Pearson correlation 

coefficients among the various NM properties and spin-orbit strength W0 with the 

centroid energies of the isovector (T1) giant resonances of multipolarities L= 0 – 3.  



As shown in Table 5, only weak correlations exist between the ECEN of the isovector giant 

resonances of 40Ca or 48Ca with J, L and Ksym. A strong correlation is found between the 

48Ca - 40Ca centroid energy difference of the IVGMRs, IVDGRs, and IVGQRs with W0. 

We also note the strong correlation between the ECEN of the IVGDR and the value of κ. 

4. Conclusions 

We have presented results of our fully self-consistent HF-RPA calculations using 18 

commonly employed Skyrme type interactions of Table 1, for the centroid energies of 

isoscalar and isovector giant resonances of multipolarities L = 0 – 3 in 40Ca and 48Ca and 

compared with available experimental data. We have investigated and discussed the 

sensitivity of the ECEN of the giant resonances to various properties of NM. In particular 

we point out that:  

• For all the 18 Skyrme interactions used in our HF-based RPA calculations (Table 1) 

the 48Ca – 40Ca centroid energy differences of the ISGMR are smaller than the 

experimental data. For 17 of the Skyrme interactions used in our HF-based RPA 

calculations the 40Ca ISGMR lies above that for 48Ca. The 18th interaction (SkI3) 

predicts the ISGMR in about the same location in both nuclei. 

• We have demonstrated the very strong to strong correlations of the ECEN of the 

compression modes, the ISGMR and the ISGDR, with the NM incompressibility 

coefficient KNM and noted that the sensitivity of ECEN to the effective mass is a 

reflection of the correlation between m*/m and KNM, existing in the Skyrme 

interactions used in our calculations. 



• For all the adopted Skyrme interactions, the calculated centroid energies of the 

ISGDR in 40Ca and 48Ca are consistently higher than the experimental data (by about 

1.5 – 6 MeV). 

• We have demonstrated the very strong correlation of ECEN of the ISGQR and the 

ISGOR with m*/m. We have found that an agreement with the experimental data for 

ECEN of the ISGQR in 40Ca and 48Ca is obtained for a value of the effective mass in 

the range of m*/m = 0.65 – 0.8. Using this result we can predict that the values of 

the ECEN of the ISGOR in 40Ca and 48Ca should be in the region of 30 – 34 MeV.  

• We find no correlations or very weak correlations between the 48Ca – 40Ca centroid 

energy differences of the isoscalar giant resonances of multipolariies L = 0 -3 with 

the coefficients J, L, or Ksym, associated with the density dependence of the 

symmetry energy. Similar results were found for the isovector giant resonances of 

multipolarities L = 0 – 3.  

• We find positive strong correlations between the 48Ca – 40Ca centroid energy 

differences (∆ECEN) of the isoscalar and isovector giant resonances with W0. 

• For the IVGMR, the isovector compression mode, we find a medium correlation 

with KNM and a weak correlation with J, L or Ksym.  

• We find a weak correlation between the energies of the IVGDR of 40Ca (and 48Ca) 

and the quantities associated with the density dependence of the symmetry energy.  

• We find a strong correlation between the energies of the IVGDR of 40Ca (and 48Ca) 

and the value of κ. 

• For the IVGQR and IVGOR we find a strong correlation between ECEN and m*/m. 

 



The disagreement between the HF-RPA results and the experimental data for the centroid 

energies of the ISGMR and ISGDR in 40Ca and 48Ca remain unsolved problems which 

call for possible extension of the EDF used in the work, microscopic calculations of the 

excitation cross sections of giant resonances [38,52] and/or going beyond the HF-RPA 

theory [53]. 
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FIGURE CAPTIONS 

Fig. 1. (Color online) Self-consistent HF-based RPA results (solid lines) for the 

distribution of the energy-weighted strength, normalized to one (fraction of EWSR), for 

the isoscalar monopole (E0), dipole (E1), quadrupole (E2), and octopole (E3) in 40Ca, 

obtained using the KDE0 [24] Skyrme interaction. For the purpose of comparison with 



experiment a Lorenzian smearing of a 3 MeV width was used in the calculation. The 

experimental data [21] are shown as histograms. 

Fig. 2. (Color online) Same as Fig. 1 except for 48Ca. Experimental data is from Ref. [19]. 

Fig. 3. (Color online) Self-consistent HF-based RPA results (solid lines) for the 

distribution of the energy-weighted strength, normalized to one (fraction of EWSR), for 

the isovector monopole (E0), dipole (E1), quadrupole (E2), and octopole (E3) in 40Ca, 

obtained using the KDE0 [24] Skyrme interaction. A Lorenzian smearing of a 3 MeV 

width was used in the calculation. 

Fig. 4. (Color online) Same as Fig. 3 except for 48Ca. 

Fig. 5. Comparison of experimental data [19,21] of the ISGMR centroid energies of 40Ca 

(a), 48Ca (b) and the 48Ca – 40Ca  energy difference (c), shown as the regions between the 

dashed lines, with the results of fully self-consistent HF based RPA calculations (full 

circles)  obtained using the Skyrme interactions of Table 1, plotted vis. KNM. The results 

obtained with violation of self-consistency in the RPA calculations, are shown in (d). 

Fig. 6. The values of ρ , m*/m, and J are plotted vs. KNM, for the Skyrme interactions of 

Table 1. 

Fig 7. The HF based RPA results (full circles) of the ISGMR centroid energies ECEN of 

40Ca (a), 48Ca (b) and the 48Ca – 40Ca energy difference (c), obtained using the Skyrme 

type interactions of Table 1, as a function of the NM symmetry energy at saturation 

density J. The limits on the experimental data are shown by the dashed lines.   

Fig. 8. The values of Ksym, J, and KNM are plotted vs. L, for the Skyrme interactions of 

Table 1. 

Fig. 9. Same as Fig. 7 except as a function of the strength W0 of the spin-orbit interaction. 



Fig. 10. Same as Fig. 7 except for the ISGDR as a function of KNM. 

Fig. 11. Same as Fig. 7 except for the ISGQR as a function of m*/m. 

Fig. 12. Same as Fig. 11 except for the ISGOR. 

Fig. 13. Same as Fig. 7 except for the IVGMR as a function of KNM. The experimental 

data is taken from Ref. [10,47] 

Fig. 14. Same as Fig. 13 except as a function of J. 

Fig. 15. Same as Fig. 13 except as a function of W0. 

Fig. 16. Same as Fig. 7 except for the IVGDR. The experimental data is taken from Ref. 

[48,49,50]. 

Fig. 17. Same as Fig. 16 except as a function of κ. 

Fig. 18. Same as Fig. 11 except for the IVGQR. The experimental data is taken from Ref. 

[51]. 

Fig. 19. Same as Fig. 18 except for the IVGOR. 

 

 

 

 

 

 

 

 

 



Table 1. Values for the parameters for the following Skyrme interactions: SGII [23], 

KDE0 [24], KDE0v1 [24], SKM* [25], SK255 [26], SkI3 [40], SkI4 [40], SkI5 [40], SV-

bas [41], SV-min [41], SV-m56-O [42], SV-m64-O [42], SLy6 [43], SLy4 [43], SLy5 

[43], SkMP [44], SkP [45] and SkO’ [46]. These parameters are given in the following 

units: t0 [MeV fm3], t1 [MeV fm5], t2 [MeV fm5], t3 [MeV fm3(α+1)], W0 [MeV], and the 

remaining parameters are dimensionless. 

 

 

 

 

 

 

 

Force t0 t1 t2 t3 W0 x0 x1 x2 x3 Xw α

SGII -2645.00 340.00 -41.90 15595.00 105.00 0.0900 -0.0588 1.4250 0.0604 1.0000 1/6
KDE0 -2526.51 430.94 -398.38 14235.52 128.96 0.7583 -0.3087 -0.9495 1.1445 1.0000 0.1676
KDE0v1 -2553.08 411.70 -419.87 14603.61 124.41 0.6483 -0.3472 -0.9268 0.9475 1.0000 0.1673
SKM* -2645.00 410.00 -135.00 15595.00 130.00 0.0900 0.0000 0.0000 0.0000 1.0000 1/6
SK255 -1689.35 389.30 -126.07 10989.60 95.39 -0.1461 0.1660 0.0012 -0.7449 1.0000 0.3563
SkI3 -1762.88 561.61 -227.09 8106.20 188.51 0.3083 -1.1722 -1.0907 1.2926 0.0000 1/4
SkI4 -1885.83 473.83 1006.86 9703.61 366.19 0.4051 -2.8891 -1.3252 1.1452 -0.9850 1/4
SkI5 -1772.91 550.84 -126.69 8206.25 123.63 -0.1171 -1.3088 -1.0487 0.3410 1.0000 1/4
SV-bas -1879.64 313.75 112.68 12527.38 124.63 0.2585 -0.3817 -2.8236 0.1232 0.5474 0.3000
SV-min -2112.25 295.78 142.27 13988.57 111.29 0.2439 -1.4349 -2.6259 0.2581 0.8255 0.2554
SV-m56-O -1905.40 571.19 1594.80 8439.04 133.27 0.6440 -2.9737 -1.2553 1.7966 0.7949 0.2000
SV-m64-O -2083.86 484.60 1134.35 10720.67 113.97 0.6198 -2.3327 -1.3059 1.2101 1.1042 0.2000
SLy4 -2488.91 486.82 -546.39 13777.00 123.00 0.8340 -0.3440 -1.0000 1.3540 1.0000 1/6
SLy5 -2484.88 483.13 -549.40 13763.00 126.00 0.7780 -0.3280 -1.0000 1.2670 1.0000 1/6
SLy6 -2479.50 462.18 -448.61 13673.00 122.00 0.8250 -0.4650 -1.0000 1.3550 1.0000 1/6
SkMP -2372.24 503.62 57.28 12585.30 160.00 -0.1576 -0.4029 -2.9557 -0.2679 1.0000 1/6
SkP -2931.70 320.62 -337.41 18708.97 100.00 0.2922 0.6532 -0.5373 0.1810 1.0000 1/6
SkO' -2099.42 301.53 154.78 13526.46 287.79 -0.0295 -1.3257 -2.3234 -0.1474 -0.5760 1/4



Table 2. Same as Table 1 with the following conditions defining the interactions: HBTM, 

for proton and neutron ћ2/2m = 20.7525 MeV fm2 for 0, for proton ћ2/2m = 20.7213 MeV 

fm2 and neutron ћ2/2m = 20.7498 MeV fm2 for 1, and for proton and neutron ћ2/2m = 

20.7355 MeV fm2 for 2, JTM, contribution to the spin-orbit potential from t1 and t2 is 

taken for 1 and not for 0, CEX, coulomb-exchange on for 1 and off for 0, RHOC, proton-

density is used for coulomb potential for 0 and charge-density is used for coulomb 

potential for 1, and ZPE, center of mass correction is taken as (1-1/A) factor on the mass 

for 1 and is computed explicitly a posteriori as  for 0. 

 

 

 

 

 

Force Ref. HBTM JTM CEX RHOC ZPE

SGII [23] 0 0 1 0 0

KDE0 [24] 2 1 0 0 1

KDE0v1 [24] 2 1 0 0 1

SKM* [25] 0 0 1 0 0

SK255 [26] 2 1 0 0 1

SkI3 [40] 0 0 1 0 1

SkI4 [40] 0 0 1 0 1

SkI5 [40] 0 0 1 0 1

SV-bas [41] 1 0 1 0 1

SV-min [41] 1 0 1 0 1

SV-m56-O [42] 1 0 1 0 1

SV-m64-O [42] 1 0 1 0 1

SLy4 [43] 2 0 1 0 0

SLy5 [43] 2 1 1 0 0

SLy6 [43] 2 0 1 0 1

SkMP [44] 0 0 1 0 0

SkP [45] 2 1 1 0 0

SkO' [46] 2 1 1 0 1



Table 3.  Properties of symmetric nuclear matter at nuclear saturation density ρ0 [fm3] 

associated with the Skyrme interactions of Table. Also shown are the total binding energy 

per nucleon E/A [MeV], isoscalar effective mass m*/m, incompressibility modulus KNM 

[MeV], the coefficients related to the symmetry energy density J [MeV], L [MeV] and 

Ksym [MeV], and the enhancement factor of the EWSR of the IVGDR, κ.  

 

 

 

` 

 

 

E/A ρ0 m*/m KNM J L Ksym κ

SGII 15.59 0.159 0.79 215.0 26.80 37.63 -145.90 0.49
KDE0 16.11 0.161 0.72 228.8 33.00 45.22 -144.78 0.30
KDE0v1 16.23 0.165 0.74 227.5 34.58 54.70 -127.12 0.23
SKM* 15.78 0.160 0.79 216.7 30.03 45.78 -155.94 0.53
SK255 16.33 0.157 0.80 255.0 37.40 95.00 -58.33 0.54
SkI3 15.96 0.158 0.58 258.1 34.80 100.52 73.04 0.25
SkI4 15.92 0.160 0.65 247.9 29.50 60.39 -40.56 0.25
SkI5 15.83 0.156 0.58 255.7 36.70 129.33 159.57 0.25
SV-bas 15.90 0.160 0.90 234.0 30.00 45.21 -221.75 0.40
SV-min 15.91 0.161 0.95 222.0 30.01 44.76 -156.57 0.08
SV-m56-O 15.81 0.157 0.56 254.6 27.00 49.96 -45.04 0.60
SV-m64-O 15.82 0.159 0.64 241.5 27.01 30.63 -144.76 0.60
SLy4 15.97 0.160 0.70 229.9 32.00 45.96 -119.73 0.25
SLy5 15.98 0.160 0.70 229.9 32.03 48.27 -112.76 0.25
SLy6 15.92 0.159 0.69 229.8 31.96 47.44 -112.71 0.25
SkMP 15.56 0.157 0.65 230.9 29.88 70.31 -49.82 0.71
SkP 15.93 0.162 1.00 200.8 32.98 45.21 -266.60 0.30
SkO' 15.75 0.160 0.90 222.3 31.95 68.93 -78.82 0.15



Table 4. Pearson correlation coefficients among the various NM properties and spin-orbit 

strength W0 with the centroid energies of the isoscalar T0 giant resonances of 

multipolarities L= 0 – 3.  

 

 

 

 

 

 

 

 

 

 

m*/m KNM J L Ksym κ W0 (XW=1)

L0 T0 Ca 40 ECEN -0.75 0.95 0.07 0.56 0.78 0.20 0.00

L0 T0 Ca 48 ECEN -0.79 0.88 0.02 0.56 0.80 0.24 0.30

L0 T0 ∆ECEN -0.31 0.07 -0.11 0.16 0.25 0.18 0.73

L1 T0 Ca 40 ECEN -0.84 0.74 -0.20 0.30 0.64 0.47 0.24

L1 T0 Ca 48 ECEN -0.89 0.71 -0.11 0.25 0.62 0.25 0.46

L1 T0 ∆ECEN -0.30 0.14 0.11 -0.02 0.12 -0.28 0.54

L2 T0 Ca 40 ECEN -0.97 0.81 -0.03 0.40 0.76 0.22 0.48

L2 T0 Ca 48 ECEN -0.97 0.75 -0.06 0.36 0.74 0.22 0.57

L2 T0 ∆ECEN -0.20 -0.26 -0.20 -0.18 -0.02 0.00 0.52

L3 T0 Ca 40 ECEN -0.96 0.80 -0.05 0.35 0.73 0.23 0.41

L3 T0 Ca 48 ECEN -0.98 0.73 -0.08 0.33 0.72 0.27 0.59

L3 T0 ∆ECEN -0.11 -0.25 -0.13 -0.07 -0.01 0.16 0.56



Table 5. Pearson correlation coefficients among the various NM properties and spin-orbit 

strength W0 with the centroid energies of the isovector T1 giant resonances of 

multipolarities L = 0 – 3. 

 

 

 

 

 

 

 

 

 

 

 

 

m*/m KNM J L Ksym κ W0 (XW=1)

L0 T1 Ca 40 ECEN -0.54 0.66 -0.33 0.10 0.31 0.61 0.01

L0 T1 Ca 48 ECEN -0.64 0.62 -0.35 0.17 0.40 0.74 0.36

L0 T1 ∆ECEN -0.25 -0.10 -0.06 0.16 0.22 0.31 0.70

L1 T1 Ca 40 ECEN -0.34 0.31 -0.58 -0.40 -0.17 0.66 -0.07

L1 T1 Ca 48 ECEN -0.36 0.28 -0.63 -0.40 -0.17 0.73 0.23

L1 T1 ∆ECEN -0.01 -0.22 -0.09 0.09 0.07 0.14 0.67

L2 T1 Ca 40 ECEN -0.64 0.52 -0.47 -0.14 0.16 0.68 0.43

L2 T1 Ca 48 ECEN -0.70 0.49 -0.50 -0.14 0.19 0.73 0.66

L2 T1 ∆ECEN -0.33 -0.10 -0.18 0.02 0.14 0.27 0.71

L3 T1 Ca 40 ECEN -0.73 0.61 -0.33 0.04 0.36 0.60 0.37

L3 T1 Ca 48 ECEN -0.71 0.56 -0.43 -0.07 0.26 0.65 0.42

L3 T1 ∆ECEN 0.34 -0.42 -0.21 -0.41 -0.47 -0.08 -0.11



 

Fig. 1. (Color online) Self-consistent HF-based RPA results (solid lines) for the 
distribution of the energy-weighted strength normalized to one (fraction of EWSR) for 
the isoscalar monopole (E0), dipole (E1),  quadrupole (E2), and octopole (E3) in 40Ca, 
obtained using the KDE0 [24] Skyrme interaction. A Lorenzian smearing of a 3 MeV 
width was used in the calculation. The experimental data [21] are shown as histograms. 



 

Fig. 2. (Color online) Same as Fig. 1 except for  48Ca. Experimental data is from Ref. 

[19]. 



 

Fig. 3. (Color online) Self-consistent HF-based RPA results (solid lines) for the 
distribution of the energy-weighted strength, normalized to one (fraction of EWSR), for 
the isovector monopole (E0), dipole (E1), quadrupole (E2), and octopole (E3) in 40Ca, 
obtained using the KDE0 [24] Skyrme interaction. A Lorenzian smearing of a 3 MeV 
width was used in the calculation. 
 



 

 

Fig. 4. (Color online) Same as Fig. 3 except for  48Ca. 



  

Fig. 5. Comparison of experimental data [19,21] of the ISGMR centroid energies of 40Ca 
(a), 48Ca (b), and the 48Ca – 40Ca  energy difference (c), shown as the regions between the 
dashed lines, with the results of fully self-consistent HF based RPA calculations (full 
circles)  obtained using the Skyrme interactions of Table 1, plotted vis. KNM. The results 
obtained with violation of self-consistency in the RPA calculations, are shown in (d). 
 
 



 

 
Fig. 6. The values of , m*/m, and J are plotted vs. KNM, for the Skyrme interactions of 
Table 1. 



 

 
Fig 7. The HF based RPA results (full circles) of the ISGMR centroid energies ECEN of 
40Ca (a), 48Ca (b) and the 48Ca – 40Ca energy difference (c), obtained using the Skyrme 
type interactions of Table 1, as a function of the NM symmetry energy at saturation 
density J. The limits on the experimental data are shown by the dashed lines.   
 
 

 



 

Fig. 8. The values of Ksym, J, and KNM are plotted vs. L, for the Skyrme interactions of 
Table 1 
 

 

 

 

 

 

 

 



 

 

 

Fig. 9. Same as Fig. 7 except as a function of the strength W0 of the spin-orbit interaction. 

 



 

 
Fig. 10. Same as Fig. 7 except for the ISGDR as a function of KNM.. 

 

 



 

 

Fig. 11. Same as Fig. 7 except for the ISGQR as a function of m*/m. 

 

 

 

 



 

Fig. 12. Same as Fig. 11 except for the ISGOR. 

 

 



 

Fig. 13. Same as Fig. 7 except for the IVGMR as a function of KNM. The experimental 
data is taken from Ref. [10,47]. 
 

 

 

 

 



 

Fig. 14. Same as Fig. 13 except as a function of J. 
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Fig. 15. Same as Fig. 13 except as a function of W0. 



 

Fig. 16. Same as Fig. 7 except for the IVGDR. The experimental data is taken from Refs. 
[48,49,50]. 
 

 

 

 

 



 

Fig. 17. Similar to Fig. 16 as a function of κ. 

 

 

 



 

Fig. 18. Same as Fig. 11 except for the IVGQR. The experimental data is taken from Ref. 

[51]. 

 

 

 

 



 

 

Fig. 19. Same as Fig. 18 except for the IVGOR. 

 

 

 

 


