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Using a set of model equations of state satisfying the latest constraints from both terrestrial
nuclear experiments and astrophysical observations as well as state-of-the-art nuclear many-body
calculations of the pure neutron matter equation of state, the tidal polarizability of canonical neu-
tron stars in coalescing binaries is found to be a very sensitive probe of the high-density behavior
of nuclear symmetry energy which is among the most uncertain properties of dense neutron-rich
nucleonic matter. Moreover, it changes less than ±10% by varying various properties of symmetric
nuclear matter and symmetry energy around the saturation density within their respective ranges
of remaining uncertainty.
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I. INTRODUCTION

Understanding the nature of neutron-rich nucleonic
matter is a major thrust of current research in both
nuclear physics and astrophysics [1]. To realize this
goal, many experiments and observations are being car-
ried out or proposed using a wide variety of advanced
new facilities, such as, Facilities for Rare Isotope Beams
(FRIB), X-ray satellites and gravitational wave (GW)
detectors. Most critical to interpreting results of these
experiments and observations is the equation of state
(EOS) of neutron-rich nucleonic matter, i.e., E(ρ, α) =
E0(ρ)+S(ρ)α

2+O(α4), where E(ρ, α) and E0(ρ) are the
specific energy in asymmetric nuclear matter of isospin
asymmetry α = (ρn − ρp)/ρ and symmetric nuclear mat-
ter (SNM), respectively, and S(ρ) is the symmetry en-
ergy encoding the energy cost of converting all protons
in SNM to neutrons. Thanks to the continuing efforts
of both the nuclear physics and astrophysics community
over several decades, the EOS of SNM around the satu-
ration density ρ0 has been well constrained. Moreover,
combining information from studying the collective flow
and kaon production in relativistic heavy-ion collisions
in several terrestrial nuclear physics laboratories [2] and
the very recent discovery of the maximum mass of neu-
tron stars [3], the EOS of SNM has been limited in a
relatively small range up to about 4.5ρ0. The symmetry
energy S(ρ) is a vital ingredient in describing the struc-
ture of rare isotopes and their reaction mechanisms. It
also determines uniquely the proton fraction and thus
the cooling mechanism, appearance of hyperons and pos-
sible kaon condensation in neutron stars. Moreover, it
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affects significantly the structure, such as the radii, mo-
ment of inertia and the core-crust transition density, as
well as the frequencies and damping times of various os-
cillation modes of neutron stars, see, e.g., Refs. [4, 5] for
reviews. Intensive efforts devoted to constraining S(ρ)
using various approaches have recently led to a close
convergence around S(ρ0) ≈ 30 MeV and its density
slope L ≡ 3ρ0 (dS(ρ)/dρ)ρ0

≈ 50 MeV with a few ex-
ceptions, although the error bars for L from different ap-
proaches may vary broadly [6–12]. On the other hand,
the high-density behavior of S(ρ) remains very uncer-
tain despite its importance to understanding what hap-
pens in the core of neutron stars [13–17] and in reac-
tions with high energy radioactive beams [18]. The pre-
dictions for the high-density behavior of the symmetry
energy from all varieties of nuclear models diverge dra-
matically [19–21], with some models predicting very stiff
symmetry energies that increase continuously with den-
sity [21–26], and others predicting relatively soft ones, or
an S(ρ) that first increases with density, then saturates
and starts decreasing with increasing density [19, 27–41].
These uncertainties can be traced to our poor knowledge
about the isospin dependence of the strong interaction
in the dense neutron-rich medium, particularly the spin-
isospin dependence of three-body and many-body forces,
the short-range behavior of the nuclear tensor force and
the isospin dependence of nucleon-nucleon correlations
in the dense medium, see, e.g. Refs. [42, 43]. Little ex-
perimental progress has been made in constraining the
high density S(ρ) partially because of the lack of sen-
sitive probes. While several observables have been pro-
posed [18] and some indications of the high-density S(ρ)
have been reported recently [44, 45], conclusions based on
terrestrial nuclear experiments remain controversial [46].
To our best knowledge, the only astrophysical probe for
high density S(ρ) proposed so far is the late time neu-
trino signal from a core collapse supernova [47]. In this
article, we show that the tidal polarizability of canoni-
cal neutron stars in coalescing binaries is a very sensitive
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probe of the high-density behavior of the nuclear symme-
try energy independent of the remaining uncertainties of
the SNM EOS and S(ρ) near saturation density.

The paper has been organized as follows. In Sec. II
we provide the background material necessary to com-
pute the stellar structure and tidal polarizability. In Sec.
III we discuss current theoretical, experimental, and ob-
servational constraints on the nuclear matter EOS, and
prepare several parameterizations that will be used to
compute the EOS of the stellar material. We note that
these parameterizations not only reproduce various ex-
perimentally measured properties of finite nuclei, but are
also systematically varied within the available constraints
such that they cover the full constraint region in their
predictions for the EOS at both low and high densities.
In Sec. IV we present results for various neutron-star
properties including the tidal polarizability of a canoni-
cal neutron star and discuss their sensitivity to the EOS.
Finally, Sec. V summarizes our concluding remarks and
suggestions for future work.

II. STELLAR STRUCTURE AND TIDAL

POLARIZABILITY

Coalescing binary neutron stars are among the most
promising sources of gravitational waves. One of the
most important features of binary mergers is the tidal de-
formation neutron stars undergo as they approach each
other prior to merger, the strength of which can give us
precious information about the neutron-star matter EOS
[48–59]. At the early stage of an inspiral tidal effects may
be effectively described through the tidal polarizability
parameter λ [48, 51–53] defined via Qij = −λEij , where
Qij is the induced quadrupole moment of a star in binary,
and Eij is the static external tidal field of the companion
star. The tidal polarizability can be expressed in terms of
the dimensionless tidal Love number k2 and the neutron
star radius R as λ = 2k2R

5/(3G). The tidal Love number
k2 is found using the following expression [49, 54]:
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where Rs ≡ 2M is the Schwarzschild radius of the star,
and yR ≡ y(R) can be calculated by solving the following

first-order differential equation:

r
dy(r)

dr
+ y(r)

2
+ y(r)F (r) + r2Q(r) = 0 , (2)

with

F (r) =
r − 4πr3 (E(r) − P (r))

r − 2M(r)
, (3)

Q(r) =
4πr
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)

r − 2M(r)
−

− 4

[

M(r) + 4πr3P (r)

r2 (1− 2M(r)/r)

]2

. (4)

Eq. (2) must be integrated together with the Tolman-
Oppenheimer-Volkoff (TOV) equation. That is,

dP (r)

dr
= −

(

E(r) + P (r)
)(

M(r) + 4πr3P (r)
)

r2
(

1− 2M(r)/r
) ,(5)

dM(r)

dr
= 4πr2E(r) . (6)

Given the boundary conditions in terms of y(0) = 2,
P (0) = Pc and M(0) = 0, the tidal Love number can be
obtained once an EOS is supplied. Previous studies have
used both polytropic EOSs and several popular nuclear
EOSs available in the literature [48–59]. While other
particles may be present, for the purpose of this work, it
is sufficient to assume that neutron stars consist of only
neutrons (n), protons (p), electrons (e) and muons (µ) in
β-equilibrium.

III. CONSTRAINED EOS OF NEUTRON-RICH

NUCLEAR MATTER

We use two classes of nuclear EOSs within the Rela-
tivistic Mean Field (RMF) model and the Skyrme Hartre-
Fock (SHF) approach. The RMF model traditionally
includes an isodoublet nucleon field (ψ) interacting via
the exchange of the scalar-isoscalar σ-meson (φ), the
vector-isoscalar ω-meson (V µ), the vector-isovector ρ-
meson (bµ), and the photon (Aµ) [60–62]. The full La-
grangian density for such a model can be written as:

L = ψ̄
[

γµ
(
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2
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e

2
(1+τ3)Aµ
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− (M−gsφ)
]
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4
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2
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vV
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4
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1

2
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ρ b
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− 1

4
FµνFµν − U(φ, Vµ,bµ) , (7)

where Vµν ≡ ∂µVν − ∂νVµ, bµν ≡ ∂µbν − ∂νbµ, and
Fµν ≡ ∂µAν − ∂νAµ are the isoscalar, isovector, and
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FIG. 1: (Color online) The EOS of SNM and PNM as well as
the symmetry energy as a function of density obtained within
the IU-FSU RMF model and the SHF approach using the
SkIU-FSU parameter set.

electromagnetic field tensors, respectively. The four con-
stants represent the nucleon mass M and meson masses
ms, mv, mρ and may be treated as empirical parame-
ters. In addition to the standard Yukawa interactions,
the Lagrangian is supplemented with an effective poten-
tial U(φ, Vµ,bµ) that consists of non-linear meson inter-
actions that simulates the complicated dynamics encoded
in a handful of accurately calibrated model parameters.
In this work we use the following form of the effective
potential [63]:

U(φ, V µ,bµ) =
κ

3!
(gsφ)

3+
λ

4!
(gsφ)

4− ζ

4!
g4v(VµV

µ)2

− Λvg
2
ρ bµ · bµg2vVνV

ν . (8)

Note that if one would like to consider all non-linear
terms to the fourth-order in meson fields and also incor-
porate the seldom used scalar-isovector δ-meson [64, 65],
then 15 additional parameters must be included to the
Lagrangian above (1 Yukawa coupling, and 14 meson self-
interaction terms). Remarkably, using just a few model
parameters and without invoking the scalar-isovector δ-
meson interaction even to the lowest order with just a
Yukawa coupling, it is possible to reproduce a host of
ground-state properties of finite nuclei throughout the
periodic table [66, 67], the nuclear collective excitations,
and neutron-star properties [24, 63, 68, 69] with very high
accuracy.
Following standard mean-field practices, the energy

density of the system can be written as:
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where α = −ρ3/ρ is the isospin asymmetry, ρ3 ≡ ρp− ρn
is the isovector baryon density, E∗

k =
√
k2 +M∗2, M∗ =

M−gsφ0 is the nucleon (Dirac) effective mass, kpF (knF) is
the proton (neutron) Fermi momentum. Since the mean-
field approximation is thermodynamically consistent, the
pressure of the system at zero temperature may be ob-
tained either from the energy-momentum tensor or from
the energy density and its first derivative with respect to
the density ([60, 61]). That is,

P (ρ, α) = ρ
∂E(ρ, α)
∂ρ

− E(ρ, α) .

All of the EOSs are adjusted to satisfy the following
four conditions within their respective uncertain ranges:
(1) reproducing the PNM EOS at sub-saturation densi-
ties predicted by the latest state-of-the-art microscopic
nuclear many-body theories [28, 70–75]; (2) predicting
correctly saturation properties of symmetric nuclear mat-
ter, i.e., nucleon binding energy B = −16 ± 1MeV and
incompressibility K0 = 230 ± 20MeV [76, 77] and nu-
cleon (Dirac) effective mass M∗

D,0 = 0.61 ± 0.03M [78]

at saturation density ρ0 = 0.155 ± 0.01 fm−3; (3) pre-
dicting a fiducial value of symmetry energy S(2ρ0/3) =
26 ± 0.5MeV, J ≡ S(ρ0) = 31 ± 2MeV and the density
slope of symmetry energy L = 50 ± 10MeV (See Ref.
[12] and references therein); (4) passing through the ter-
restrial constraints on the EOS of SNM between 2ρ0 and
4.5ρ0 [2] and giving a maximum mass of neutron stars
of about 2M⊙ assuming they are made of only the npeµ
matter without considering other degrees of freedom or
invoking any exotic mechanism [3, 79].
To compare the RMF and SHF models on the same

basis, we also create SHF parametrizations which give
the same properties of nuclear matter at saturation as
the RMF parametrizations, through the method of writ-
ing the Skyrme parameters as functions of macroscopic
nuclear quantities [80, 81]. Note that several definitions
of the nucleon effective mass exist in the literature [82].
In the RMF model the Dirac effective mass is defined
through the scalar part of the nucleon self-energy in the
Dirac equation. It is well known that in order to repro-
duce the empirical spin-orbit couplings in finite nuclei
the Dirac effective mass at saturation densityM∗

D,0 must

lie in the range of 0.58 < M∗
D/M < 0.64 [61, 78, 83–85].

While microscopic calculations based on realistic meson-
exchange models for the NN interaction suggest that the
isovector δ-meson contribution to the scalar field may be
very important [86, 87], thus resulting in a sizable differ-
ence in the nucleon effective (Dirac) masses, we rely on
a minimal model without the δ-meson, which accurately
reproduces binding energies and charge radii of doubly
magic nuclei, and neutron-star properties [24, 63, 68, 69].
This minimal model meets the requirements of our cur-
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rent study, which is to have two tunable parameters con-
trolling the saturation density stiffness of the symmetry
energy and the high density stiffness of the SNM EOS,
while still reproducing the minimal set of nuclear mat-
ter properties relevant for basic neutron star structure.
Indeed, the inclusion of a δ-meson in the RMF model
gives rise to a stiff EOS of asymmetric nuclear matter
at high densities [64, 65], which in turn results in larger
neutron star radii predictions that lie just at the edge
of the range currently inferred from observation [8, 79].
In our current minimal model, neglecting the effects of
δ-meson contributions gives us identical nucleon effective
masses for both SNM and PNM. On the other hand, the
non-relativistic effective mass parameterizes the momen-
tum dependence of the single particle potential, which
is the result of a quadratic parametrization of the single
particle spectrum. It has been argued [88] that the so-
called Lorentz massM∗

L in SNM should be compared with
the non-relativistic effective mass extracted from analy-
ses carried out in the framework of nonrelativistic optical
and shell models. For consistency, at saturation density
for SNM we choose the effective mass in the SHF model
to be equal to the Lorenz mass in the RMF model. More-
over, since the effective masses in the RMF model used
in this work are the same for both protons and neutrons,
we set them equal in the equivalent SHF model too. As
an example, two such EOSs obtained using the IU-FSU
RMF model [69] and the SHF using the SkIU-FSU pa-
rameter set [12] are shown in Fig. 1. By design, they
both have the same EOS for SNM and PNM around and
below ρ0. Thus, at sub-saturation densities the values of
S(ρ) which is approximately the difference between the
EOSs for PNM and SNM are almost identical for the two
models. However, the values of S(ρ) are significantly dif-
ferent above about 1.5ρ0 with the IU-FSU leading to a
much stiffer S(ρ) at high densities. More quantitatively,
the S(ρ) with IU-FSU is 40− 60% higher in the density
range of ρ/ρ0 = 3 − 4 expected to be attained in the
core of canonical neutron stars. In our previous study we
showed that this is a generic feature of the models [12].

To test the sensitivity of the tidal polarizability to
variations of properties of neutron-rich nuclear matter
around ρ0 within the constraints listed above, we build
17 RMF parameterizations by systematically varying
the values of K0, M

∗
0 , L, and the ζ parameter of the

RMF model that controls the omega-meson self interac-
tions [62] and subsequently the high-density component
of the EOS of SNM. Besides the constraints listed above,
all parameter sets can correctly reproduce the experi-
mental values for the binding energy and charge radius
of 208Pb and the ground state properties of other closed
shell nuclei within 2% uncertainty [89]. As a reference
for comparisons, we select K0 = 230 MeV, M∗

0 = 0.61
M , L = 50 MeV, and ζ = 0.025 for our base model,
which predicts ρ0 = 0.1524 fm−3, B = −16.33 MeV
and J = 31.64 MeV. The representative model EOSs for
PNM at sub-saturation densities and those for SNM at
supra-saturation densities are compared with their con-
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FIG. 3: (Color online) The pressure of SNM given as the
function of baryon density. Here ρ0 is the nuclear matter
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straints in Fig. 2 and Fig. 3, respectively. It is seen that
the SkIU-FSU and all the RMF models with 42 < L < 58
MeV can satisfy the PNM EOS constraint. Also, they
can all satisfy simultaneously the high density SNM EOS
constraint with 0.02 < ζ < 0.03. Moreover, they all give
a maximum mass for neutron stars between 1.94M⊙ and
2.07M⊙ and radii between 12.33 km and 13.22 km for
canonical neutron stars [69] consistent with existing ob-
servations [3, 79, 90].
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IV. RESULTS AND DISCUSSIONS

First, we examine sensitivities of the tidal polarizabil-
ity λ of a 1.4M⊙ neutron star to the variations of SNM
properties and the slope of the symmetry energy around
ρ0 in Fig. 4 and Table. I. The changes of λ relative
to the values for our base RMF model are shown for
the remaining RMF EOSs. It is very interesting to see
that the tidal polarizability is rather insensitive to the

TABLE I: Predictions for the properties of a 1.4 solar-mass
neutron star using the 17 EOSs considered in this paper. We
systematically vary the properties of nuclear matter around
our base parametrization (as discussed in the text) to create
different EOSs as diverse as possible, but within the available
theoretical, experimental and observational constraints. The
first column reports the name of the EOS with a particular
nuclear property and/or ζ-parameter indicated. The radii are
in units of km, the tidal polarizability in 1036 cm2 g s2.

EOS R M/R k2 λ ∆λ/λ

Base 12.88 0.1605 0.0879 3.115 —
K = 210 MeV 12.82 0.1612 0.0858 2.974 −4.52 %
K = 220 MeV 12.85 0.1608 0.0869 3.046 −2.19 %
K = 240 MeV 12.91 0.1602 0.0890 3.183 +2.21 %
K = 250 MeV 12.94 0.1598 0.0900 3.258 +4.59 %
M∗ = 0.580 M 12.71 0.1626 0.1033 3.427 +10.01 %
M∗ = 0.595 M 12.83 0.1612 0.0943 3.271 + 5.02 %
M∗ = 0.625 M 12.89 0.1604 0.0831 2.957 − 5.06 %
M∗ = 0.640 M 12.88 0.1606 0.0792 2.800 −10.12 %
L = 42 MeV 12.33 0.1677 0.1086 3.089 −0.83 %
L = 46 MeV 12.64 0.1635 0.0960 3.096 −0.58 %
L = 54 MeV 13.07 0.1582 0.0824 3.140 +0.80 %
L = 58 MeV 13.22 0.1564 0.0787 3.170 +1.79 %
ζ = 0.0200 13.01 0.1589 0.0885 3.302 +6.00 %
ζ = 0.0225 12.94 0.1597 0.0882 3.204 +2.85 %
ζ = 0.0275 12.81 0.1613 0.0876 3.025 −2.90 %
ζ = 0.0300 12.75 0.1622 0.0873 2.938 −5.67 %

TABLE II: Predictions for the properties of a 1.4 solar-mass
neutron star using the IU-FSU EOS with difference density
dependence of the symmetry energy. The slopes of the sym-
metry energy are in units of MeV, radii are in units of km,
and the tidal polarizability in 1036 cm2 g s2. The relative per-
centage error ∆λ/λ is calculated with respect to the original
IU-FSU parametrization [69].

EOS L R M/R k2 λ ∆λ/λ

IU-FSU-0 47.2 12.49 0.1655 0.0930 2.828 —
IU-FSU-1 40.0 12.20 0.1695 0.1054 2.841 + 0.46 %
IU-FSU-2 60.0 13.07 0.1581 0.0761 2.906 + 2.76 %
SkIU-FSU 47.2 11.71 0.1765 0.0753 1.657 −41.41 %

variation of L within the constrained range, although it
changes up to ±10% with K0, M

∗ and ζ within their
individual uncertain ranges. While the averaged mass
is M = 1.33 ± 0.05M⊙, neutron stars in binaries have
a broad mass distribution [91]. It is thus necessary to
investigate the mass dependence of the tidal polarizabil-
ity. Whereas what can be measured for a neutron star
binary of mass M1 and M2 is the mass-weighted tidal
polarizability [53]

λ̃ =
1

26

[

M1 + 12M2

M1
λ1 +

M2 + 12M1

M2
λ2

]

, (10)

for the purpose of this study it is sufficient to consider bi-
naries consisting of two neutron stars with equal masses.
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What can we learn from the tidal polarizability of light
and massive neutron stars, respectively? Shown in Fig. 5
is the tidal polarizability λ as a function of neutron-star
mass for a range of EOSs. Most interestingly, it is seen
that the IU-FSU and SkIU-FSU models which are dif-
ferent only in their predictions for the nuclear symme-
try energy above about 1.5ρ0 as shown in Fig. 1 lead
to significantly different λ values in a broad mass range
from 0.5 to 2 M⊙. More quantitatively, a 41% change
in λ from 2.828× 1036 (IU-FSU) to 1.657× 1036 (SkIU-
FSU) is observed for a canonical neutron star of 1.4 M⊙

(See Table II). For a comparison, we notice that this ef-
fect is as strong as the symmetry energy effect on the
late time neutrino flux from the cooling of proto-neutron
stars [47]. Moreover, it is shown that the variation of
L has a very small effect on the tidal polarizability λ of
massive neutron stars, which is consistent with the re-
sults shown in Fig. 4. On the other hand, the L parame-
ter affects significantly the tidal polarizability of neutron
stars withM ≤ 1.2M⊙. These observations can be easily
understood. From Eq. (1) the Love number k2 is essen-
tially determined by the compactness parameter M/R
and the function y(R). Both of them are obtained by
integrating the EOS all the way from the core to the
surface. Since the saturation density approximately cor-
responds to the central density of a 0.3M⊙ neutron star,
one thus should expect that only the Love number of low-
mass neutron stars to be sensitive to the EOS around
the saturation density. However, for canonical and more
massive neutron stars, the central density is higher than
3 − 4ρ0, and therefore both the compactness M/R and
y(R) show stronger sensitivity to the variation of EOS at
supra-saturation densities. Since all the EOSs for SNM at
supra-saturation densities have already been constrained
by the terrestrial nuclear physics data and required to
give a maximum mass about 2M⊙ for neutron stars, the
strongest effect on calculations of the tidal polarizability
of massive neutron stars should therefore come from the
high-density behavior of the symmetry energy.
It has been suggested that the Advanced LIGO-Virgo

detector may potentially measure the tidal polarizability
of binary neutron stars with a moderate accuracy. Are
the existing or planned GW detectors sensitive enough to
measure the predicted effects of high-density symmetry
energy on the tidal polarizability? To answer this ques-
tion, as an example we estimate uncertainties in measur-
ing λ for equal mass binaries at an optimally-oriented dis-
tance of D = 100 Mpc [53, 92] using the same approach

as detailed in Refs. [53, 59]. These are shown for the Ad-
vanced LIGO-Virgo (shaded light-grey area) and the Ein-
stein Telescope (shaded dark-grey area) in Fig. 5. It is
seen that discerning between high-density symmetry en-
ergy behaviors is at the limit of Advanced LIGO-Virgo’s
sensitivity for stars of mass 1.4M⊙ and below based on
the currently estimated uncertainty, and it is possible
that a rare but nearby binary system may be found and
provide a much more tighter constraint [53]. Neverthe-
less, measurements for binaries consisting of light neu-
tron stars can still help further constrain the symmetry
energy around the saturation density. On the other hand,
it is noteworthy that the narrow uncertain range for the
proposed Einstein Telescope will enable it to tightly con-
strain the symmetry energy especially at high densities.

V. CONCLUSIONS

Using the EOSs for neutron-rich nucleonic matter sat-
isfying the latest constraints from both terrestrial nu-
clear experiments and astrophysical observations, as well
as the state-of-the-art nuclear many-body calculations
for PNM EOS, we found that the tidal polarizability
of canonical neutron starts in coalescing binaries is very
sensitive to the high-density behavior of nuclear symme-
try energy, but little affected by the variations of SNM
EOS and symmetry energy around the saturation den-
sity within their remaining uncertainty ranges. Future
measurements of the tidal polarizability of neutron stars
using the forthcoming GW detectors, most notably the
proposed Einstein Telescope, will help constrain strin-
gently the high-density behavior of nuclear symmetry en-
ergy, and thus the nature of dense neutron-rich nucleonic
matter.
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