
This is the accepted manuscript made available via CHORUS, the article has been
published as:

Electric dipole moment of the ρ meson
Mario Pitschmann, Chien-Yeah Seng, Michael J. Ramsey-Musolf, Craig D. Roberts,

Sebastian M. Schmidt, and David J. Wilson
Phys. Rev. C 87, 015205 — Published 28 January 2013

DOI: 10.1103/PhysRevC.87.015205

http://dx.doi.org/10.1103/PhysRevC.87.015205


Electric dipole moment of the ρ-meson

Mario Pitschmann,1, 2 Chien-Yeah Seng,1 Michael J. Ramsey-Musolf,1, 3

Craig D. Roberts,2, 4 Sebastian M. Schmidt,5 and David J. Wilson2

1University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
2Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

3California Institute of Technology, Pasadena, California 91125, USA
4Department of Physics, Illinois Institute of Technology, Chicago, Illinois

5Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany

At an hadronic scale the effect of CP-violating interactions that typically appear in extensions of
the Standard Model may be described by an effective Lagrangian, in which the operators are ex-
pressed in terms of lepton and partonic gluon and quark fields, and ordered by their mass dimension,
k ≥ 4. Using a global-symmetry-preserving truncation of QCD’s Dyson-Schwinger equations, we
compute the ρ-meson’s electric dipole moment (EDM), dρ, as generated by the leading dimension-
four and -five CP-violating operators and an example of a dimension-six four-quark operator. The
two dimension-five operators; viz., quark-EDM and -chromo-EDM, produce contributions to dρ
whose coefficients are of the same sign and within a factor of two in magnitude. Moreover, should
a suppression mechanism be verified for the θ-term in any beyond-Standard-Model theory, the con-
tribution from a four-quark operator can match the quark-EDM and -chromo-EDM in importance.
This study serves as a prototype for the more challenging task of computing the neutron’s EDM.

PACS numbers: 11.30.Er, 14.40.Be, 11.15.Tk, 12.60.Jv

I. INTRODUCTION

The action for any local quantum field theory is invari-
ant under the transformation generated by the antiuni-
tary operator CPT , which is the product of the inver-
sions: C, charge conjugation; P , parity transformation;
and T , time reversal. The combined CPT transforma-
tion provides a rigorous correspondence between parti-
cles and antiparticles, and it relates the S matrix for any
given process to its inverse, where all spins are flipped
and the particles replaced by their antiparticles. Lorentz
and CPT symmetry together have many consequences,
amongst them, that the mass and total width of any par-
ticle are identical to those of its antiparticle.
It is within this context that the search for the in-

trinsic electric dipole moment (EDM) of an elementary
or composite but fundamental particle has held the fas-
cination of physicists for over sixty years [1]. Its exis-
tence indicates the simultaneous violation of parity- and
time-reversal-invariance in the theory that describes the
particle’s structure and interactions; and the violation of
P - and T -invariance entails that CP symmetry is also
broken. This last is critical for our existence because
we represent a macroscopic excess of matter over anti-
matter. As first observed by Sakharov [2], in order for
a theory to explain an excess of baryon matter, it must
include processes that change baryon number, and break
C- and CP -symmetries; and the relevant processes must
have taken place out of equilibrium, otherwise they would
merely have balanced matter and antimatter. (Alter-
nately, the presence of CPT violation can circumvent the
out-of-equilibrium environment.)
The electroweak component of the Standard Model

(SM) is capable of satisfying Sakharov’s conditions, ow-

ing to the existence of a complex phase in the 3×3-CKM
matrix which enables processes that mix all three quark
generations. However, this high-order process is too
weak to explain the observed matter-antimatter asym-
metry [3–5]. Hence, it is widely expected that any de-
scription of baryogenesis will require new sources of CP
violation beyond the SM. This presents little difficulty,
however, because extensions of the SM typically pos-
sess CP -violating interactions, whose parameters must,
in fact, be tuned to small values in order to avoid con-
flict with known bounds on the size of such EDMs [5–9].
(For recent analyses, see, e.g., Refs. [10–12] and references
therein.)
The question here is how such bounds should be im-

posed. That is not a problem for elementary particles,
like the electron. However, it is a challenge when the
SM extension produces an operator involving current-
quarks and/or gluons. In that case the CP violation is
expressed as an hadronic property and one must have at
hand a nonperturbative method with which to compute
the impact of CP -violating features of partonic quarks
and gluons on the hadronic composite.
To elucidate, extensions of the SM are typically active

at some large but unspecified energy-scale, Λ, and their
effect at an hadronic scale is expressed in a low-energy
effective Lagrangian:

Leff ∼
∑

j,k

Kj O
(k)
j Λ4−k, (1)

where O
(k)
j are composite CP -odd local operators of di-

mension k ≥ 4 and {Kj} are dimensionless strength pa-
rameters, which monitor the size of the model’s CP -
violating phases and commonly evolve logarithmically
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with the energy scale. The calculation of an hadronic
EDM therefore proceeds in two steps. The first, eas-
ier, part requires calculation of the coefficients {Ki} in
a given model. This involves the systematic elimination
of degrees-of-freedom that are irrelevant at energy-scales
less than Λ. The second, far more challenging exercise, is
the nonperturbative problem of translating the current-
quark-level interaction in Eq. (1) into observable proper-
ties of hadrons.
We illustrate the procedure in the case of the ρ-meson.

Not that there is any hope of measuring a ρ-meson EDM
but because the nonperturbative methods necessary can
most readily be illustrated in the case of systems defined
by two valence-quark degrees-of-freedom. In taking this
path, we follow other authors [13–15] but will nonethe-
less expose novel insights, especially because we consider
more operator structures than have previously been con-
sidered within a single unifying framework. It is worth
remarking here that particles with spin also possess a
magnetic dipole moment. That moment is aligned with
the particle’s spin because it is the only vector available.
The same is true of the expectation value of any electric
dipole moment. (Exceptions to this rule are only found
when an additional vector may be associated with the
system, such as is the case for the polar molecule H2O.)
Herein we shall estimate the contribution of some di-

mension four, five and six operators to the EDM of the
ρ+-meson; viz., the impact on the ρ of the local La-
grangian density

Leff = −iθ̄
g2s

32π2
Ga

µνG̃
a
µν −

i

2

∑

q=u,d

dq q̄ γ5σµνq Fµν

−
i

2

∑

q=u,d

d̃q q̄
1

2
λaγ5σµνq gsG

a
µν

+
K

Λ2
iεjk

[

Q̄jd Q̄kγ5u+ h.c.
]

, (2)

where: latin superscripts represent colour; gs is the
strong coupling constant; Fµν and Ga

µν are photon and

gluon field-strength tensors, respectively, and G̃a
µν =

(1/2)ǫµνλρG
a
λρ; {Q̄i|i = 1, 2} = {ūL, d̄L}, with the

subscript indicating left-handed; θ̄ is QCD’s effective
θ-parameter, which combines θQCD and the unknown

phase of the current-quark-mass matrix; {dq}, {d̃q} are
quark EDMs and chromo-EDMs, respectively; and K is
a generic dimensionless constant typifying four-fermion-
operator extensions to the Standard Model.
We note that Eq. (2) is expressed at a renormalisa-

tion scale ζ ∼ 2GeV, which is far below that of elec-
troweak symmetry breaking but still within the domain
upon which perturbative QCD is applicable. Moreover,
we have chosen to include just one dimension-six oper-
ator in the Lagrangian; i.e., a particular type of four-
fermion interaction. There is a host of dimension-six op-
erators, Weinberg’s CP-odd three-gluon vertex amongst
them [16]. However, for our illustrative purpose, nothing
is lost by omitting them because the potency of the one

operator we do consider can serve as an indication of the
strength with which each might contribute.
One merit of our analysis of the contribution from

Eq. (2) to the EDM of the ρ+-meson is the connection
of these EDM responses with values of a vast array of
hadron observables that are all computed within precisely
the same framework using exactly the same parameters
[17–22]. We explain this framework in Sec. II. In addition
to providing the first such comprehensive treatment, our
study is novel in considering the impact of a dimension-
six operator on the ρ+-meson’s EDM.
We introduce the ρ-meson electromagnetic form factors

in Sec. III. The effects of Eq. (2) on the ρ-meson bound-
state are analysed in Sec. IV. Each interaction term is
considered separately, so that we present a raft of alge-
braic formulae that are readily combined, evaluated and
interpreted. Numerical results are provided in Sec.V and
placed in context with previous studies. Section VI is an
epilogue.

II. ρ-MESON AS A BOUND STATE

A. ρ-γ-ρ Vertex

The ρ+-meson is a composite particle and thus its
EDM appears in the dressed vertex that describes its
coupling with the photon; viz.,

PT
αα′(p)Γα′µβ′(p, p′)PT

β′β(p
′)

= PT
αα′ (p)

{

(p+ p′)µ[−δα′β′E(q2) + qα′qβ′Q (q2)]

−(δµα′qβ′ − δµβ′qα′)M (q2)

−iεα′β′µσqσD(q2)
}

PT
β′β(p

′) , (3)

where: pα is the momentum of the incoming ρ-meson;
p′β, that of the outgoing ρ; qµ = p′µ − pµ; and

PT
αβ(p) = δαβ −

pαpβ
p2

. (4)

The vertex involves four scalar form factors whose q2 = 0
values are understood as follows: E(0), electric charge,
which is “1” in this case; M (0), magnetic moment, µρ, in
units of e/[2mρ], where e is the magnitude of the electron
charge; Q (0) = (2/m2

ρ)(Qρ+µρ−1), with Qρ the meson’s
electric quadrupole moment; and D(0) is the meson’s
electric dipole moment, in units of e/[2mρ].

B. Contact Interaction

Our goal is calculation of the last of these, D(0),
and for this we choose to work within the continuum
framework provided by QCD’s Dyson-Schwinger equa-
tions (DSEs) [23–25]. To be specific, we perform the
computation using a global-symmetry-preserving treat-
ment of a vector×vector contact-interaction because that
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has proven to be a reliable explanatory and predictive
tool for hadron properties measured with probe momenta
less-than the dressed-quark mass, M ∼ 0.4GeV [17–22].
To expand upon the reasons for this choice of interac-

tion we note that DSE kernels with a closer connection to
perturbative QCD; namely, which preserve QCD’s one-
loop renormalisation group behaviour, have long been
employed in studies of the spectrum and interactions
of mesons [26–28]. Such kernels are developed in the
rainbow-ladder approximation, which is the leading-order
in a systematic and global-symmetry-preserving trunca-
tion scheme [29, 30]; and their model input is expressed
via a statement about the nature of the gap equation’s
kernel at infrared momenta. With a single parameter
that expresses a confinement length-scale or strength
[31, 32], they have successfully described and predicted
numerous properties of vector [32–36] and pseudoscalar
mesons [32, 35–40] with masses less than 1GeV, and
ground-state baryons [41–44]. Such kernels are also reli-
able for ground-state heavy-heavy mesons [45]. Given
that contact-interaction results for low-energy observ-
ables are indistinguishable from those produced by the
most sophisticated interactions, it is sensible to capitalise
on the simplicity of the contact-interaction herein.
The starting point for our study is the dressed-quark

propagator, which is obtained from the gap equation:

S(p)−1 = iγ · p+m

+

∫

d4q

(2π)4
g2Dµν(p− q)

λa

2
γµS(q)

λa

2
Γν(q, p), (5)

wherein m is the Lagrangian current-quark mass, Dµν is
the vector-boson propagator and Γν is the quark–vector-
boson vertex. We use

g2Dµν(p− q) = δµν
4παIR

m2
G

, (6)

where mG = 0.8GeV is a gluon mass-scale typical of the
one-loop renormalisation-group-improved interaction in-
troduced in Ref. [35], and the fitted parameter αIR/π =
0.93 is commensurate with contemporary estimates of
the zero-momentum value of a running-coupling in QCD
[46, 47]. Equation (6) is embedded in a rainbow-ladder
truncation of the DSEs, which is the leading-order in
the most widely used, symmetry-preserving truncation
scheme [30]. This means

Γν(p, q) = γν (7)

in Eq. (5) and in the subsequent construction of the
Bethe-Salpeter kernels. One may view the interaction
in Eq. (6) as being inspired by models of the Nambu–
Jona-Lasinio (NJL) type [48]. However, in implementing
the interaction as an element in a rainbow-ladder trun-
cation of the DSEs, our treatment is atypical; e.g., we
have a single, unique coupling parameter, whereas com-
mon applications of the NJL model have different, tun-
able strength parameters for each collection of operators
that mix under symmetry transformations.

Using Eqs. (6), (7), the gap equation becomes

S−1(p) = iγ · p+m+
16π

3

αIR

m2
G

∫

d4q

(2π)4
γµ S(q) γµ , (8)

an equation in which the integral possesses a quadratic
divergence, even in the chiral limit. When the divergence
is regularised in a Poincaré covariant manner, the solu-
tion is

S(p)−1 = iγ · p+M , (9)

where M is momentum-independent and determined by

M = m+M
4αIR

3πm2
G

∫ ∞

0

ds s
1

s+M2
. (10)

Our regularisation procedure follows Ref. [49]; i.e., we
write

1

s+M2
=

∫ ∞

0

dτ e−τ(s+M2)

→

∫ τ2

ir

τ2
uv

dτ e−τ(s+M2) (11)

=
e−(s+M2)τ2

uv − e−(s+M2)τ2

ir

s+M2
, (12)

where τir,uv are, respectively, infrared and ultraviolet reg-
ulators. It is apparent from Eq. (12) that τir =: 1/Λir fi-
nite implements confinement by ensuring the absence of
quark production thresholds [23, 50]. Since Eq. (6) does
not define a renormalisable theory, then Λuv := 1/τuv
cannot be removed but instead plays a dynamical role,
setting the scale of all dimensioned quantities.
Using Eq. (11), the gap equation becomes

M = m+M
4αIR

3πm2
G

C iu(M2) , (13)

where

C iu(M2) = M2C
iu
(M2) (14)

= M2
[

Γ(−1,M2τ2uv)− Γ(−1,M2τ2ir)
]

, (15)

with Γ(α, y) the incomplete gamma-function, and, for
later use, C iu

1 (z) = −z(d/dz)C iu(z).
In rainbow-ladder truncation, with the interaction in

Eq. (6), the homogeneous Bethe-Salpeter equation for the
colour-singlet ρ-meson is

Γρ
µ(k;P ) = −

16π

3

αIR

m2
G

∫

d4q

(2π)4
γσχ

ρ
µ(q;P )γσ , (16)

where χρ
µ(q;P ) = S(q + P )Γρ

µ(q;P )S(q) and Γµ(q;P )
is the meson’s Bethe-Salpeter amplitude. Since the
integrand does not depend on the external relative-
momentum, k, then a global-symmetry-preserving reg-
ularisation of Eq. (16) yields solutions that are indepen-
dent of k. With a dependence on the relative momentum
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TABLE I. Results obtained with αIR/π = 0.93 and (in GeV):
m = 0.007, Λir = 0.24 , Λuv = 0.905 [20]. The Bethe-
Salpeter amplitudes are canonically normalised; κπ is the in-
pion condensate [51–53]; and fπ,ρ are the mesons’ leptonic
decay constants. Empirical values are κπ ≈ (0.22GeV)3 and
[54] fπ = 0.092GeV, fρ = 0.153GeV. All dimensioned quan-
tities are listed in GeV.

Eπ Fπ Eρ M κ
1/3
π mπ mρ fπ fρ

3.639 0.481 1.531 0.368 0.243 0.140 0.929 0.101 0.129

forbidden by the interaction, then the rainbow-ladder
vector-meson Bethe-Salpeter amplitude takes the form

Γρ
µ(P ) = γT

µEρ(P ), (17)

where Pµγ
T
µ = 0, γT

µ + γL
µ = γµ. We assume isospin

symmetry throughout and hence do not explicitly include
the Pauli isospin matrices.1

Values of some meson-related quantities, of relevance
herein and computed using the contact-interaction, are
reported in Table I. We quote pion properties in order
to provide a broader picture: the pion’s Bethe-Salpeter
amplitude is

Γπ(P ) = γ5

[

iEπ(P ) +
1

M
γ · PFπ(P )

]

. (18)

It will be noted that mρ in Table I exceeds the experi-
mental value by approximately 0.15GeV. This is a good
outcome, which indicates a sensible implementation of
the rainbow-ladder truncation. Systematic corrections
to that truncation produce attraction and typically lower
the mass into the vicinity of the experimental value. This
is discussed extensively elsewhere; e.g., Refs. [19, 22, 32].
Such corrections to the rainbow-ladder truncation also
effect a shift of roughly 15% in hadron radii and mag-
netic moments, bringing them into better alignment with
experiment, as illustrated, e.g., in Refs. [21, 55–57]. Im-
portantly, changes at the level of ∼ 15% are immaterial
in the context studies whose goal is to bound a hadron’s
EDM, where it is orders of magnitude that are significant.

III. ρ-MESON FORM FACTORS

At this point we can proceed to computation of the
form factors. In order to ensure a symmetry-preserving
treatment, one must calculate the vertex in Eq. (3) at
the same level of approximation as used for the dressed-
quark propagator and meson Bethe-Salpeter amplitude;

1 Note, too, that we use a Euclidean metric: {γµ, γν} = 2δµν ;

γ†
µ = γµ; γ5 = γ4γ1γ2γ3, tr[γ5γµγνγργσ ] = −4ǫµνρσ ; σµν =

(i/2)[γµ, γν ]; a · b =
∑4

i=1
aibi; and Pµ timelike ⇒ P 2 < 0.

p p′

q

k−+ k++

k−−

Γα Γβ

Γµ

FIG. 1. Impulse approximation to the ρ-γ vertex, Eq. (20):
solid lines – dressed-quark propagators; and shaded circles,
clockwise from top – Bethe-Salpeter vertex for quark-photon
coupling, and Bethe-Salpeter amplitudes for the ρ+-meson.

i.e., the generalised impulse approximation:

Γαµβ(p, p
′) = Γu

αµβ(p, p
′) + Γd

αµβ(p, p
′) , (19)

Γf
αµβ(p, p

′) = 2

∫

d4k

(2π)4
TrCD

{

iΓ
ρj

β (k;−p′)S(k++)

×iΓf
µ(k−+, k++)S(k−+)iΓ

ρj

α (k − q/2; p)S(k−−)

}

, (20)

wherein the trace is over colour and spinor indices and
kαβ = k + αq/2 + βp/2. We illustrate Eq. (20) in Fig. 1.
In evaluating Eq. (19) we write:

Sf = S + δCP Sf , f = u, d, (21)

where S is given in Eq. (9), with the dressed-mass ob-
tained from Eq. (10), and the broken-CP corrections
δCP Sf are detailed below; and the ρ-amplitude

Γρj

α = γT
αEρ(P ) + ΓρjCP

α , (22)

with Eρ(P ) explained in connection with Eq. (17) and

the broken-CP corrections Γ
ρjCP
α explained below. Our

computed values for the dressed-quark mass, M , and Eρ

are listed in Table I.
The remaining element in Eq. (19) is the dressed-

quark–photon vertex. We are only interested in the
q2 = 0 values of the form factors and hence may use

eΓµ(p1, p2) = eQ̃ γµ + iD̃γ5σµν(p2 − p1)ν (23)

=: e diag[euΓ
u
µ(p1, p2),−edΓ

d
µ(p1, p2)],(24)

where e is the positron charge, Q̃ = diag[eu = 2/3,−ed =

1/3] and D̃ = diag[du,−dd], with df the EDM of a cur-
rent quark with flavour f . N.B. The second term in
Eq. (23) describes the explicit current-quark EDM inter-
action in Eq. (2). In Sec. IV we show that the other terms
in Eq. (2) generate additional contributions that interfere
with this explicit term.
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Note that both structures in the vertex, Eq. (23), are
in general multiplied by momentum-dependent scalar
functions. Naturally, the vector Ward-Takahashi iden-
tity ensures that the coefficient of the Q̃ γµ term is “1”
at q2 = 0. In connection with the tensor term, one
knows from Ref. [20] that a tensor vertex is not dressed
in the rainbow-ladder treatment of the contact inter-
action. However, with a more sophisticated interac-
tion, strong interaction dressing of the γ5σµν part of the
quark-photon vertex might be significant, given that the
dressed-quark-photon vertex certainly possesses a large
dressed-quark anomalous magnetic moment term owing
to dynamical chiral symmetry breaking [58, 59]. At

q2 = 0, this could enhance the strength of the D̃ term
by as much as a factor of ten. If so, then sensitivity to
current-quark EDMs is greatly magnified. It is worth
bearing this in mind.
Working with Eq. (3), it is sufficient herein to employ

three projection operators:

P 1
αµβ = PT

ασ(p)PµP
T
σβ(p

′) , (25a)

P 2
αµβ = PT

αα′ (p)PT
β′β(p

′)
(

δµβ′qα′ − δµα′qβ′

q2
+

Pµδα′β′

6p2

)

, (25b)

P 3
αµβ =

1

2iq2
PT
αα′ (p)εα′β′µσqσP

T
β′β(p

′) , (25c)

with p′ = p+ q, P = p+ p′, for then

E(0) = lim
q2→0

1

12m2
ρ

P 1
αµβΓαµβ , (26a)

M (0) = lim
q2→0

1

4
P 2
αµβΓαµβ , (26b)

D(0) = lim
q2→0

P 3
αµβΓαµβ , (26c)

and µρ = M (0) e/[2mρ], dρ = D(0) e/[2mρ]. So long as a
global-symmetry-preserving regularisation scheme is im-
plemented, E(0) = 1; the value of M (0) is then a pre-
diction, which can both be compared with that produced
by other authors and serve as a benchmark for our pre-
diction of D(0).
At this point one has sufficient information to calcu-

late the ρ-meson’s magnetic moment. We simplify the
denominator in Eq. (19) via a Feynman parametrisation:

(

k2++ +M2
)−1 (

k2−+ +M2
)−1 (

k2−− +M2
)−1

= 2

∫ 1

0

∫ 1−x

0

dx dy

[

k2 +M2

+
1

4

[

p2 − 2 (1− 2x− 2y) p · q + q2
]

−(1− 2y) q · k + (1 − 2x) p · k

]−3

. (27)

This appears as part of an expression that is integrated
over four-dimensional k-space. The expression is simpli-
fied by a shift in integration variables, which exposes a

0 50 100 150 200

2.00

2.05

2.10

2.15

m HMeVL

M
H0
L

FIG. 2. Evolution of ρ-meson magnetic moment with current-
quark mass. m = 170MeV corresponds to the mass of the
s-quark in our treatment of the contact interaction [22], so
the difference between Mρ(0) and Mφ(0) is just 1%.

denominator of the form 1/[k2 + M̃2]3, with

M̃2 = M2 + x(x− 1)m2
ρ + y(1− x− y)Q2 . (28)

One thereby arrives at a compound expression that in-
volves one-dimensional integrals of the form in Eq. (10),
which we regularise via Eq. (11) and generalisations
thereof; viz.,

∫

ds
s

[s+ ω]2
= −

d

dω
C iu(ω) =: C

iu

1 (ω) , (29a)

∫

ds
s

[s+ ω]3
=

1

2

d2

dω2
C iu(ω) =: C

iu

2 (ω) , (29b)

∫

ds
s2

[s+ ω]3
= C

iu

1 (ω)− ωC
iu

2 (ω) , (29c)

etc. Details for this component of our computation may
be found in Ref. [20] and pursuing it to completion one
obtains the magnetic moment listed in Table II.
We depict the evolution of M (0) with current-quark

mass in Fig. 2: M (0) is almost independent of m.

TABLE II. Magnetic moment of the ρ-meson calculated using
our framework; and a comparison with other computations.
Legend: RL RGI-improved, treatment of a renormalisation-
group-improved one-gluon exchange kernel in rainbow-ladder
truncation; EF parametrisation, entire function parametrisa-
tion of solutions to the gap and Bethe-Salpeter equations; and
LF CQM, light-front constituent-quark model. The results
are listed in units of e/[2mρ].

This work and Ref. [20] 2.11

DSE: RL RGI-improved [34] 2.01

DSE: EF parametrisation [60] 2.69

LF CQM [61] 2.14

LF CQM [62] 1.92

Sum Rules [63] 1.8± 0.3

point particle 2
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This outcome matches that obtained in Ref. [34] using a
renormalisation-group-improved one-gluon exchange ker-
nel and hence a momentum-dependent dressed-quark
mass-function of the type possessed by QCD [64–67]. The
behaviour in Fig. 2 will serve to benchmark that of the
ρ-meson’s EDM.

IV. ρ-MESON EDM: FORMULAE

We now turn to computation of the effect of the inter-
action terms in Eq. (2) on the ρ-meson. There are three
types of contribution, which arise separately through
modification of: (1) the quark-photon vertex, Eq. (23);
(2) the ρ-meson Bethe-Salpeter amplitude, Eq. (22); and
(3) the dressed-quark propagator, Eq. (21).

A. Four-fermion interaction

We begin with the dimension-six operator, which can
be written explicitly as

L6 = i
K

2Λ2

[

ūadad̄bγ5u
b + ūaγ5d

ad̄bub

−d̄adaūbγ5u
b − d̄aγ5d

aūbub
]

, (30)

with summation over the repeated colour indices. This
operator generates all three types of modification.

1. L6 – quark-photon vertex

This contribution is depicted in the top panel of Fig. 3.
Consider first the case of d-quarks circulating in the loop,
then straightforward but careful analysis of the induced
Wick contractions produces the following result:

Γ
γ
Ld
6

µ = −i
K

Λ2

ed
eu

∫

d4ℓ

(2π)4
[

I 12µ +NcI
3
µ

]

, (31a)

I 12µ = −PRS(ℓ+ q)γµS(ℓ)PR

+PLS(ℓ+ q)γµS(ℓ)PL , (31b)

I 3µ = PL tr{S(ℓ+ q)γµS(ℓ)PL}

−PR tr{S(ℓ+ q)γµS(ℓ)PR} , (31c)

where PR,L = (1/2)(1±γ5). These right- and left-handed
projection operators satisfy PR + PL = ID, where ID is
the identity in spinor space.
Further simplification of the integrand reveals

I 12µ = I 1µ + I 2µ

=
iγ · q

(ℓ+ q)2 +M2
γµ

M

ℓ2 +M2
γ5 (32a)

+2i
ℓµ

(ℓ + q)2 +M2

M

ℓ2 +M2
γ5 , (32b)

I 3µ =
2i(2ℓµ + qµ)

(ℓ+ q)2 +M2

M

ℓ2 +M2
γ5 , (32c)

ℓ

µ

q

(a)

(b)

ℓ

(c)

ℓ

P

α

FIG. 3. Panel (a) – Correction to the quark-photon vertex
generated by the four-fermion operator in Eq. (30). The un-
modified quark-photon vertex is the left dot, whereas the right
dot locates insertion of L6. If the internal line represents a
circulating d-quark then, owing to the L6 insertion, the exter-
nal lines are u-quarks, and vice versa. Panel (b) – Analogous
correction to the ρ-meson Bethe-Salpeter amplitude. The un-
modified amplitude is the left dot, whereas the right dot lo-
cates insertion of L6. The lower internal line is an incoming
d-quark and the upper external line is an outgoing u-quark.
Panel (c) – L6-correction to the dressed-quark propagator,
with the dot locating the operator insertion. If the outer line
is a u-quark, then the internal line is a d-quark; and vice
versa.

so that one may subsequently obtain

∫

d4ℓ

(2π)4
I 1µ = (qµ + iσµνqν)γ5

×
iM

16π2

∫ 1

0

dxC
iu

1 (ωq) , (33a)

∫

d4ℓ

(2π)4
I 2µ = −qµγ5

iM

8π2

∫ 1

0

dxxC
iu

1 (ωq) , (33b)

∫

d4ℓ

(2π)4
I 3µ = qµγ5

iM

8π2

∫ 1

0

dx (1 − 2x)C
iu

1 (ωq) , (33c)

where ωq = x(1 − x)q2 + M2. Combining the terms,
Eq. (31a) becomes

Γ
γ
Ld
6

µ =
K

Λ2

ed
eu

M

16π2

∫ 1

0

dxC
iu

1 (ωq)

×[(1 + 2Nc)(1− 2x)qµ + iσµνqν ]γ5 (34)

q2=0
=

K

Λ2

ed
eu

M

16π2
C

iu

1 (M2)iσµνqνγ5 . (35)

In the other case, with a u-quark circulating in the
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loop, one obtains

Γ
γLu

6

µ
q2=0
=

K

Λ2

eu
ed

M

16π2
C

iu

1 (M2)iσµνqνγ5 . (36)

Plainly, the net correction to the quark-photon vertex
can now be cast in the form of the second term in Eq. (23)
and hence is readily expressed in D(0).

2. L6 – Bethe-Salpeter amplitude

This correction is depicted in the middle panel of Fig. 3.
Each of the four terms in Eq. (30) generates a distinct
contribution. That from the first and second are:

Γ
ρL1

6

α = −i
K

Λ2
NcEρ PR

×tr

∫

d4ℓ

(2π)4
S(ℓ)PRS(ℓ+ P )γT

α , (37a)

Γ
ρL2

6

α = −i
K

Λ2
Eρ PR

×

∫

d4ℓ

(2π)4
S(ℓ+ P )γT

αS(ℓ)PR . (37b)

The third and fourth terms are identical, up to sign-
change and the replacement PR → PL; and hence

ΓρL6

α = i
K

Λ2
Eρ

∫

d4ℓ

(2π)4
[

I 12Tα +NcI
3T
α

]

, (38)

where the superscript “T” indicates that γT
α is here used

in the expressions for I 12, I 3.
Now, using the formulae of Sec. IVA 1, one arrives at

ΓρL6

α = −i
K

Λ2

MEρ

16π2
γ5σανPν

∫ 1

0

dxC
iu

1 (ωP ) , (39)

where ωP = x(1−x)P 2+M2, P 2 = −m2
ρ. This is one of

the additive corrections to the Bethe-Salpeter amplitude
anticipated in Eq. (22).

3. L6 – quark propagator

The final modification arising from the dimension-six
operator is that depicted in the bottom panel of Fig. 3.
So long as the correction is small, it modifies the dressed-
quark propagator as follows:

S(k) → S(k) + δL6
S(k) = S(k) + S(k)iΓSL6S(k) , (40)

where, once again, each of the four terms in Eq. (30) con-
tributes. Their sum is

ΓSL6 =
K

Λ2

∫

d4ℓ

(2π)4
[

PRS(ℓ)PR − PLS(ℓ)PL

+NcPR tr{S(ℓ)PR} −NcPL tr{S(ℓ)PL}
]

. (41)

Now

PRS(ℓ)PR − PLS(ℓ)PL =
M

ℓ2 +M2
γ5

=
1

2

[

PR tr{S(ℓ)PR} − PL tr{S(ℓ)PL}
]

, (42)

so that with little additional algebra one arrives at

δL6
S(k) =

i

k2 +M2
(1 + 2Nc)

K

Λ2

M

16π2
C iu(M2)γ5 . (43)

B. Quark chromo-EDM

The term in the middle line of Eq. (2) also generates
all three types of modification described in the opening
lines of this Section. Notably, owing to dynamical chi-
ral symmetry breaking, the dressed-quark-gluon coupling
possesses a chromomagnetic moment term that, at in-
frared momenta, is two orders-of-magnitude larger than
the perturbative estimate [59]. One may reasonably ex-
pect similar strong-interaction dressing of a light-quark’s
chromo-EDM interaction with a gluon, in which case sen-
sitivity to the current-quark’s chromo-EDM is very much
enhanced.

1. LCEDM – quark-photon vertex

This contribution is depicted in Fig. 4. After a lengthy
analysis, in which we represent the exchanged gluon via
Eq. (6), the sum of the two leftmost diagrams produces

Γγ(g)
µ =

1

6iπ

d̃fαIR

m2
G

∫ 1

0

dx
[

C iu(ωq)− C iu
1 (ωq)

]

×

{

2qα σµαγ5 − 6i
[

3(x− 1/2)qµ − pµ
]

γ5

}

−
1

3π

d̃fαIR

m2
G

∫ 1

0

dxC
iu

1 (ωq)

{

6
[

ωq − 2M2
]

pµγ5

−6
[

(x− 1/2)ωq + 2x(1− x)q · p
]

qµγ5

+M
[

((x − 1/2)q + p) · γ
]

qασαµγ5

+Mqασαµγ5
[

((x− 1/2)q + p) · γ
]

}

, (44)

where, again, d̃f is the chromo-EDM of a quark with
flavour f .
As we are interested solely in the EDM, we may con-

sider q2 = 0, at which value the result simplifies greatly:

Γγ(g)
µ =

1

3iπ

d̃fαIR

m2
G

[

C iu(M2)− C iu
1 (M2)

]

×
[

γ5σµαqα + 3ipµ γ5
]

+
1

3π

d̃fαIR

m2
G

C
iu

1 (M2)

[

M{γ · p, γ5σµα}qα

+2p · qqµγ5 + 6M2pµγ5

]

. (45)
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+ + q

p+ q/2

p− q/2

q

ℓ− q/2

ℓ+ q/2

p− ℓ

p+ q/2

p− q/2

q

ℓ− q/2

ℓ+ q/2

p− ℓ

p + q/2

p− q/2

FIG. 4. Correction to the quark-photon vertex generated by
the quark chromo-EDM operator in Eq. (2): the incoming and
outgoing quark lines have the same flavour, f . The dot in the
left two diagrams locates insertion of LCEDM , whilst that in
the rightmost diagram indicates the second term in Eq. (23);
i.e., the explicit quark EDM.

Plainly, the net correction to the quark-photon vertex
from these two diagrams can now be cast in the form of
the second term in Eq. (23), which, in fact, is precisely
the rightmost diagram in Fig. 4 because q = p2 − p1.

2. LCEDM – Bethe-Salpeter amplitude

This correction is expressed in Fig. 5. Owing to sim-
ilarity between the Leff -uncorrected ρ-meson amplitude
and quark-photon vertex, the results can be read from
those in Sec. IVB 1; viz., with d̃± = d̃u ± d̃d,

Γρ(g)
α =

1

6iπ

αIR

m2
G

Eρ

∫ 1

0

dx
[

C iu(ωP )− C iu
1 (ωP )

]

×

{

[

(d̃+ − 3(x− 1/2)d̃−)Pβ − d̃−pβ
]

σµβγ5P
T
µα

+3id̃+pµγ5P
T
µα − 3d̃−Mγµγ5P

T
µα

}

−
1

3π

αIR

m2
G

Eρ

∫ 1

0

dx C̄ iu
1 (ωP )

×

{

3d̃+
[

ωP − 2M2
]

pµγ5P
T
µα

−d̃−
(

[ωP − 2M2][(x− 1/2)Pβ + pβ]
)

iγ5σβµP
T
µα

+Md̃d
[

((x− 1/2)P + p) · γ
]

Pβσβµγ5P
T
µα

+Md̃uPβσβµγ5P
T
µα

[

((x− 1/2)P + p) · γ
]

}

. (46)

In computing the vertex in Eq. (19) one must employ
Fig. 5 and also its charge conjugate, the form of which is
obtained from Eq. (46) via the interchange d̃u ↔ d̃d, and
p → −p, P → −P .

3. LCEDM – quark propagator

The last modification generated by the chromo-EDM
term in Eq. (2) is that to the quark propagator, Fig. 6.
The self-energy insertion is readily evaluated:

ΓS(g) = d̃f
8

π

αIR

m2
G

Diu(M2)γ5 , (47)

+
P

ℓ− P/2

ℓ+ P/2

p− P/2

p+ P/2

p− ℓ

P

ℓ− P/2

ℓ+ P/2

p− P/2

p + P/2

p− ℓ

FIG. 5. Correction to the ρ-meson Bethe-Salpeter amplitude
generated by the quark chromo-EDM operator in Eq. (2): the
incoming line is a d-quark and the outgoing line is a u-quark.
In each case the dot locates insertion of LCEDM .

+

FIG. 6. Correction to the dressed-quark propagator generated
by the quark chromo-EDM operator in Eq. (2). In each image
the dot locates insertion of LCEDM .

where

Diu(ω) =

∫

ds
s2

s+ ω
→

∫ τ2

ir

τ2
uv

dτ
2

τ3
exp(−τω), (48)

so that, with f = u, d,

δ(g)Sf (k) =
i

k2 +M2
d̃f

8

π

αIR

m2
G

Diu(M2)γ5 . (49)

C. θ-term

Owing to a connection between the Higgs mechanism
for generating current-quark masses in the SM and CP

violation in the weak interaction, the effect of the θ-term
can completely be expressed through a UA(1) rotation
of the current-quark mass-matrix. We consider the s-
quark to be massive and mu = md, in which case the
effect of the first term in Eq. (2) is expressed simply in a
modification of the dressed-quark propagator:

S(k) →
1

iγ · k +M + i
2m θ̄ γ5

(50)

mθ̄ small
≈ S(k)−

1

k2 +M2

i

2
m θ̄ γ5 . (51)

1. Dressed-quark anomalous chromomagnetic moment

In our global-symmetry-preserving rainbow-ladder
treatment of the contact interaction, the general form
of the ρ-meson’s Bethe-Salpeter amplitude is given in
Eq. (17). The absence of a term σµνPνFρ(P ) is an arte-
fact of the rainbow-ladder truncation: even using Eq. (6),
a Bethe-Salpeter amplitude with Fρ(P ) 6= 0 is obtained
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in any symmetry-preserving truncation that goes beyond
this leading order [30]. One material consequence of this
omission is complete cancellation of all terms at leading-
order in θ̄, so that the θ-term’s contribution to the ρ-
meson’s EDM is anomalously suppressed in rainbow-
ladder truncation. This defect may be ameliorated by
acknowledging that the dressed-quark-gluon vertex pos-
sesses an anomalous chromomagnetic moment coupling
which is enhanced by dynamical chiral symmetry break-
ing [59]. We therefore include an effect generated by

Γacm
µ (pi, pf ) =

µacm

2M
σµν(pf − pi)ν , (52)

where [68] µacm ∼ (−1/4).
In order to explicate the effect we find it convenient to

first express collectively the corrections to the dressed-
quark propagator computed above; viz., from Eqs. (43),
(49), (51),

S(k) → S(k)− iγ5
λ

k2 +M2
, (53)

λL6
= −(1 + 2Nc)

K

Λ2

M

16π2
C iu(M2) , (54)

λ(g) = −d̃f
8

π

αIR

m2
G

Diu(M2) , (55)

λθ̄ =
1

2
mθ̄ . (56)

Our corrections are now obtained via the diagrams in
Fig. 5, except that here the dots represent Eq. (52), and
one simultaneously adds the correction to one and then
the other propagator. In this way, careful but straight-
forward computation yields

Γλ,acm
µ =

αIR

2iπm2
G

λ1µacm
2 − λ2µacm

1

2M

×

∫ 1

0

dx
[

C iu(ωP )− C iu
1 (ωP )

]

γµγ5

+
αIR

6iπm2
G

1

M

∫ 1

0

dx C̄ iu
1 (ωP )

×

{

3µacm
− γ · (p+ (x− 1/2)P )

×[(1− x)λ1 − xλ2]Pµ

+i
[

(1− x)λ1 + xλ2
)

]
[

µacm
1 γνPασαµ

−µacm
2 Pασαµγν

]

(p+ (x− 1/2)P )ν

−λ−M
[

µacm
+ (p+ (x− 1/2)P )βσµβ

+3iµacm
− (p+ (x − 1/2)P )µ

]

}

γ5 , (57)

where µacm
± = µacm

1 ± µacm
2 , and {λi, i = 1, 2} represents

the quark propagator correction on each leg with λ± =
λ1 ± λ2.
One can now adapt the general expression in Eq. (57)

to the particular cases of relevance herein. The first is
the ρ-meson Bethe-Salpeter amplitude. Capitalising on

isospin symmetry, which entails µacm
u = µacm

d =: µacm,
one finds

Γρ acm
α =

αIR

2iπm2
G

µacmλ−

2M
Eρ

∫ 1

0

dx
[

C iu(ωP )− C iu
1 (ωP )

]

×γµPµαγ5

+
αIR

3iπm2
G

µacm

2M
Eρ

∫ 1

0

dx C̄ iu
1 (ωP )

{

i
[

(1− x)λ1

+xλ2
](

γβPνσνα − Pνσναγβ
)

(p+ (x− 1/2)P )β

−2λ−MPµα(p+ (x− 1/2)P )νσµν

}

γ5 , (58)

where “λ” is constructed from the correction specified in
one of Eqs. (54) – (56).
The other case is the quark-photon vertex, for which

the correction is found with λ1 = λ2 = λ, since the quark
flavours are identical, and we need only consider q2 = 0:

Γγ acm
µ =

αIR

3πm2
G

µacmλ

2M
C̄ iu
1 (M2)γ5

[

γ · p , σµαqα
]

. (59)

V. ρ-MESON EDM: RESULTS

A. Analysis without Peccei-Quinn symmetry

In order to obtain a result for the ρ-meson’s EDM, dρ,
it remains only to sum the various contributions derived
in Sec. IV as they contribute to Eq. (19), evaluated with
the parameter values in Table I:

dρ = −2.88× 10−3 µacm eθ̄/s

+0.785 (du − dd)

+(1.352 + 0.775µacm)e(d̃u − d̃d)

−(0.091− 2.396µacm)e(d̃u + d̃d)

−e
sK

Λ2
(2.696− 6.798µacm)× 10−3 . (60)

In this formula, df , d̃f carry a dimension of inverse-mass
and s = 1GeV.
A nugatory transformation allows one to rewrite

Eq. (60) in terms of dimensionless electric and chromo-
electric quark dipole moments; viz.,

dρ = −2.88× 10−3 µacm eθ̄/s

+e
vH

Λ2

[

0.785 (Du −Dd)

+(1.352 + 0.775µacm)(D̃u − D̃d)

−(0.091− 2.396µacm)(D̃u + D̃d)

−(1.096− 2.763µacm)× 10−5K

]

, (61)

where vH = 246GeV is the cube-root of the phenomeno-
logical Higgs vacuum expectation value. In a class of
models that includes, e.g., Ref. [69], one finds

Df ∼
mf

vH
∼ 2× 10−5, (62)
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FIG. 7. Evolution of the quark-EDM component of the ρ-
meson’s EDM with current-quark mass, assuming d− is inde-
pendent of m. m = 170MeV corresponds to the mass of the
s-quark in our treatment of the contact interaction [22], so
the difference between dγρ and dγφ is 10%.

a result which may be used to inform expectations about
the “natural” magnitude of the terms in Eqs. (60), (61).
There are four distinct types of contribution to dρ in

Eq. (60). The first is associated with the θ-term; and it is
notable that this contribution vanishes in the absence of
a dressed-quark anomalous magnetic moment, a feature
which emphasises the connection between topology and
dynamical chiral symmetry breaking that is highlighted,
e.g., in Eq. (21) of Ref. [40]. Our result may directly be
compared with that obtained in a sum rules analysis; viz.,

herein : −2.9× 10−3 µacm eθ̄ ∼ 0.7× 10−3 eθ̄

Ref. [15] : 4.4× 10−3 eθ̄ .
(63)

The second contribution owes to an explicit dressed-
quark EDM. It has been computed via a number of meth-
ods, so that a comparison with our results is readily com-
piled:

herein DSE [13] BM [13] nrQM [13] sum rules [15]

0.79 0.72 0.83 1.00 0.51 ,
(64)

where each entry is multiplied by d− = (du − dd); and
DSE [13] summarises results obtained from momentum-
dependent DSE input, BM [13] reports a bag-model re-
sult, and nrQM[13] is the non-relativistic constituent-
quark value. We depict the current-quark mass depen-
dence of this contribution in Fig. 7. It is notable that the
magnitude of these results matches an existing DSE esti-
mate of the analogous contribution to the neutron’s EDM
[70]. Moreover, based on Ref. [71], a perturbative analysis
would yield 2mρd

pert
ρ = 2md−, where m is the current-

quark mass. With the parameter values employed herein,
this is dpertρ = 0.014 d−, which is just ∼ 2% of the order-
of-magnitude specified by the values in Eq. (64).
The third contribution to dρ is generated by the

quark’s chromoelectric dipole moment. Its subcompo-

TABLE III. Contributions to the ρ-meson EDM associ-
ated with a quark chromoelectric dipole moment, with
d̃e∓ = e(d̃u ∓ d̃d). Row 1: quark-photon vertex correction,
Sec. IVB1; Row 2: ρ-meson Bethe-Salpeter amplitude correc-
tion, Sec. IVB 2; Row 3: dressed-quark propagator correction,
Sec. IVB3; Row 4: anomalous chromomagnetic moment con-
tributions, Sec. IVC 1; Row 5: sum of preceding four rows;
Row 6: Row 5 evaluated with µacm = −1/4; and Row 7:
sum rules result from Ref. [15], evaluated here with a heavy
s-quark.

qγq −0.066 d̃e− − 0.199 d̃e+

BSA −0.120 d̃e− + 0.108 d̃e+
S(k) 1.538 d̃e−

acm (×µacm) 0.775 d̃e− + 2.396 d̃e+

our CEDM (1.35 + 0.78µacm) d̃e− − (0.09 − 2.40µacm) d̃e+
total 1.16 d̃e− − 0.69 d̃e+

sum rules [15] −0.13 d̃e−

nents are detailed in Table III. The net result is com-
parable in magnitude and sign with that produced by
the quark EDM, Eq. (64). In comparison with a sum
rules computation [15], however, our result is an order of
magnitude larger, has the opposite sign and contains a
sizeable d̃+-term. At least the first two of these marked
discrepancies are insensitive to reasonable variations in
µacm. It is worth emphasising here that our calculation
has no other variable parameters: the two specifying our
model, listed in Table I, were fixed in prior studies of
an array of meson and baryon observables [17–22]. This
mismatch will receive further attention in future work.
The four-fermion interaction is responsible for the final

contribution in Eq. (60). Its subcomponents are detailed
in Table IV. As ours is the first estimate of the contri-
bution from a dimension-six operator to the ρ-meson’s
EDM, there is no ready substantial comparison. On the
other hand, the result in Table IV is quickly seen to be
“natural” in size. The dimension-six operator is associ-
ated with a coupling K /Λ2, which has mass-dimension
“−2”. In order to obtain a quantity with mass-dimension
“−1”, this coupling must be multiplied by another en-
ergy scale. We are interested in an hadronic EDM, so
that scale should be typical of hadron physics; e.g., the
dressed-quark mass “M”. Finally, a loop correction is
required for the generation of an EDM, and loops are
characterised by a factor 1/(16π2). Putting these quan-
tities together yields an expectation based on naive di-
mensional analysis; viz.,

dD=6
ρ ∼ e

1

16π2

M

vH

vHK

Λ2
∼ 1× 10−5 evHK

Λ2
, (65)

in agreement with the magnitude of the final row in Ta-
ble IV. Comparison with Eq. (62), furthermore, indicates
that in our computation the quark-EDM and dimension-
six contributions are naturally related via

dqEDM
ρ K ∼ dD=6

ρ . (66)
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TABLE IV. Contributions to the ρ-meson EDM associated
with the dimension-six operator in Eq. (2). Each row should
be multiplied by evHK /Λ2. Row 1: quark-photon vertex cor-
rection, Sec. IVA1; Row 2: ρ-meson Bethe-Salpeter ampli-
tude correction, Sec. IVA 2; Row 3: dressed-quark propaga-
tor correction, Sec. IVA 3; Row 4: anomalous chromomag-
netic moment contributions, Sec. IVC1; and Row 5: sum of
preceding four rows.

qγq −1.005 × 10−5

BSA −9.114 × 10−7

S(k) 0

acm (×µacm) 2.763 × 10−5 µacm

our D = 6 total −(1.096 − 2.763µacm)× 10−5

B. Peccei Quinn Symmetry

The leading term in Eq. (61) is that associated with θ̄.
Arising from a dimension-four operator, this contribu-
tion is not suppressed by a large beyond-SM mass-scale.
One may furthermore expect that, absent any symme-
try to prevent it, a typical non-SM for CP-violation will
produce large corrections to θ̄. In order to reconcile this
with the remarkably small upper-bound on θ̄ placed by
the neutron’s EDM, one must accept that the initial value
of θ̄ is very finely tuned. There is nothing to prevent this
from being simply an accident of Nature. However, some
view that possibility as aesthetically displeasing and pre-
fer to introduce a new dynamical degree of freedom, the
axion, a pseudo-Goldstone boson, whose role is to cancel
the effect of θ̄ [72]. It is notable that there is currently no
empirical evidence in favour of the axion’s existence and
the remaining domain of parameter space is small [73].
Notwithstanding this, in the context of EDM estimates

it is customary to expose the possible effect of axion
physics on the results in Eq. (60) or (61). Here there
is a complication. If one considers an extension of the
SM with a collection of CP-odd operators that may mix
with the θ̄-term, then the effective potential describing
axion physics at the hadronic scale can plausibly acquire
terms that shift its minimum to a nonzero value of the
effective θ̄-parameter, θ̄induced [7]. The quark chromo-
electric dipole moment interaction is one such operator.
In its case, within a sum rules calculation [15], the net
effect of this mixing is elimination of θ̄ in favour of a
modest enhancement in magnitude of the coefficients of
d̃± in Eq. (60), with no change in sign.
The implications for our study are plain. Allowing

an axion-like mechanism to play a role, then θ̄ disap-
pears from Eqs. (60) and (61), and any measurement of
an hadron EDM, here that of the ρ-meson, places a little
more stringent constraint on d̃± in particular but also on
d± and K .
This is, perhaps, particularly relevant to K , since the

high-scale physics that generates this operator will typi-
cally also produce a complex phase for the quark masses.

Within the low-energy effective theory of Eq. (2), this
phase will arise from one-loop contributions to the quark
propagator containing one insertion of the CP-violating
four-quark operator and the quark Yukawa interaction.
Consequently, constraints on θ̄ imply a bound on K . On
the other hand, with the elimination of θ̄ via an axion
effective potential, the term modulated by K is exposed
to independent constraint [8]. Computing the contribu-
tion of the four-quark CP-violating operator to the ax-
ion potential, determining the resulting dependence of
θ̄induced on K , and deriving the expression corresponding
to Eq. (61) will be the subject of future work.

VI. EPILOGUE

Using the leading-order in a global-symmetry-
preserving truncation of QCD’s Dyson-Schwinger equa-
tions, we computed the electric dipole moment of the
ρ-meson, dρ, that is generated by the leading dimension-
four and -five CP-violating operators and an example of
a dimension-six operator. We employed a momentum-
independent form for the leading-order kernel in the
gap- and Bethe-Salpeter equations. This is known to
produce results for low-energy pseudoscalar- and vector-
meson observables that are indistinguishable from those
obtained with the most sophisticated interactions avail-
able when they are analysed using the same truncation.
Since the dipole moment is a low-energy observable, our
predictions should be similarly reliable, in which case
the framework we employ and elucidate can usefully be
adapted to the more challenging task of computing the
neutron’s EDM, dn.

We find that the two dimension-five operators; namely,
quark-EDM and -chromo-EDM, characterised by dq and

d̃q, respectively, produce contributions to dρ whose coef-
ficients are of the same sign and within a factor of two
in magnitude. This contrasts with an extant sum rules
evaluation, in which the coefficients of the contributions
have the opposite sign and differ by a factor of four in
magnitude. Since all studies agree within a factor of two
on the quark-EDM coefficient, the discrepancy resides
with the chromo-EDM contribution. These differences
invite further analysis and guarantee relevance to a DSE
evaluation of the impact of d̃q on the neutron’s EDM.

Absent a mechanism that suppresses a θ-term in
any beyond-Standard-Model action, the tight constraints
on the magnitude of a contribution from this term to
the neutron’s EDM also apply to contributions from a
dimension-six four-fermion operator to this or another
hadron’s EDM. Should such a mechanism exist, how-
ever, we find that a dimension-six operator can match
the quark-EDM and chromo-EDM in importance.

Using the techniques described herein, calculation of
the neutron’s EDM is underway.
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Roberts, Few Body Syst. 51, 1 (2011).

[20] H. L. L. Roberts, A. Bashir, L. X. Gutiérrez-Guerrero,
C. D. Roberts and D. J. Wilson, Phys. Rev. C83, 065206
(2011).
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