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Through a complex shift of the time coordinate, a modification of Bjorken flow is introduced
which interpolates between a glasma-like stress tensor at forward rapidities and Bjorken-like hy-
drodynamics around mid-rapidity. A Landau-like full-stopping regime is found at early times and
rapidities not too large. Approximate agreement with BRAHMS data on the rapidity distribution of
produced particles at top RHIC energies can be achieved if the complex shift of the time coordinate
is comparable to the inverse of the saturation scale. The form of the stress tensor follows essentially
from symmetry considerations, and it can be expressed in closed form.
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I. OUTLINE OF THE CONSTRUCTION

The central idea of Bjorken flow [1] is that there is ap-
proximate boost invariance in the direction of the beam-
line for the dynamics near mid-rapidity. Particles that
form near mid-rapidity are assumed to do so at some def-
inite, boost-invariant proper time τform ≈ 1 fm/c, where

τ =
√
t2 − x2

3. Assuming that all motion is in the beam-
line direction, the individual four-velocities of the pro-
duced particles can be deduced to have the form

uµ =

(
− t
τ
, 0, 0,

x3

τ

)
. (1)

To the extent that one may use a hydrodynamical de-
scription, the boost invariance also constrains the local
energy density ε: it can depend on t and x3 only through
the combination τ . If one assumes translational and ro-
tational invariance in the collision plane, then ε cannot
depend on x1 or x2. Thus ε = ε(τ). One can obtain
explicit expressions for ε(τ) by assuming a specific form
for the stress tensor. For example, let’s choose

Tµν = εuµuν +
ε

3
(gµν + uµuν) , (2)

corresponding to inviscid, conformal hydrodynamics.
Then one immediately finds

ε(τ) =
ε0
τ4/3

, (3)

where ε0 is a constant.
A trivial modification of Bjorken flow is to set

uCµ =

(
− t+ t3√

(t+ t3)2 − x2
3

, 0, 0,
x3√

(t+ t3)2 − x2
3

)

εC =
εC0

((t+ t3)2 − x2
3)2/3

TC
µν = εCuCµ u

C
ν +

εC

3
(gµν + uCµ u

C
ν ) ,

(4)

where t3 is a constant. If t3 is real, then we have simply
translated Bjorken flow in time. If t3 is complex, we have
something new, and all the quantities with a superscript
C become complex. The complexified stress tensor TC

µν

still obeys the conservation equations ∇µTC
µν = 0, and

because these are linear equations, a conserved stress ten-
sor with all components real can be obtained by defining

Tµν ≡ ReTC
µν . (5)

Tµν as identified in (5) will not in general satisfy the
inviscid hydrodynamic constitutive relations.

It may seem that (4)-(5) are an unmotivated and un-
promising line of attack on the problem of describing
the rapidity structure of heavy ion collisions. However,
provided the phase of εC is chosen correctly (namely
arg εC = π/3 when arg t3 = π/2), an appealing space-
time picture emerges in the forward lightcone, as illus-
trated in figure 1. At early times and rapidities not too
large, there is a full-stopping region reminiscent of the
Landau model. Although the hydrodynamic constitutive
relations hold to good accuracy in this region, they do not
hold uniformly in its causal future. Instead, one recov-
ers the hydrodynamic constitutive relations, and Bjorken
flow, asymptotically at late proper times τ with rapidity
held fixed; but at forward rapidities one obtains a glasma-
like form of the stress tensor, with longitudinal pressure
nearly equal to minus the energy density. Interestingly,
at τ = |t3|, there is a very simple relation between the
rapidity yF of the fluid and the pseudorapidity:

yF =
η

2
when τ = |t3| . (6)

This is to be compared with the relation yF = η for
Bjorken flow.

The organization of the rest of this paper is as follows.
In section II I explain how the phase of εC is fixed by
positive energy considerations. In section III I explain
the main features of the rapidity structure of the flow,
providing in particular a more quantitative version of the
diagram in figure 1. In section IV I consider a simplified
version of hadronization and exhibit a comparison of the
predicted rapidity profile with data from the BRAHMS
experiment. I conclude in section V with a discussion of
symmetry groups and local entropy production.
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FIG. 1. (Color online.) A simplified cartoon of the rapidity
structure of the complex deformation of Bjorken flow indi-
cated in (4)-(5), with arg εC = π/3 and arg t3 = π/2.

II. POSITIVE ENERGY CONSTRAINTS

In addition to the conservation equations, a sensible
stress tensor must satisfy some sort of positive energy
constraints. The conditions we will apply are that the
Landau frame can be defined throughout the future light-
wedge of the collision plane, and that the energy density
in the Landau frame is positive throughout this wedge.

To pass from the laboratory frame to the Landau
frame, we must apply a boost which makes the stress ten-
sor diagonal [2]. This boost is in the x3 direction, because
the only non-diagonal components of Tµν are T03 = T30.
Suppressing the x1 and x2 directions for brevity, we may
express

Tµν =

(
T00 T03

T03 T33

)
Λµν =

(
cosh yF sinh yF
sinh yF cosh yF

)
(7)

TLµν = ΛαµΛβνTαβ =

(
εL 0
0 pL3

)
,

where εL is the Landau frame energy density and pL3 is
the Landau frame longitudinal pressure. The transverse
pressure pT = p1 = p2 is the same in the Landau frame
as it is in our original frame. It is easy to show from (7)
that

yF = −1

2
tanh−1 2T03

T00 + T33

εL =
1

2

[
T00 − T33 (8)

+
√

(T00 − 2T03 + T33)(T00 + 2T03 + T33)
]

pL3 =
1

2

[
− T00 + T33

+
√

(T00 − 2T03 + T33)(T00 + 2T03 + T33)
]
.

The Landau frame exists precisely when yF as defined in
(8) is real. I claim that in order for the Landau frame
to exist throughout the future light-cone of the collision

plane, one must set

εC0 = i2/3εR0 , (9)

where εR0 is real. Furthermore, εL > 0 everywhere in the
future light-cone provided εR0 > 0. A full demonstration
of these claims is tedious, but I will give sufficient indi-
cations here to show that no other phase than the one in
(9) will suffice. To this end, let’s set

εC0 = i2/3eiθ t3 = i τ =
√
t2 − x2

3 = 1 , (10)

where without loss of generality we can limit arg θ ∈
(−π/2, π/2) by allowing εR0 to be a signed real quan-
tity (anticipating that the constraint εR0 > 0 will emerge
from later arguments). Straightforward computation
now leads to

tanh 2yF =
−2T03

T00 + T33

=

√
t2 − 1

t

(
1 +

sin θ

t cos θ + (t2 − 1) sin θ

)
. (11)

It should be borne in mind that (11) holds only with the
special values (10), in particular τ = 1. If sin θ 6= 0, then
by expanding (11) at large t one can see immediately that
the right hand side is greater than 1 when t is sufficiently
large. Thus θ = 0, and (11) simplifies dramatically to
yF = η/2, where

η = tanh−1 x3

t
(12)

is the spacetime pseudorapidity. This result, previously
quoted as (6), contrasts with the result yF = η for stan-
dard Bjorken flow and provides some preliminary indica-
tion that the flow is more focused near mid-rapidity. It
is also useful to note that yF = 0 when η = 0 for all t,
and upon setting θ = 0 one finds

T00 = εL = 3pL3 = 3pT = Re
i2/3εR0

(t+ t3)4/3
when x3 = 0 .

(13)
So the ideal hydrodynamic constitutive relations are sat-
isfied precisely at mid-rapidity, and T00 ≈ εR0 /2t

4/3 at
mid-rapidity for t� |t3|, which is the same functional de-
pendence as for Bjorken flow. Thus εR0 > 0, as promised.

III. FEATURES OF THE RAPIDITY
DEPENDENCE

Up to an overall rescaling of time, t3 = i is the unique
choice for the type of flow we are interested in. As argued
above, up to an overall rescaling of energy, εC0 = i2/3 is
the unique choice for a physically sensible stress tensor.
Thus, through (4), (5), and (8), I have constructed an
essentially unique stress tensor. Its main features, exhib-
ited in figures 2-3, may be summarized as follows:
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FIG. 2. (Color online.) Top: The fluid rapidity versus space-
time pseudorapidity, at several different values of Bjorken
time, for t3 = i. Middle: The Landau frame energy density,
scaled by τ−4/3, versus spacetime pseudorapidity, at several
different values of Bjorken time. Bottom: The ratio of lon-
gitudinal pressure to energy density, in the Landau frame,
versus spacetime pseudorapidity, at several different values of
Bjorken time. The ratio pL3 /ε

L is not shown for τ < 1 because
it happens to be identical for τ and |t3|2/τ .

• There is a region at late times in which yF ≈ η and
pL3 /ε ≈ 1/3: Bjorken flow is approximately recov-
ered. To define more precisely where this happens,

I note that

pL3
εL

> 0.3 when |η| <∼ −1.4 + log
τ

|t3|
dyF
dη

> 0.9 when |η| <∼ log
τ

|t3|
. (14)

The energy density and pressure become broader in
pseudorapidity, and the energy density acquires a
characteristic double-hump structure for t >∼ 10|t3|.
It is interesting that yF attains values slightly
larger than η in the Bjorken region (by roughly
10%). yF then approaches η from above as τ →∞
at fixed η. Because of this overshoot, it is perhaps
better to describe the region where the conditions
(14) hold as “Bjorken-like.”

• There is a region at early times in which the fluid
rapidity yF is small and the ratio pL3 /ε

L is close to
1/3. This is reminiscent of full stopping in the Lan-
dau model, so I will refer to the region in question
as the full-stopping region. Because yF = 0 exactly
at mid-rapidity for symmetry reasons, it is better
to use the smallness of dyF /dη (at fixed τ) to define
the full-stopping region. I find that

dyF
dη

< 0.1 and
pL3
εL

> 0.3 (15)

when

t

t3
<∼ 0.6 and

x3

|t3|
<∼ 0.2 . (16)

It is probably appropriate to think of the fluid as
far from equilibrium in the full-stopping region, be-
cause although the fluid is close to satisfying the in-
viscid hydrodynamic constitutive relations there, it
ceases to do so in much of the causal future of the
full-stopping region: in particular, in the glasma-
like region to be described next.

• At extreme forward rapidities (and for proper times
not too small) the fluid rapidity is close to satisfy-
ing the curious relation dyF /dη = 1/2—a relation
which, as explained around (11), is exactly satis-
fied for all rapidities when τ = |t3|. In a similar
region, I find pL3 < 0, with pL3 ≈ −εL as the pseu-
dorapidity becomes large. This is the same as the
stress tensor of purely longitudinal electric and/or
magnetic fields, as considered in glasma accounts of
pre-thermalization dynamics: see for example [3].
At late times,

pL3
εL

< 0 when |η| >∼ 0.2 + log
τ

|t3|
dyF
dη

< 0.6 when |η| >∼ 0.9 + log
τ

|t3|
. (17)

A visual summary of the bulleted points above can be
found in figure 3, which may be seen as a more quanti-
tative version of figure 1.
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FIG. 3. (Color online.) Contours of constant pL3 /ε
L (green)

and dyF /dη (red) demarcate regions associated with Bjorken-
like flow (blue), Landau-like full-stopping (grey) and glasma-
like behavior (gold).

IV. A SIMPLE VERSION OF HADRONIZATION

The presence of a Bjorken plateau in the energy den-
sity which widens as one proceeds toward late times is, at
least qualitatively, a phenomenologically attractive fea-
ture. To be more quantitative, one should ask what sort
of spectrum of hadrons one gets from isothermal freeze-
out. Using a conformal equation of state all the way to
freezeout seems excessively naive, so let’s use the equa-
tion of state sometimes referred to as EOS Q [4]. In this
model,

p =
ε− 4B

3
for T > Tc , (18)

where B is the bag constant and Tc is the deconfinement
temperature. Using the first law of thermodynamics one
can deduce from (18) that

ε =
π2

30
g∗T

4 +B and p =
π2

90
g∗T

4 −B

for T > Tc . (19)

Here g∗ is the number of degrees of freedom in the decon-
fined phase. EOS Q calls for a strongly first order tran-
sition at T = Tc, and for T < Tc one assumes p = 0.15ε,
which is supposed to describe a Hagedorn spectrum of
non-interacting hadronic resonances. A fairly realistic
choice of parameters is

B = 0.35
GeV

fm3 g∗ = 40 Tc = 164 MeV . (20)

It is hard to see how to incorporate an equation of state
with a phase transition into the stress tensor construction
(5). So let’s hadronize at the temperature Tc, just be-
fore the phase transition occurs. Usually Cooper-Frye is

applied using a lower freezeout temperature, for example
Tkin ≈ 110 MeV [5]. The justification for the Cooper-Frye
algorithm relies on local equilibration prior to freezeout,
so it is dubious to apply it outside the Bjorken plateau.
I will use a freezeout surface running from η = − log τ

|t3|
to η = + log τ

|t3| . Depending on one’s precise definitions,

this is roughly the extent of the Bjorken plateau.
By restricting attention to the high-temperature

regime (19), we can view the stress tensor of EOS Q as
that of a CFT plus a positive cosmological constant. It
is perhaps unsurprising that fluid rapidity and tempera-
ture (suitably defined) are the same as for a CFT. The
remainder of this paragraph is devoted to a more care-
ful demonstration of this claim. First note that ordinary
Bjorken flow with EOS Q (and no viscosity) has

εQ = B +
ε0
τ4/3

= B + εCFT

pQ = −B +
ε0/3

τ4/3
= −B + pCFT . (21)

Because uµ in Bjorken flow is completely independent of
the equation of state, (21) implies

(Tµν)Q = (Tµν)CFT −Bgµν . (22)

Passing to a complexified stress tensor, as in (4), with

εC = B +
εC0

((t+ t3)2 − x2
3)2/3

, (23)

one sees that (TC
µν)Q = (TC

µν)CFT − Bgµν , and it follows

immediately that the final stress tensor ReTC
µν obeys the

same relation: that is, (22) applies unaltered. Because
the term−Bgµν is frame-independent, the boost required
to pass to Landau frame is the same whether this term
is present or absent. So yF is indeed the same for EOS
Q as for a CFT. Temperature is a little trickier because
the final stress tensor does not satisfy the hydrodynamic
constitutive relations. The obvious approach is to define

T =

(
30

π2

εL −B
g∗

)1/4

. (24)

This definition follows from plugging the Landau frame
energy density into the first relation in (19) and solving
for the temperature. T as defined in (24) evolves identi-
cally to the temperature of a CFT, both in Bjorken flow
and in complex deformations of it.

I am going to use a simplified version of the Cooper-
Frye expressions for the distribution of outgoing particles
d3N/dp3 with energy E: namely

E
d3N

dp3
=

g

(2π)3

∫
Σ

1

3!
εµνρσdx

µdxνdxρ pσeuλp
λ/T , (25)

where uµ = (− cosh yF , 0, 0, sinh yF ) in the laboratory
reference frame and temperature T is given by (24). (My
convention is to sum over indices without regard to or-
dering, which is the reason we require the explicit 1/3! in
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the integrand.) The integration surface Σ is determined
by the equation T = Tfreezeout, where Tfreezeout = Tc is
the freezeout temperature. The overall factor g refers
to the degeneracy of produced particles. The rapidity
of a produced particle can be defined (in the laboratory
frame) in terms of its momentum pµ as

y = tanh−1 p3

E
. (26)

Standard manipulations lead to an expression for the ra-
pidity distribution of produced particles:

dN

dy
=

∫
dp1dp2E

d3N

dp3
=

∫
Σ

(qτdτ + qηdη) (27)

where

qτ = Q sinh(y − η) qη = −Qτ cosh(y − η) (28)

and

Q =
gVol⊥
(2π)2

∫ ∞
m

dm⊥m
2
⊥e
−m⊥

T̃

=
gVol⊥

2π2

(
T̃ 3 +mT̃ 2 +

1

2
m2T̃

)
e−

m
T̃ . (29)

Here Vol⊥ is the volume in the x1-x2 directions, m⊥ =√
p2

1 + p2
2 +m2, and

T̃ = T sech(y − yF ) . (30)

In figure 4 I show predictions of dN/dy as compared
to data for central RHIC collisions at

√
sNN = 200 GeV.

The main points to note about my parameter choices are:

1. I consider only pions as the outgoing particles, so I
use m = mπ ≈ 140 MeV in (29).

2. For |t3|, I consider multiples of the length 0.07 fm,
which is about half the thickness of the incoming
nucleus.

3. The energy density at τ = 0.7 fm and η = 0 is set
equal to 7.7 GeV/fm3 in order to approximate the
conditions of a central RHIC collision at

√
sNN =

200 GeV (see for example [6]).

4. I restricted the rapidity range of the freezeout sur-
face to |η| < log τ

|t3| , corresponding approximately

to the extent of the Bjorken plateau.

5. The freezeout surface turns out to be fairly close to
isochronous (in Bjorken time τ), with τfreezeout ≈
2.3 fm. Early freezeout is expected because of the
higher-than-typical value of freezeout temperature.

6. I normalize dN/dy to 1 at mid-rapidity. Estimates
of the effective Vol⊥ and inclusion of more hadron
species would be needed in order to obtain realistic
dN/dy at mid-rapidity.

Comparison with the BRAHMS data on dN/dy favors
|t3| ≈ 0.2 fm, corresponding to an energy scale of 1 GeV.
It is gratifying that this is close to the saturation scale
Qs ∼ 1.5 GeV for central gold-gold collisions at

√
sNN =

200 GeV.
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FIG. 4. (Color online.) The rapidity distribution of produced
particles in rapidity, normalized to unity at mid-rapidity. The
grey dots are PHOBOS data for dN/dη, from the lower-right
panel of Figure 18 of [7]. The black dots are BRAHMS data
for dN/dy of positively charged pions, from Figure 4 of [8].
The black curve is from the purely hydrodynamic Landau
model, as explained in [8].

V. DISCUSSION

The key principle underlying Bjorken flow is boost-
invariance in the longitudinal direction. Complexifica-
tion weakens this principle but does not destroy it en-
tirely. To see how symmetries behave in the complexifi-
cation, let’s introduce notation for the generators of the
Poincaré group ISO(3, 1):

• Translations, T(µ) = ∂µ. Thus, for example, T(1) is
translation in the x1 direction.

• Spatial rotations, R(ij) = xi∂j − xj∂i.

• Boosts, B(i) = t∂i + xi∂t.

Usually one demands invariance under B(3). There is
essentially one combination of t and x3 that is B(3)-

invariant, namely τ2 = t2 − x2
3. If we instead demand

invariance under

b = B(3) + t3T(3) , (31)

then the invariant combination of t and x3 is (t+t3)2−x2
3.

It is straightforward to show that LbuCµ = 0, where Lb is

the Lie derivative and uCµ is defined as in (4). Likewise,

LbTC
µν = 0. When t3 is imaginary—the case of interest—

b is not a member of the algebra of ISO(3, 1), but it is in
the complexification of this algebra. So the complexified
stress tensor is invariant under the complexified symme-
try. However, the final form ReTC

µν is not invariant under
b or any obvious modification of it.

Although I have focused exclusively on the case c2s =
1/3, it is worth noting that other constant speeds of
sound can be treated in essentially the same way. The
relation yF = η/2 is recovered at t = |t3| for arbitrary
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c2s. Another way to say this is that the construction goes
through for conformal field theories in dimensions other
than 3 + 1.

Following the definition (24) of temperature in terms of
energy density, and restricting attention to a conformal
equation of state, one may define an entropy current

sµ = T 3uµ . (32)

(There should be an overall constant factor on the right
hand side of (32), proportional to the number of degrees
of freedom, but this factor doesn’t affect the discussion
to follow.) When the inviscid hydrodynamic constitutive
relations hold, the equations of motion ∇µTµν = 0 im-
ply conservation of entropy, ∇µsµ = 0. The second law
of thermodynamics, applied locally, requires locally in-
creasing entropy, ∇µsµ ≥ 0. By direct calculation start-
ing from (4)-(5), I found that entropy locally increases in
the Bjorken-like region, but not in the full-stopping re-

gion, and in only a part of the glasma-like region which
is not too close to the lightcone [9]. Failure of the sec-
ond law outside the Bjorken-like region seems at first
alarming; but what one should conclude is that (32) is
a poor approximation to the entropy current except in
the Bjorken-like region. This makes sense because only
in that region is there good reason to think that local
equilibration has occurred.
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