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We present a microscopic calculation of the complete quasiparticle interaction, including cen-
tral as well as noncentral components, in neutron matter from high-precision two- and three-body
forces derived within the framework of chiral effective field theory. The contributions from two-
nucleon forces are computed in many-body perturbation theory to first and second order (without
any simplifying approximations). In addition we include the leading-order one-loop diagrams from
the N2LO chiral three-nucleon force, which contribute to all Fermi liquid parameters except those
associated with the center-of-mass tensor interaction. The relative-momentum dependence of the
quasiparticle interaction is expanded in Legendre polynomials up to L = 2. Second-order Pauli
blocking and medium polarization effects act coherently in specific channels, namely for the Landau
parameters f1, h0 and g0, which results in a dramatic increase in the quasiparticle effective mass
as well as a decrease in both the effective tensor force and the neutron matter spin susceptibility.
For densities greater than about half nuclear matter saturation density ρ0, the contributions to the
Fermi liquid parameters from the leading-order chiral three-nucleon force scale in all cases approxi-
mately linearly with the nucleon density. The largest effect of the three-nucleon force is to generate
a strongly repulsive effective interaction in the isotropic spin-independent channel. We show that
the leading-order chiral three-nucleon force leads to an increase in the spin susceptibility of neutron
matter, but we observe no evidence for a ferromagnetic spin instability in the vicinity of the satu-
ration density ρ0. This work sets the foundation for future studies of neutron matter response to
weak and electromagnetic probes with applications to neutron star structure and evolution.

I. INTRODUCTION

In a series of recent articles [1, 2], we have revisited the Fermi liquid description of infinite nuclear matter in
the context of modern two- and three-nucleon interactions derived within the framework of chiral effective field
theory. In these studies we limited our discussion to the central components of the quasiparticle interaction in
a medium of spin-saturated symmetric nuclear matter characterized by the nucleon density ρ = 2k3f/3π

2. In
the vicinity of the saturation density ρ0, the central components of the quasiparticle interaction are strongly
constrained by the properties of bulk nuclear matter and its low-energy excitations. In refs. [1, 2] it was found
that microscopic calculations of the quasiparticle interaction within many-body perturbation theory yield an
accurate description of the nuclear matter compressibility, isospin asymmetry energy and spin-isospin response
only with the inclusion of leading-order medium effects, which arise at second order in a perturbative calculation
with two-body forces and at first order in a calculation with three-nucleon forces.
In the present paper we extend these calculations to pure neutron matter, which we treat as a normal

(non-superfluid) Fermi liquid (the generalization of Fermi liquid theory to superfluid Fermi systems has been
performed in refs. [3–5]). Such a quasiparticle description has been used in previous works to understand
neutrino emissivity in neutron stars [6–9] as well as the spin response of neutron star matter to strong magnetic
fields [10–13]. In such calculations, the Landau parameters that characterize the quasiparticle interaction
have been computed with microscopic two-body nuclear forces or with phenomenological Skyrme and Gogny
effective interactions. Qualitative differences arise between the predictions of microscopic and phenomenological
forces, particularly with respect to the possibility of bulk magnetization or even the existence of a spontaneous
ferromagnetic phase transition of neutron matter at several times nuclear matter saturation density [13–15].
As discussed in Section V, three-neutron forces give rise to Fermi liquid parameters that scale approximately
linearly with the neutron density (at leading order), and one of the primary goals of the present work is to
better understand the role of three-neutron correlations in describing the dynamical response of neutron matter
to weak or electromagnetic probes.
Both the magnetic susceptibility of dense neutron matter as well as neutrino elastic scattering, absorption and

emission rates are sensitive to the inclusion of noncentral components of the quasiparticle interaction [8, 9, 11],
which have been introduced in refs. [16, 17]. Such interactions include (in the long-wavelength approximation)
the exchange tensor interaction, proportional to S12(q̂) = 3~σ1 · q̂ ~σ2 · q̂ − ~σ1 · ~σ2, which appears already in
the free-space nucleon-nucleon potential where it is dominated by one-pion exchange, as well as center-of-mass
tensor and cross-vector interactions, proportional to S12(P̂ ) and (~σ1 × ~σ2) · (q̂ × P̂ ) respectively. In these spin-

dependent operators, ~q = ~p1 − ~p2 is the relative momentum and ~P = ~p1 + ~p2 the center-of-mass momentum of
the two quasiparticles on the Fermi surface (|~p1,2| = kf ). When including effects of the medium in the form
of loop integrals over the filled Fermi sea of neutrons, all noncentral interactions can be generated. In fact,
the second-order contributions from two-body forces produce exchange tensor, center-of-mass tensor and cross-
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vector interactions. Note that the spin-nonconserving cross-vector interaction can only be generated through
polarization (particle-hole) corrections to the effective interaction and not by ladders [17]. To date there has been
no study of three-nucleon force contributions to either the center-of-mass tensor or cross-vector interactions,
while in ref. [18] loop diagrams involving intermediate ∆-isobar excitations were analyzed and shown to generate
an exchange tensor interaction in symmetric nuclear matter.
The present work sets the foundation for a systematic study of the role played by second-order corrections and

three-nucleon forces in determining the noncentral components of the quasiparticle interaction. Their effect on
neutron star structure and evolution will be studied in future work. We employ many-body perturbation theory
and compute all contributions to the quasiparticle interaction for the case of two neutrons on the Fermi surface
interacting in a background medium of pure neutron matter. We employ high-precision chiral two- and three-
nucleon interactions whose unresolved short-distance components are encoded in a set of contact couplings
proportional to low-energy constants fit to elastic nucleon-nucleon scattering phase shifts and properties of
light nuclei [19–21]. To improve the convergence of the microscopic calculation of the quasiparticle interaction
in many-body perturbation theory, we employ renormalization-group methods for integrating out momenta
beyond the scale of Λ ≃ 2.0 fm−1, which results in the nearly universal two-nucleon potential Vlow−k[22, 23].
The contributions to the quasiparticle interaction from the leading-order chiral three-nucleon force (with scale-
dependent low-energy constants) is computed to one-loop order.
The present paper is organized as follows. In Section II we give a brief review of Landau’s theory of normal

Fermi liquids and discuss the microscopic approach for computing the quasiparticle interaction. We then present
a general method that can be applied to any free-space nucleon-nucleon force given in a partial-wave basis for
extracting the scalar functions that multiply the various spin-dependent operators (namely the central, spin-
spin, exchange tensor, center-of-mass tensor and cross-vector terms) occuring in the quasiparticle interaction.
We then discuss the microscopic origin of the spin-nonconserving cross-vector interaction, which at second-
order results exclusively from the interference of a two-body spin-orbit force with (in principle) any non-spin-
orbit component in the free-space nucleon-nucleon interaction. In Section III we test the intricate (numerical)
calculations of the second-order contributions to the quasiparticle interaction by means of model interactions
that can be solved partially analytically. In Section IV we present analytical formulas for the Landau parameters
of the quasiparticle interaction arising from the leading-order N2LO chiral three-neutron force. The results of
the corresponding calculations with two- and three-neutron forces at several resolution scales are presented and
discussed in Section V. We end with a summary and conclusions.

II. QUASIPARTICLE INTERACTION IN NEUTRON MATTER

A. General structure of the quasiparticle interaction and spin-space decomposition

In Landau’s theory of normal Fermi liquids [24, 25], the quasiparticle interaction F(~p1s1t1; ~p2s2t2) derives
from the change in the total energy density due to second-order variations in the particle occupation densities
δn~p,s,t:

δE =
∑

~pst

ǫ~p δn~pst +
1

2

∑

~p1s1t1
~p2s2t2

F(~p1s1t1; ~p2s2t2)δn~p1s1t1δn~p2s2t2 + · · · , (1)

where si and ti label the spin and isospin quantum numbers of the ith quasiparticle. The most general form
for the effective interaction between two quasiparticles in pure neutron matter in the long-wavelength limit is
given by [17]

F(~p1, ~p2 ) = f(~p1, ~p2 ) + g(~p1, ~p2 )~σ1 · ~σ2 + h(~p1, ~p2 )S12(q̂) + k(~p1, ~p2 )S12(P̂ )

+l(~p1, ~p2 )(~σ1 × ~σ2) · (q̂ × P̂ ), (2)

where ~q = ~p1−~p2 is the momentum transfer in the exchange channel, ~P = ~p1+~p2 is the conserved center-of-mass
momentum and the tensor operator S12(v̂) is defined by S12(v̂) = 3~σ1 · v̂ ~σ2 · v̂ − ~σ1 · ~σ2. The interaction in eq.
(2) is invariant under parity and time-reversal transformations as well as under the interchange of the particle
labels. However, due to the presence of the medium, Galilean invariance is no longer manifest, leading to new
operator structures (namely S12(P̂ ) and A12(q̂, P̂ ) = (~σ1 × ~σ2) · (q̂ × P̂ )) that depend explicitly on the center-

of-mass momentum ~P . Since the two quasiparticle momenta lie on the Fermi surface |~p1 | = |~p2 | = kf , the
remaining angular dependence of the quasiparticle interaction is conveniently expanded in Legendre polynomials
of cos θ = p̂1 · p̂2:

χ(~p1, ~p2) =

∞
∑

L=0

χL(kf )PL(cos θ), (3)
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where χ represents f, g, h, k, or l, and the angle θ is related to the relative momentum q = |~p1− ~p2| through the
relation q = 2kf sin (θ/2).
The Fermi liquid parameters of nuclear matter can be either extracted from experiment (due to direct relations

between particular Landau parameters and nuclear observables [25, 26]) or computed microscopically within
many-body perturbation theory [27]. Given a strongly interacting normal Fermi system at low temperatures,
it is not clear that a perturbative approach is justified. However, in the case of nuclear and neutron matter,
there are strong indications that renormalization group techniques [22, 23, 28] may render nuclear interactions
perturbative for a wide range of densities when evolved down to a cutoff scale Λ . 2.1 fm−1. In the framework
of many-body perturbation theory, the quasiparticle interaction is extracted by functionally differentiating
the contributions to the ground-state energy density twice with respect to the particle occupation numbers.
Previous work [1, 2] has shown that a satisfactory description of bulk nuclear matter properties around the
saturation density can be obtained with chiral and low-momentum nuclear interactions only with the inclusion
of the leading-order Pauli-blocking and medium-polarization effects from two- and three-nucleon interactions.
This requires a second-order perturbative calculation in the case of two-nucleon interactions together with the
first-order perturbative contribution from three-nucleon forces. These systematic calculations suggest that a
consistent microscopic description of the quasiparticle interaction in neutron matter, for which there is much
less empirical information, can be achieved.
The relations between specific Fermi liquid parameters and bulk properties of the medium are well known

[25, 26]. The compression modulus of neutron matter (at density ρ = k3f/3π
2)

K =
3k2F
M∗

(1 + F0) , (4)

is related to the Fermi liquid parameter F0 = N0f0 (with N0 = kfM
∗/π2 the density of states at the Fermi

surface) which represents the isotropic part of the spin-independent quasiparticle interaction. Note that the
compressibility K = k2f ∂

2Ē/∂k2f +4kf ∂Ē/∂kf is determined by both the curvature and slope of the energy per

particle Ē. In eq. (4) the quasiparticle effective mass M∗ is given by

M∗

Mn
= 1 +

F1

3
, (5)

with Mn = 939.6MeV the free neutron mass and F1 = N0f1. Considering only the central components of the
quasiparticle interaction, the neutron matter spin susceptibility is given by

χ = µ2
n

N0

1 +G0
, (6)

where µn = −1.913 is the free-space neutron magnetic moment (in units of the nuclear magneton) and G0 =
N0g0. The presence of noncentral components in the quasiparticle interaction that couple quasiparticle spins
to their momenta results in effective charges (magnetic moments) that are not scalars under rotations of the
quasiparticle momentum. The resulting expression for the spin susceptibility then involves both longitudinal
and transverse components of the magnetic moment [10, 11].
The first calculation to extract all components of the quasiparticle interaction given in eq. (2) for an arbitrary

two-neutron force was performed in ref. [17]. In the following we present a general method to project out the
various momentum-dependent scalar functions f, g, h, k and l of the quasiparticle interaction in eq. (2). This is
achieved by taking specific linear combinations of the spin-space matrix elements of the quasiparticle interaction.
The form of this matrix will of course depend on the choice of coordinate system. For ~q = ~p1 − ~p2 = q ~ez and
~P = ~p1 + ~p2 = P~ex, the spin-space matrix elements 〈ms|F(~p1, ~p2)|m′

s〉 in terms of the scalar functions f, g, h, k,
and l are given by

ms\m′
s 1 0 −1 0

1 f + g + 2h− k 0 3k
√
2l

0 0 f + g − 4h+ 2k 0 0

−1 3k 0 f + g + 2h− k
√
2l

0
√
2l 0

√
2l f − 3g

.

The upper left 3 × 3 submatrix gives the nine triplet-triplet matrix elements, while the fourth row and fourth
column give the matrix elements that include the singlet state. In this coordinate frame, the exchange tensor
interaction h(~p1, ~p2 )S12(q̂) gives nonzero contributions only for the diagonal triplet spin-space matrix elements.

The center-of-mass tensor force k(~p1, ~p2 )S12(P̂ ) contributes to the triplet diagonal matrix elements as well

as the matrix elements mixing ms = ±1 with m′
s = ∓1. The cross-vector interaction l(~p1, ~p2 )A12(q̂, P̂ ) is

nonvanishing only in spin-nonconserving transitions with |ms − m′
s| = 1. We note that it is not possible to
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separate the exchange tensor from the center-of-mass tensor interaction when considering only diagonal spin-
space matrix elements, since they appear in the same linear combination 2h − k. An alternative choice of

coordinate system in which ~q = q ~ex and ~P = P~ez just interchanges the contributions of the exchange tensor
and center-of-mass tensor operators (and l comes with opposite sign).
From the above matrix, the scalar functions multiplying the spin-dependent operators are extracted as the

following linear combinations of the spin-space matrix elements:

f = (2F t
1,1 + F t

0,0 + Fs
0,0)/4 ,

g = (2F t
1,1 + F t

0,0 − 3Fs
0,0)/12 ,

h = (F t
1,1 + F t

1,−1 −F t
0,0)/6 ,

k = (F t
1,−1)/3 ,

l = (F ts
1,0)/

√
2 , (7)

where the superscripts s, t distinguish spin-singlet and spin-triplet states of two quasiparticles, and the two
subscripts label ms and m′

s, respectively. Only the function l(~p1, ~p2 ) multiplying the cross-vector operator

A12(q̂, P̂ ) depends on a singlet-triplet mixing matrix element.

B. First-order contribution

With the relations given in eq. (7) we need to compute only the quasiparticle interaction in different total
spin states. The first-order perturbative contribution to the energy density is given by

E(1)
2N =

1

2

∑

12

〈~k1s1;~k2s2|V̄ |~k1s1;~k2s2〉n1n2, (8)

where V̄ = (1 − P12)V denotes the antisymmetrized two-body potential, nj = θ(kf − |~kj |) is the usual zero-
temperature Fermi distribution and the summation includes both spin and momenta. The corresponding con-
tribution to the quasiparticle interaction reads

F (1)
2N (~p1s1; ~p2s2) = 〈~p1s1; ~p2s2|V̄ |~p1s1; ~p2s2〉 ≡ 〈12|V̄ |12〉. (9)

Setting the relative momentum ~q = ~p1 − ~p2 along the ~ez-direction and projecting onto Legendre polynomials
PL(p̂1 ·p̂2), the Fermi liquid parameters are obtained from eq. (9) in terms of the matrix elements of V depending
on p = q/2 in a partial-wave representation:

FL(kf ;Smsm
′
s) = 2(2L+ 1)

∑

ll′J

il−l′(1 + (−1)l+S)
√

(2l + 1)(2l′ + 1) 〈l0Sms|JM〉

×〈l′0Sm′
s|JM〉

∫ kf

0

dp
p

k2f
〈plSJM |V |pl′SJM〉PL(1 − 2p2/k2f ), (10)

where we are following the normalization convention in ref. [1]. The leading-order contribution is simply a
kinematically-restricted form of the free-space interaction, which contains no center-of-mass dependent com-
ponents. Therefore, the only nonzero contributions to the quasiparticle interaction are f, g, and h. This is
further reflected in the partial wave decomposition through the obvious property M = ms = m′

s implied by the
Clebsch-Gordan coefficients in eq. (10).

C. Second-order contributions

The contribution to the energy density from the two-neutron force at second-order in many-body perturbation
theory has the form

E(2)
2N =

1

4

∑

1234

|〈12|V̄ |34〉|2 n1n2(1 − n3)(1− n4)

ǫ1 + ǫ2 − ǫ3 − ǫ4
, (11)

where in a plane-wave basis ǫj = ~k2j /2M
(∗)
n is the single-particle energy associated with the momentum ~kj .

Functionally differentiating twice with respect to the quasiparticle distribution functions yields four different
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(a) (c) (d)(b)

1

2

1

2

1 1 1

1 1 1

2 2 2

2 2 2

FIG. 1: Diagrams contributing to the second-order quasiparticle interaction (all interactions represented by wavy lines
are antisymmetrized): (a) particle-particle diagram, (b) hole-hole diagram, and (c)+(d) particle-hole diagrams.

contributions to the quasiparticle interaction:

F (2)
2N (~p1s1t1; ~p2s2t2) =

1

2

∑

34

|〈12|V̄ |34〉|2(1− n3)(1− n4)

ǫ1 + ǫ2 − ǫ3 − ǫ4
+

1

2

∑

34

|〈12|V̄ |34〉|2n3n4

ǫ3 + ǫ4 − ǫ1 − ǫ2

−
∑

34

|〈13|V̄ |24〉|2n3(1− n4)

ǫ1 + ǫ3 − ǫ2 − ǫ4
−
∑

34

|〈13|V̄ |24〉|2n4(1− n3)

ǫ1 + ǫ4 − ǫ2 − ǫ3
. (12)

A graphical representation of these terms is given in Fig. 1. The first two terms in eq. (12) are called the
particle-particle (pp) and hole-hole (hh) contributions, which have a very similar structure. The particle-particle
contribution is given by

Fpp(~p1~p2;SmsS
′m′

s) =
1

2

∑

S̄m̄s

∫

d3k3
(2π)3

d3k4
(2π)3

〈~p1~p2Sms|V̄ |~k3~k4S̄m̄s〉〈~k3~k4S̄m̄s|V̄ |~p1~p2S′m′
s〉

ǫp1
+ ǫp2

− ǫk3
− ǫk4

× (1 − n3)(1− n4)(2π)
3δ(~p1 + ~p2 − ~k3 − ~k4), (13)

where we allow for the possibility that ms 6= m′
s. The hole-hole contribution is easily obtained from eq. (13) by

changing the sign of the energy denominator and replacing the two particle distribution functions (1−n3)(1−n4)
with hole distribution functions n3n4. In computing the pp and hh diagrams, we found it more convenient to

align the total momentum ~P along the ~ez-direction and the relative momentum ~q along the ~ex-direction. For this
choice of coordinate system h and k are just interchanged in eq. (7). In a partial-wave basis the particle-particle
contribution in eq. (13) reads

Fpp
L (Smsm

′
s) =

2L+ 1

4π2k2F

∑

l1l2l3l4mm′

m̄m̄sJJ
′M

∫ kF

0

dp p

∫ ∞

p

dk k2N(l1ml2m̄l3m
′l4m̄)Pm

l1 (0)P
m′

l3 (0)

× Mn

p2 − k2
il2+l3−l1−l4CJM

l1mSms
CJM
l2m̄Sm̄s

CJ′M
l3m′Sm′

s
CJ′M
l4m̄Sm̄s

∫ min{x0,1}

max{−x0,−1}

dxP m̄
l2 (x)P

m̄
l4 (x)

×〈pl1SJM |V̄ |kl2SJM〉〈kl4SJ ′M |V̄ |pl3SJ ′M〉PL(1− 2p2/k2F ), (14)

where Pm
l are the associated Legendre functions, x = cos θk, ~p = (~p1 − ~p2)/2, ~k = (~k3 − ~k4)/2, x0 = (k2 −

p2)/(2k
√

k2F − p2) and N(l1ml2m̄l3m
′l4m̄) = Nm

l1
N m̄

l2
Nm′

l3
N m̄

l4
with Nm

l =
√

(2l + 1)(l −m)!/(l +m)!. For
ms = m′

s, this expression agrees with eq. (21) in ref. [1]. From the underlying parity invariance of the two-
neutron interaction, which preserves the total spin S, the pp and hh contributions cannot give rise to the
spin-nonconserving cross-vector interaction. However, spin-orbit and tensor terms in the free-space neutron-
neutron interaction do not conserve ms and therefore can, at second-order in the pp and hh diagrams, give rise
to a center-of-mass tensor interaction. This mechanism is exemplified in Section III with spin-orbit and tensor
two-body model interactions.

We split the second-order particle-hole (ph) contribution into two pieces F (c)
ph + F (d)

ph (see Fig. 1). The first
term arises from a coupling of the incoming or outgoing quasiparticle 1 to a hole state, while for the second
term quasiparticle 1 couples to a particle state. The explicit expression reads

F (c)
ph (~p1~p2; s1s2s

′
1s

′
2) =

∑

s3s4

∫

d3k3
(2π)3

d3k4
(2π)3

〈~p1~k3s1s3|V̄ |~p2~k4s2s4〉〈~p2~k4s′2s4|V̄ |~p1~k3s′1s3〉
ǫp2

+ ǫk4
− ǫp1

− ǫk3

× n3(1− n4)(2π)
3δ(~p1 + ~k3 − ~p2 − ~k4), (15)
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where we allow for the possibility that the spin states of an incoming and outgoing quasiparticle can be different.
In contrast to the treatment of the ph contribution to the central components of the quasiparticle interaction
described in ref. [1], here we have found it convenient to set ~p1 − ~p2 = q ~ez and ~p1 + ~p2 = P~ex. In this case we
write

Fph(c)
L (s1s2s

′
1s

′
2) =

2L+ 1

32π3

∫ 1

−1

d cos θPL(cos θ)

∫ 2π

0

dφ3

∫ kf

max{0,y0}

dk3k
2
3

∫ 1

max{−1,z0}

d cos θ3

×
∑

l1l2l3l4s3s4
m1m2m3m4

〈p′l1m1s1s3|V̄ |k′l2m2s2s4〉〈k′l4m4s
′
2s4|V̄ |p′l3m3s

′
1s3〉

× cos((m3 −m1 +m2 −m4)φp′ )Pm1

l1
(cos θp′)Pm2

l2
(cos θk′ )Pm3

l3
(cos θp′)Pm4

l4
(cos θk′ )

×il2+l3−l1−l4N(l1m1l2m2l3m3l4m4)
Mn

kfk3 cos θ3 sin θ/2 + k2f sin
2 θ/2

, (16)

where ~p ′ = (~p1−~k3)/2, ~k
′ = (~p2−~k4)/2, y0 = kf (1−2 sin θ/2) and z0 = (k2f −k23−4k2f sin

2 θ/2)/(4kfk3 sin θ/2).
The product of exponentials coming from the spherical harmonics has been simplified to a cosine by noting
that the imaginary part vanishes and that φp′ = φk′ . The expression in eq. (16) can be further written out in
terms of partial-wave matrix elements by first coupling to total spin S and then total angular momentum J .
The extraction of the scalar functions f, g, h, k and l is achieved by taking appropriate linear combinations of
the sixteen spin-space matrix elements FL(s1s2s

′
1s

′
2), namely,

〈Sms|Fph
L |S′m′

s〉 =
∑

s1s′1s2s
′

2

CSms
1

2
s1

1

2
s′
2

CS′m′

s
1

2
s′
1

1

2
s2
Fph

L (s1s2s
′
1s

′
2). (17)

It is a good check of the calculation that the resulting spin-space matrix on the left-hand side of eq. (17) is of
the form introduced in subsection IIA.
The particle-hole polarization contribution can give rise to all noncentral interactions, as pointed out first in

ref. [17]. However, the microscopic origin of the spin-nonconserving cross-vector interation should be clarified.
In fact, neither tensor forces nor spin-orbit forces alone, when iterated in the particle-hole channel, generate the
cross-vector interaction. This can be seen from the spin structure of eq. (15). In order to produce a nonvanishing
singlet-triplet mixing matrix element, we can consider without loss of generality the spin-flip transition

〈↑↓ |F (c)
ph (~p1~p2)| ↑↑〉 ∼

∑

s3s4

〈~p1~k3 ↑ s3|V̄ |~p2~k4 ↑ s4〉〈~p2~k4 ↓ s4|V̄ |~p1~k3 ↑ s3〉. (18)

It is easily shown with momentum conservation (~p1 + ~k3 = ~p2 + ~k4) that ~p
′ − ~k′ = ~p1 − ~p2 = q ~ez. In this case,

the free-space tensor force (∼ 3σz
1σ

z
2 − ~σ1 · ~σ2) vanishes for |∆ms| = 1, and therefore one of the two matrix

elements in eq. (18) will vanish for any values of s3 and s4. Similarly, for a free-space spin-orbit interaction of

the form iVso(~σ1+~σ2) · (~p ′×~k′ ), the vector ~p ′×~k′ lies in the x−y plane and in this case the spin-orbit operator

(~σ1 + ~σ2) · (~p ′ × ~k′ ) has very restricted matrix elements which are nonvanishing only in spin-triplet states with
|∆ms| = 1. Again, one of the matrix elements in eq. (18) will vanish for any possible values of s3 and s4. These
arguments indicate that at second-order only the interference of a spin-orbit interaction with any other (non-
spin-orbit) component can produce the cross-vector interaction. In the following section, we will demonstrate
that in fact central, spin-spin and tensor components all give nonvanishing interference terms. Finally, we point

out that although individually F (c)
ph and F (d)

ph can have forbidden matrix elements for |∆ms| = 1 in the triplet

states, when summed together such terms cancel exactly. All other spin-space matrix elements of F (c)
ph and F (d)

ph
are identical. These features serve as a good check of the involved calculation of the quasiparticle interaction
at second order.

D. Contribution from chiral three-neutron forces

Finally we consider the leading-order contribution from the N2LO chiral three-nucleon force [20] in pure
neutron matter. Only the components of the two-pion exchange three-nucleon force proportional to the low-
energy constants c1 and c3 remain for neutrons:

V
(2π)
3n =

∑

i6=j 6=l

g2A
4f4

π

~σi · ~qi ~σj · ~qj
(~qi

2 +m2
π)(~qj

2 +m2
π)

(

−2c1m
2
π + c3~qi · ~qj

)

, (19)

with parameters gA = 1.29, fπ = 92.4MeV and mπ = 138MeV (average pion mass). The quantity ~qi is the
difference between the final and initial momenta of neutron i. In the following we employ two different choices
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for the low energy constants c1 and c3 in eq. (19). When combined with the bare chiral N3LO nucleon-nucleon
potential [19] we choose the values c1 = −0.81GeV−1 and c3 = −3.2GeV−1, whereas with the low-momentum
nucleon-nucleon potential Vlow−kwe use c1 = −0.76GeV−1 and c3 = −4.78GeV−1 [29, 30]. This variation in the
low-energy constants (as well as the resolution scale Λ) provides a means for assessing theoretical uncertainty
at a given order in many-body perturbation theory.
The first-order contribution to the energy density of neutron matter has the form

E(1)
3n =

1

6
Trσi,σj ,σl

∫

d3ki
(2π)3

d3kj
(2π)3

d3kl
(2π)3

ninjnl〈ijl|V̄3N |ijl〉 , (20)

where V̄3n = V3n(1−P12 −P23 −P13 +P12P23 +P13P23) is the fully antisymmetrized three-neutron interaction

and nj = θ(kf − |~kj |) + (2π)3δ3(~kj − ~pj) δn~pjσj
. Functionally differentiating twice with respect to the two

quasiparticle distribution functions yields

F (1)
3n (~p1, ~p2) =

1

2
Trσi

∫

d3ki
(2π)3

ni〈i12|V̄3n|i12〉. (21)

As we will see in Section IV, the form of the N2LO chiral three-neutron force is sufficiently simple that in most
cases analytical formulas for the Landau parameters are possible. We note that this leading-order contribution
to the quasiparticle interaction from the N2LO chiral three-neutron force is nearly equivalent to the effective
interaction calculated previously in refs. [31–33], although the quasiparticle interaction represents a restricted
kinematical configuration for which the two interacting particles lie on the Fermi surface |~p1,2| = kf .

III. BENCHMARK CALCULATIONS WITH MODEL INTERACTIONS

In order to verify the spin-decomposition techniques and the accuracy of the intricate numerical calculations
involved in the second-order calculation of the quasiparticle interaction, it is useful to examine simple model
interactions that are amenable to (partial) analytical solutions. Intermediate-state momentum integrations and
spin traces are carried out explicitly without decomposing the interaction into partial waves. For details on this
approach to computing Fermi liquid parameters, see ref. [18]. The diagrammatic contributions are shown in
Fig. 2, where the double dash on a fermion line represents a “medium insertion”. It is defined as the difference
between the free-space propagator and the in-medium propagator:

i

(

θ(|~p | − kf )

p0 − ~p 2/2Mn + iǫ
+

θ(kf − |~p |)
p0 − ~p 2/2Mn − iǫ

)

=
i

p0 − ~p 2/2Mn + iǫ
− 2πδ(p0 − ~p 2/2Mn)θ(kf − |~p |). (22)

Comparing with the expression given in eq. (12), the sum of diagrams (a)-(d) corresponds to F (2)
pp + F (2)

hh .
Expanding (1 − n3)(1 − n4) = 1 − n3 − n4 + n3n4 in the pp diagram, we see that the term proportional to
n3n4 cancels the hole-hole contribution. Hence, the sum of the particle-particle and hole-hole diagrams gives
just a free-space contribution and two terms with one medium insertion. The remaining diagrams (e)-(g) in
Fig. 2 correspond to the particle-hole contribution in eq. (12). In the following we consider only the Fermi
liquid parameters hL(kf ), kL(kf ), and lL(kf ) associated with the noncentral components of the quasiparticle
interaction. Detailed calculations for the central components have been presented in ref. [1]. We provide explicit
formulas for the relevant Landau parameters up to L = 1 obtained by first decomposing the effective interaction
into the relevant operators and then projecting the expansion coefficients onto Legendre polynomials PL(p̂1 · p̂2).

A. Pseudoscalar boson exchange to second order

We begin by considering pseudoscalar boson exchange with a “form factor” modification:

V (~q ) = − g2

(m2 + q2)2
~σ1 · ~q ~σ2 · ~q , (23)

where g is a dimensionless coupling constant and m is the mass parameter chosen to be sufficiently large to
achieve good convergence in momentum integrals and partial wave summations. The momentum transfer is
denoted by ~q, and the squared denominator in eq. (23) insures that all loop integrals converge. As discussed
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(a) (b) (g)(c) (d) (e) (f)

FIG. 2: Diagrammatic contributions to the second-order quasiparticle interaction in neutron matter. Diagrams (a)–(d)
correspond to the sum of particle-particle and hole-hole contributions, while (e)–(g) together comprise the particle-hole
contribution. Medium insertions are denoted by the short double lines, and the labels (b) and (d) refer to the crossed
terms of (a) and (c). Reflected diagrams are not shown.

previously, the leading-order (free-space) contribution to the quasiparticle interaction contains only the exchange
tensor interaction (in addition to the central components). Its L = 0, 1 projections are given by

h0(kf )
(1) =

g2

3m2

{

1

4u2
ln(1 + 4u2)− 1

1 + 4u2

}

, (24)

h1(kf )
(1) =

g2

m2

{

1 + u2

4u4
ln(1 + 4u2)− 1

u2
+

1

1 + 4u2

}

, (25)

with the dimensionless parameter u = kf/m. At second order, the direct contributions F (2a) and F (2c) have no
noncentral components. The crossed term (b) of the iterated pseudoscalar-exchange diagram gives a contribution
to the exchange tensor interaction:

h0(kf )
(2b) =

g4Mn

48πm3

{

1

2u2
ln

1 + 2u2

1 + u2
− 1

1 + 2u2

+

∫ u

0

dx
1 + 4x2 + 8x4

u2(1 + 2x2)3
(arctan 2x− arctanx)

}

, (26)

h1(kf )
(2b) =

g4Mn

16πm3

{

1

1 + 2u2
− 1

u2
+

2 + u2

2u4
ln

1 + 2u2

1 + u2

+

∫ u

0

dx
u2 − 2x2

u4(1 + 2x2)3
(1 + 4x2 + 8x4)(arctan 2x− arctanx)

}

. (27)

Iterated pseudoscalar exchange does not include medium modifications and therefore cannot generate an effective

interaction that depends explicitly on the center-of-mass momentum ~P . In contrast, the crossed term (d) from
the planar box diagram with Pauli blocking gives rise to an exchange tensor force and center-of-mass tensor
force (as noted in Section II, the particle-particle and hole-hole diagrams cannot generate the cross-vector
interaction). The associated L = 0, 1 exchange tensor Fermi liquid parameters are

h0(kf )
(2d) =

g4Mn

12π2k3f

∫ 1

0

dx

∫ 1

−1

dy

∫ 1

−1

dz
x2

[u−2 +A]2[u−2 +B]2

×
{

yz − x(x + y + z)− 4x2|y + z|
A+B − 4

+ (1 − x2)2
(A+B)η θ(W )

(A+B − 4)
√
W

}

, (28)

h1(kf )
(2d) =

g4Mn

4π2k3f

∫ 1

0

dx

∫ 1

−1

dy

∫ 1

−1

dz
x2

[u−2 +A]2[u−2 +B]2

{

x4 − x2yz

+x(y + z)(2− yz) +
1

2
(3y2z2 − y2 − z2 − 1) +

4x2|y + z|
A+B − 4

+x(1− x2)2(y + z − x)
(A+B)η θ(W )

(A +B − 4)
√
W

}

, (29)
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Modified pseudoscalar boson exchange (kf = 1.7 fm−1)
h0 [fm2] k0 [fm2] h1 [fm2] k1 [fm2]

2nd(pp) 0.119 −0.147 −0.143 0.057
2nd(hh) 0.027 −0.062 −0.057 0.074
2nd(ph) 1.394 −0.001 0.913 −0.001

Total 1.540 −0.210 0.713 0.129

Analytical 1.552 −0.209 0.719 0.126

TABLE I: The L = 0, 1 noncentral Fermi liquid parameters from the pseudoscalar exchange interaction in eq. (23) at
second order. We compare the sum of the particle-particle, hole-hole and particle-hole diagrams computed numerically
to the semi-analytical results of eqs. (26)–(37).

while the center-of-mass tensor Fermi liquid parameters are given by

k0(kf )
(2d) =

g4Mn

12π2k3f

∫ 1

0

dx

∫ 1

−1

dy

∫ 1

−1

dz
x2

[u−2 +A]2[u−2 +B]2

×
{

yz − x(3x+ y + z)− 8x2|y + z|
A+B − 4

+

[

2x2(2yz − 1)

+3 + 3x4 − 2x(1 + x2)(y + z) +
8(1− x2)2

A+B − 4

]

η θ(W )√
W

}

, (30)

k1(kf )
(2d) =

g4Mn

4π2k3f

∫ 1

0

dx

∫ 1

−1

dy

∫ 1

−1

dz
x2

[u−2 +A]2[u−2 +B]2

{

3x4 + x2(2 + yz)

+x(y + z)(2− 2x2 − yz) +
1

2
(3y2z2 − y2 − z2 − 1) +

8x2|y + z|
A+B − 4

+

[

x(y + z)(3 + 4x2yz + 5x4)− 4− 3x6 − 2x4(1 + y2 + 4yz + z2)

+x2(5− 2y2 − 4yz − 2z2)− 8(1− x2)2

A+B − 4

]

η θ(W )√
W

}

, (31)

with abbreviations: A = 1 + x2 − 2xy, B = 1 + x2 − 2xz, W = (x − y)2(x − z)2 − (1 − y2)(1 − z2) and
η = sign[(x − y)(x − z)]. In fact, only the Pauli-blocked planar box diagram (d) gives rise to a center-of-mass
tensor interaction from second-order pseudoscalar exchange.
Of the three diagrams (e)-(g) in Fig. 2 that encode the effects of medium polarization, (e) and (g) contribute

to the quasiparticle interaction in the crossed channel and (f) contributes in the direct channel, regardless of
the form of two-body interaction. In the case of pseudoscalar exchange only (e) and (g) are nonvanishing for
noncentral components. Diagram (e), representing the coupling of the boson to nucleon-hole states, yields for
the exchange tensor interaction:

h0(kf )
(2e) =

8g4Mn

3π2m3u2

∫ u

0

dx
x4

(1 + 4x2)4

[

2ux+ (u2 − x2) ln
u+ x

u− x

]

, (32)

h1(kf )
(2e) =

8g4Mn

π2m3u4

∫ u

0

dx
x4(u2 − 2x2)

(1 + 4x2)4

[

2ux+ (u2 − x2) ln
u+ x

u− x

]

. (33)

The density-dependent vertex correction (g) can be split into a factorizable part:

h0(kf )
(2g) =

g4Mn

24π2m3u3

[

4u2

1 + 4u2
− ln(1 + 4u2)

][

1 + 2u2

4u2
ln(1 + 4u2)− 1

]

, (34)

h1(kf )
(2g) =

g4Mn

8π2m3u5

[

1− 1 + 2u2

4u2
ln(1 + 4u2)

][

(1 + u2) ln(1 + 4u2)− 3u2 − u2

1 + 4u2

]

, (35)

and a non-factorizable part:

h0(kf )
(2g′) =

g4Mn

6π2m3u2

∫ u

0

dx

[

ln(1 + 4x2)− 4x2

1 + 4x2

]{

2ux(1 + 4u2)−1

1 + 4u2 − 4x2

+
u2 − x2

(1 + 4u2 − 4x2)3/2
ln

(u
√
1 + 4u2 − 4x2 + x)2

(1 + 4u2)(u2 − x2)

}

, (36)



10

h1(kf )
(2g′) =

g4Mn

8π2m3u4

∫ u

0

dx

[

ln(1 + 4x2)− 4x2

1 + 4x2

]{

4ux(1 + 2u2)

(1 + 4u2)(1 + 4u2 − 4x2)

− ln
u+ x

u− x
+

1+ (u2 − x2)(6 + 4u2)

(1 + 4u2 − 4x2)3/2
ln

(u
√
1 + 4u2 − 4x2 + x)2

(1 + 4u2)(u2 − x2)

}

. (37)

We note that diagrams (e)–(g), representing the particle-hole contribution, do not give rise to a cross-vector
interaction in agreement with the general argument presented in Section II. We now evaluate the expressions
given in eqs. (26)–(37) choosing g = 5, m = 300MeV and kf = 1.7 fm−1. In Table I we compare these semi-
analytical results to those obtained from a numerical evaluation of the second-order contributions as given in
Section II through a partial-wave decomposition. The agreement is generally on the order of 2% or better.

B. Spin-orbit interaction to second order

We consider as well the case of a pure spin-orbit interaction of the form

Vso =
2g2s

(m2
s + q2)2

i (~σ1 + ~σ2) · (~q × ~p ) , (38)

where ~q is the momentum transfer, ~p is half the incoming relative momentum andms is the mass of the exchanged
boson to be fixed later. We consider only the isotropic (L = 0) contributions to the noncentral interactions.
The first-order contribution from Vso to the quasiparticle interaction vanishes trivially since ~q × ~p = 0. The
direct term (a) of the planar box diagram gives the contribution

h0(kf )
(2a) =

g4sMn

288πm3
s

{

5 + 12u2

1 + 4u2
− 5

4u2
ln(1 + 4u2)

}

, (39)

with u = kf/ms, while the crossed term (b) contribution reads

h0(kf )
(2b) =

g4sMn

24πm3
s

{

1

2u2
ln

1 + 2u2

1 + u2
− 1

1 + 2u2
+

∫ u

0

dx
1 + 4x2 + 8x4

u2(1 + 2x2)3
(arctan 2x− arctanx)

}

. (40)

For the Pauli-blocked planar box diagram, we find that the direct term (c) gives rise to both exchange tensor
as well as center-of-mass tensor contributions of the form

h0(kf )
(2c) =

g4sMn

6π2k3f

∫ 1

0

dx

∫ 1

−1

dy

∫ 1

−1

dz
x2

[u−2 +A]4

{

− x(x + y)

− 4x2|y + z|
A+B − 4

+ (1− x2)2
(A+B)η θ(W )

(A+B − 4)
√
W

}

(41)

k0(kf )
(2c) =

g4sMn

6π2k3f

∫ 1

0

dx

∫ 1

−1

dy

∫ 1

−1

dz
x2

[u−2 +A]4

{

− x(3x+ y)− 8x2|y + z|
A+B − 4

+

[

3 + 3x4 + 2x2(2yz − 1)− 2x(1 + x2)(y + z) +
8(1− x2)2

A+B − 4

]

η θ(W )√
W

}

, (42)

with abbreviations: A = 1 + x2 − 2xy, B = 1 + x2 − 2xz, W = (x − y)2(x − z)2 − (1 − y2)(1 − z2) and
η = sign[(x − y)(x− z)]. Likewise, the crossed term (d) of the Pauli-blocked planar box diagram yields

h0(kf )
(2d) =

g4sMn

6π2k3f

∫ 1

0

dx

∫ 1

−1

dy

∫ 1

−1

dz
x2

[u−2 +A]2[u−2 +B]2

×
{

yz − x(x + y + z)− 4x2|y + z|
A+B − 4

+ (1 − x2)2
(A+B)η θ(W )

(A+B − 4)
√
W

}

, (43)

k0(kf )
(2d) =

g4sMn

6π2k3f

∫ 1

0

dx

∫ 1

−1

dy

∫ 1

−1

dz
x2

[u−2 +A]2[u−2 +B]2

{

yz − x(3x+ y + z)

− 8x2|y + z|
A+B − 4

+

[

2x2(2yz − 1) + 3 + 3x4 − 2x(1 + x2)(y + z) +
8(1− x2)2

A+B − 4

]

η θ(W )√
W

}

. (44)
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Spin-orbit interaction (kf = 1.7 fm−1)
h0 [fm2] k0 [fm2]

2nd(pp+hh) 0.761 −0.311
2nd(ph) −0.758 −0.444
Total 0.003 −0.756

Analytical (pp+hh) 0.772 −0.312
Analytical (ph) −0.761 −0.448

Total 0.011 −0.760

TABLE II: The L = 0 noncentral Fermi liquid parameters for the spin-orbit interaction at second-order. The numerical
results for h0 and k0 based on the partial-wave decomposition are compared with values from the semi-analytical formulas
in eqs. (39)–(50).

The coupling to intermediate particle-hole states (e) in the crossed channel generates both exchange and
center-of-mass tensor interactions:

h0(kf )
(2e) =

g4sMn

(3πu)2m3
s

∫ u

0

dx
x2

(1 + 4x2)4

[

ux(15x2 − 17u2)− 15

2
(u2 − x2)2 ln

u+ x

u− x

]

, (45)

k0(kf )
(2e) =

2g4sMn

3π2u2m3
s

∫ u

0

dx
x2(x2 − u2)

(1 + 4x2)4

[

2ux+ (u2 − x2) ln
u+ x

u− x

]

, (46)

and for the Pauli-blocked crossed box diagram (f), the direct term produces the contributions

h0(kf )
(2f) =

8g4sMn

(3πu)2m3
s

∫ u

0

dx
x3

(1 + 4x2)4

[

u(u2 − x2) + 2u3 ln
u2 − x2

4u2

−6ux2 ln
u2 − x2

4x2
− 4x3 ln

u+ x

u− x

]

, (47)

k0(kf )
(2f) =

8g4sMn

3π2u2m3
s

∫ u

0

dx
x3

(1 + 4x2)4

[

u(u2 − x2)− 4ux2 ln
u2 − x2

4x2

−2x(u2 + x2) ln
u+ x

u− x

]

. (48)

Finally, the crossed term of the vertex correction diagram (g) reads

h0(kf )
(2g) =

64g4sMn

3π2k3f

∫ u

0

dx

∫ u

0

dy
x3y2

(1 + 4x2)2(1 + 4y2)2

{

uRe ln
x+

√

x2 + y2 − u2

u+ y

+
y

u2
(u2 − x2) +

x

u2 − y2

[

uRe
√

x2 + y2 − u2 − xy
]

}

, (49)

k0(kf )
(2g) =

64g4sMn

3π2k3f

∫ u

0

dx

∫ u

0

dy
x3y2

(1 + 4x2)2(1 + 4y2)2

×
{

y

u2
(u2 − x2) +

2x

u2 − y2

[

uRe
√

x2 + y2 − u2 − xy
]

}

, (50)

where Re stands for real part. Again, we find that the spin-orbit interaction iterated to second order does not
give rise to a cross-vector interaction. We choose the parameters gs = 10, ms = 700MeV and kf = 1.7 fm−1. In
Table II we compare the sum of the particle-particle and hole-hole diagrams to the sum of diagrams (a)–(d) in
Fig. 2. Likewise we compare the particle-hole contribution to the sum of diagrams (e)–(g) in Fig. 2. The results
of both calculations are again in very good numerical agreement with one another. We note that the similarity

among several Fermi liquid parameters, namely hpp+hh
0 ≃ −hph

0 ≃ −kpp+hh+ph
0 , is merely a coincidence resulting

from our choice of scalar particle mass.

C. Spin-nonconserving cross-vector interaction

As mentioned in subsection II C, the origin of the spin-nonconserving quasiparticle interaction (proportional

to the cross-vector operator (σ1 × σ2) · (q̂× P̂ )) is the interference of the spin-orbit component of the two-body
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(1) (2) (3)

FIG. 3: Diagrammatic contributions to the quasiparticle interaction in neutron matter generated from the two-pion
exchange three-neutron interaction. The short double-line symbolizes summation over the filled Fermi sea of neutrons.
Reflected diagrams of (2) and (3) are not shown.

potential with its other (central, spin-spin and tensor) components. In order to exemplify this mechanism
through a solvable model, we consider a simple contact interaction with couplings in all relevant channels:

Vct = Γc + Γs ~σ1 · ~σ2 + Γt ~σ1 · ~q ~σ2 · ~q + iΓso(~σ1 + ~σ2) · (~q × ~p ) . (51)

At second order the interference terms arising from the particle-hole diagrams (e)–(g) in Fig. 2 can be worked
out analytically. One finds for the first three Landau parameters of the cross-vector interaction

l0 =
Mnk

3
f

5π
(Γc − 3Γs)Γso , l1 =

3Mnk
3
f

70π
(Γc − 3Γs)Γso , l2 =

11Mnk
3
f

84π
(3Γs − Γc)Γso , (52)

l0 = −
8Mnk

5
f

21π
ΓtΓso , l1 = −

4Mnk
5
f

21π
ΓtΓso , l2 =

50Mnk
5
f

231π
ΓtΓso . (53)

Due to their different structure we have listed separately the interference terms with central and spin-spin inter-
actions and the “tensor-type” interaction Γt ~σ1 ·~q ~σ2 ·~q. Our second-order calculation based on a decomposition
of the two-body potential into partial-wave matrix elements reproduced these analytical results with good nu-
merical accuracy. In the absence of the tensor term, the condition Γc = 3Γs (giving lL = 0) is equivalent to a
vanishing interaction in the spin-singlet state.

IV. LANDAU PARAMETERS FROM CHIRAL 3N INTERACTION

In this section we consider the N2LO chiral three-nucleon force in neutron matter and derive expressions
for all L = 0, 1 Landau parameters arising from the leading-order (one-loop) contribution to the quasiparticle
interaction. In most cases it is possible to obtain analytical expressions for arbitrary values of L, but for brevity
we show only the formulas for the isotropic (L = 0) and p-wave (L = 1) parameters. As mentioned in subsection
IID, we keep only the two-pion exchange three-neutron force proportional to c1 and c3. There are three one-loop

diagrams contributing to the effective interaction, shown in Fig. 3, which we label as V med,i
NN for i = 1, 2, 3. Both

the pion self-energy correction V med,1
NN and the vertex correction V med,2

NN produce an effective interaction similar
to that of one-pion exchange. Both terms vanish in the direct channel but give contributions to f, g and h in
the exchange channel. For the pion self-energy correction we find

F0(kf )
(med,1) = (3− ~σ1 · ~σ2 + 2S12(q̂))

g2Am
3
π

(6π)2f4
π

{

(2c1 − c3)u
3

1 + 4u2
− c3u

3 + (c3 − c1)
u

2
ln(1 + 4u2)

}

, (54)

F1(kf )
(med,1) = (3− ~σ1 · ~σ2 + 2S12(q̂))

g2Am
3
π

48π2f4
π

{

(2c1 − c3)u

1 + 4u2
+ (6c1 − 5c3)u

+
[

2(c3 − c1)u +
3c3 − 4c1

2u

]

ln(1 + 4u2)

}

, (55)

with u = kf/mπ. As seen from the above formulas, the expressions for the Fermi liquid parameters of the
central, spin-spin and tensor quasiparticle interaction are identical up to integer factors characteristic of a one-
pion exchange nucleon-nucleon potential. The contribution from the crossed term of the pion exchange vertex
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correction V med,2
NN reads

F0(kf )
(med,2) = (3 − ~σ1 · ~σ2 + 2S12(q̂))

g2Am
3
π

(24π)2f4
π

{

3c1
4u5

[

8u4 + 4u2 − (1 + 4u2) ln(1 + 4u2)
]

×
[

4u2 − ln(1 + 4u2)
]

+ c3

[

4

u2

(

4u2 − ln(1 + 4u2)
)

arctan 2u

+
48u4 + 16u2 + 3

32u7
ln2(1 + 4u2) +

40u3

3
− 22u+

2

u
+

3

2u3

+
12u4 − 16u6 − 30u2 − 9

12u5
ln(1 + 4u2)

]}

, (56)

F1(kf )
(med,2) = (3− ~σ1 · ~σ2 + 2S12(q̂))

g2Am
3
π

(16π)2f4
π

{

c1
2u7

[

4u2 − (1 + 2u2) ln(1 + 4u2)
]

×
[

8u4 + 4u2 − (1 + 4u2) ln(1 + 4u2)
]

+
c3
3u4

[

8
(

4u2 − (1 + 2u2) ln(1 + 4u2)
)

arctan2u

+
96u6 + 80u4 + 22u2 + 3

16u5
ln2(1 + 4u2) +

56u6 − 32u8 − 60u4 − 48u2 − 9

6u3
ln(1 + 4u2)

+
8u5

3
(7− 4u2)− 28u3 + 10u+

3

u

]}

. (57)

Lastly, we compute the L = 0, 1 Landau parameters associated with the Pauli-blocked two-pion exchange

diagram V med,3
NN , which has a more complicated spin structure than V med,1

NN and V med,2
NN . Both the direct and

exchange terms contribute, and the central components of the quasiparticle interaction read

F0(kf )
(med,3) =

g2Am
3
π

16π2f4
π

{

8(c3 − c1)u− 8c3u
3

3
+

3c3 − 4c1
u

ln(1 + 4u2)

+(12c1 − 10c3) arctan 2u+ (1 + ~σ1 · ~σ2)

∫ u

0

dx
[

2c1Z
2 +

c3
3
(X2 + 2Y 2)

]

}

, (58)

F1(kf )
(med,3) = (1 + ~σ1 · ~σ2)

g2Am
3
π

16π2f4
π

∫ u

0

dx

{

2c1(Z
2
a + 2Z2

b ) + c3

(

X2
a + 2X2

b +
4

3
X2

c

)

}

. (59)

The auxiliary functions X,Y, Z; Xa, Xb, Xc; and Za, Zb are defined in Section 2.2 of ref. [2]. Concerning the

noncentral quasiparticle interaction, V med,3
NN produces no tensor forces in pure neutron matter. However, one

expects V med,3
NN to generate an exchange tensor force in symmetric nuclear matter [32] since in this case the three-

nucleon force proportional to c4 does not vanish. As a special feature, the crossed term of the Pauli-blocked 2π
exchange diagram gives rise to a cross-vector interaction. With its usual representation given by

Fcross = (~σ1 × ~σ2) · (q̂ × P̂ )
∞
∑

L=0

lL(kf )PL(p̂1 · p̂2) , (60)

a complete analytical solution for the Landau parameters lL(kf ) could not be obtained. When choosing the
alternative form of the cross vector interaction

Fcross =
(~σ1 × ~σ2) · (~p1 × ~p2)

|~p1 + ~p2|2
∞
∑

L=0

l̃L(kf )PL(p̂1 · p̂2) , (61)

all occuring integrals can be solved analytically in the present case. The results for the Landau parameters read

l̃0(kf )
(med,3) =

g2Am
3
π

(8π)2f4
π

{

c1
u3

[

16u4 − (1 + 4u2) ln2(1 + 4u2)
]

(62)

+c3

[

4u3 − 8u− 1

u
+

1 + 4u2

2u3
ln(1 + 4u2) +

(

1

u
− 1

16u5

)

ln2(1 + 4u2)

]}

,
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l̃1(kf )
(med,3) =

g2Am
3
π

(8π)2f4
π

{

3c1

[

8u− 8

u
− 2

u3
+

8u4 + 6u2 + 1

u5
ln(1 + 4u2)

−32u6 + 24u4 + 8u2 + 1

8u7
ln2(1 + 4u2)

]

+c3

[

20u3

3
− 16u− 2

u
− 3

u3
− 3

4u5
+

16u6 + 28u4 + 18u2 + 3

8u7

× ln(1 + 4u2) +
3

64u9
(64u8 − 20u4 − 8u2 − 1) ln2(1 + 4u2)

]}

. (63)

The exact relation between these two representations of the cross-vector interaction is given by

lL =

∞
∑

L′=0

aLL′ l̃L′ , (64)

with coefficients aLL′ = 1
4 (2L + 1)

∫ 1

−1
dz

√

(1− z)/(1 + z)PL(z)PL′(z), which are all nonvanishing rational

multiples of π. However, since infinitely many terms are involved, this (exact) relation is of limited practical
use. The numerical results assuming the standard form, eq. (60), of the cross vector interaction will be shown
in the following section.

V. RESULTS

A. Neutron matter equation of state

The Fermi liquid parameters in neutron matter, unlike those in symmetric nuclear matter close to the sat-
uration density, are largely unconstrained by empirical data. Given that our perturbative treatment of the
quasiparticle interaction includes only the leading-order medium corrections from two- and three-body forces,
it is useful to compare the associated zero temperature equation of state of neutron matter (at the same order
in perturbation theory) with those obtained using nonpertubative methods. As a benchmark we consider vari-
ational calculations [34] of neutron matter employing the high-precision Argonne v18 two-nucleon potential [35]
together with the Urbana UIX three-body potential [36], which provide a realistic description of light nuclei
and nuclear matter.
In the partial-wave representation of the two-body interaction the first-order contribution to the energy per

particle Ē = E/A reads

Ē
(1)
2n (kf ) =

1

2π2k3f

∑

lSJ

(2J + 1)

∫ kf

0

dp p2(kf − p)2(2kf + p)〈plSJ |V̄ |plSJ〉 , (65)

and the more intricate second-order contribution takes the form

Ē
(2)
2n (kf ) =

6

(4π)4k3f

∑

l1l2l3l4
Smsm

′

sJJ
′M

∫ 2kf

0

dp′ p′
2
∫

√
k2

f
−p′2/4

0

dp p2
∫ ∞

√
k2

f
−p′2/4

dq q2N(l1ml2m
′l3ml4m

′)

×il2+l3−l1−l4
Mn

p2 − q2
CJM
l1mSms

CJM
l2m′Sm′

s
CJ′M
l3mSms

CJ′M
l4m′Sm′

s
〈pl1SJ |V̄ |ql2SJ〉〈ql4SJ ′|V̄ |pl3SJ ′〉

×
∫ xp

−xp

d cos θpP
m
l1 (cos θp)P

m
l3 (cos θp)

∫ xq

−xq

d cos θqP
m′

l2 (cos θq)P
m′

l4 (cos θq), (66)

where xp = min{1, (k2f − p2 − p′
2
/4)/pp′} and xq = min{1, (q2 − k2f + p′

2
/4)/qp′}. In the Appendix we provide

the analytical expressions for the second-order contributions to the energy per particle associated with the two
model interactions introduced in Section III. Finally, the leading-order chiral three-neutron interaction leads to
Hartree and Fock contributions to the energy per particle of neutron matter of the combined form

Ē
(1)
3n (kf ) =

g2Am
6
π

(2πfπ)4

{

(6c1 − 5c3)
u3

3
arctan2u− 2c3

9
u6 + (c3 − c1)u

4

+(3c1 − 2c3)
u2

6
+

[

c3
12

− c1
8

+
u2

4
(3c3 − 4c1)

]

ln(1 + 4u2)

+
1

32u3

∫ u

0

dx
[

6c1H
2 + c3(G

2
S + 2G2

T )
]

}

, (67)
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FIG. 4: (Color online) Energy per particle of neutron matter from chiral and low-momentum two- and three-body
interactions. The cutoff scale associated with the bare chiral nuclear potential is Λ = 2.5 fm−1, while that of the low-
momentum interaction is Λ = 2.1 fm−1. The curve labeled ‘APR’ is taken from the variational calculations of Akmal et
al. [34], and the curve labeled ‘QMC’ is taken from the quantum Monte Carlo calculations in refs. [39, 40].

with u = kf/mπ. The auxiliary functions H , GS and GT are defined in eqs. (24–26) of ref. [37]. These
interaction contributions are added to the relativistically improved kinetic energy per particle Ēkin(kf ) =
3k2f/10Mn − 3k4f/56M

3
n.

In Fig. 4 we plot the resulting equation of state of neutron matter for densities up to ρ ≃ 1.5ρ0. For both chiral
and low-momentum interactions one finds good agreement with the results of the variational calculation of ref.
[34], labeled ‘APR’ in the figure. The difference between the two perturbative calculations arises primarily from
the different values of low-energy constants c1,3. Note that the recent neutron matter calculation [38] including
the subleading chiral three- and four-neutron interactions gives very similar results. For comparison, we have
included in Fig. 4 the result for the neutron matter equation of state obtained in a recent quantum Monte Carlo
(QMC) simulation [39] employing phenomenological density-dependent two-body potentials. The data points
for the lowest two densities are taken from a different quantum Monte Carlo calculation in ref. [40]. For later
comparison, we compute the compressibility of neutron matter directly from the energy per particle. We find
that at ρ = 0.166 fm−1, K = 560MeV and 650 MeV for the unevolved chiral interaction and low-momentum
potential Vlow−k, respectively.

B. Neutron matter quasiparticle interaction

In this section we present and discuss the calculations of the L = 0, 1, 2 Landau parameters for the quasiparticle
interaction in neutron matter from chiral and low-momentum two- and three-nucleon forces. We begin by
considering the leading-order (free-space) contribution from both the bare chiral N3LO NN interaction [19] as
well as the low-momentum NN potential Vlow−k[22, 23] obtained by integrating out momenta beyond the cutoff
scale of 2.1 fm−1. We use the general formula in eq. (9) for computing the first-order perturbative contribution
to the quasiparticle interaction as well as the projection formulas in eq. (7) for extracting the scalar functions
f, g, and h. In Table III we show the results for neutron matter with a Fermi momentum of kf = 1.7 fm−1

corresponding to a density of ρ0 = 0.166 fm−3. In both cases the Fermi liquid parameters decrease rapidly in
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kf = 1.7 fm−1 Chiral N3LO V
(2.1)
low−k

L 0 1 2 3 0 1 2 3

f [fm2] −0.700 −1.025 −0.230 −0.112 −1.188 −0.679 −0.298 −0.110
g [fm2] 1.053 0.613 0.337 0.197 1.212 0.654 0.346 0.195
h [fm2] 0.270 0.060 −0.040 −0.080 0.239 0.102 −0.051 −0.079

TABLE III: The L = 0, 1, 2, 3 Fermi liquid parameters of the bare N3LO chiral NN potential of ref. [19] as well as the
low-momentum NN potential Vlow−kat a resolution scale of 2.1 fm−1 at first order in many-body perturbation theory.

magnitude with L for all channels. For larger values of L the difference between bare and evolved two-neutron
interactions is strongly reduced, and at L = 3 it is almost negligible. Short-distance repulsion in the bare chiral
NN interaction is integrated out through the renormalization-group evolution, leading to a significant reduction
in f0. For both potentials, the compressibility K of neutron matter at ρ0 would be unphysically small. This
feature is shared by many leading-order perturbative calculations of the quasiparticle interaction in both nuclear
and neutron matter [1, 41–43]. Recent auxiliary diffusion Monte Carlo calculations with realistic two- and three-
nucleon forces find that the compressibility of neutron matter at the density ρ = 0.16 fm−3 is K ≃ 520MeV,
approximately 50% larger than that of the noninteracting Fermi gas [14]. The isotropic component of the spin-
spin interaction, g0, is enhanced by ∼ 15% at the resolution scale of 2.1 fm−1, while the isotropic component h0

of the exchange tensor interaction is reduced by a slightly smaller factor. The p-wave component of the spin-
independent quasiparticle interaction, f1, increases as the resolution scale decreases. The corresponding values
of the quasiparticle effective mass are M∗/Mn = 0.78 and 0.84 for the chiral and low-momentum interactions
respectively. In general our results from the low-momentum NN interaction agree qualitatively with those of
ref. [17], shown there (in dimensionless units) in the first three columns of Table I. We note that the different
choice of low-momentum resolution scale in ref. [17] accounts for some of the quantitative differences.
Next we compute the second-order particle-particle, hole-hole and particle-hole diagrams, shown in Fig. 1, with

two-neutron interactions. These provide the leading-order Pauli-blocking and polarization effects and give rise to

components of the quasiparticle interaction depending explicitly on the center-of-mass momentum ~P = ~p1+ ~p2.
In Table IV we display the Fermi liquid parameters associated with the second-order contributions (pp, hh
and ph) for both the chiral N3LO nucleon-nucleon interaction and the low-momentum interaction Vlow−kin
neutron matter at a density ρ0. Again we find in all cases good qualitative agreement between our results
from the low-momentum NN interaction and the results of Table I in ref. [17]. For the isotropic components,
it is generally true that the particle-particle diagram gives contributions that are significantly larger than the
hole-hole diagram. However, for higher values of L this is not the case, and the hole-hole diagram is in general
comparable in magnitude to the particle-particle contribution. Coherent effects among the three diagrams are
observed especially for the Landau parameters f1, g0, h0 and k0. Despite these large effects entering at second
order, perturbative calculations of the equation of state of nuclear and neutron matter [44, 45] show that third-
order contributions should be significantly smaller. Second-order effects thus tend to dramatically increase the
quasiparticle effective mass M∗, decrease the spin susceptibility of neutron matter and reduce the isotropic
exchange tensor strength h0. Although individually large, the contributions to f0 nearly cancel at second
order for the bare chiral NN interaction. With the low-momentum interaction the sum gives f0 = 0.379 fm2,
which approximately cancels the reduction in f0 from the renormalization group evolution at first order. The
strong repulsion in the spin-independent channel from the particle-hole diagram is qualitatively similar to what
has been found in previous Brueckner calculations of symmetric nuclear matter using hard-core interactions
[41, 42], where it was found that an infinite sum of polarization diagrams summed via the Babu-Brown induced
interaction [46, 47] could stabilize nuclear matter against density fluctuations. In general, the particle-particle
contributions decrease significantly in magnitude as the resolution scale is lowered. This effect is due primarily
to the reduction in phase space in the particle-particle channel as the momentum cutoff is lowered. The results
compiled in Table IV were obtained with free particle energies in the denominators of eq. (12). In all subsequent
tables, we include as well the one-loop corrections to the single-particle energies in the second-order diagrams
(for details see ref. [1]).
Finally, we calculate the contributions to the Fermi liquid parameters from the leading-order chiral three-

neutron force. We evaluate the analytical formulas in Eqs. (54)–(59) for the central and exchange tensor
contributions and perform numerical calculations of the cross-vector Fermi liquid parameters lL(kf ) in the
standard representation, eq. (60). In Fig. 5 we plot the density-dependent Fermi liquid parameters for the
chiral three-neutron force with low-energy constants c1 = −0.81 GeV−1 and c3 = −3.2GeV−1. For densities
larger than ρ ≃ 0.5ρ0 the Landau parameters scale approximately linearly with the density. The largest effect
is a strong additional repulsion in the isotropic spin-independent parameter f0. In fact, at nuclear matter
saturation density ρ0, the strength of the three-body correction in this channel is larger than the two-neutron
force contributions at 1st and 2nd order together. The quasiparticle effective mass M∗, governed by the
parameter f1, is reduced by less than 5% at saturation density ρ0 with the inclusion of the two-pion exchange
three-neutron force. Similar observations have been made in ref. [2] for the case of symmetric nuclear matter
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kf = 1.7 fm−1 Chiral N3LO V 2.1
low−k

L 0 1 2 0 1 2

f [fm2] pp −0.773 0.547 −0.290 −0.225 0.042 −0.124
f [fm2] hh −0.151 0.168 −0.121 −0.161 0.133 −0.063
f [fm2] ph 0.993 0.482 −0.089 0.765 0.795 0.255

Total 0.069 1.197 −0.500 0.379 0.970 0.068

g [fm2] pp 0.225 0.086 0.072 0.030 0.127 0.062
g [fm2] hh 0.006 0.089 −0.057 0.045 0.062 −0.059
g [fm2] ph 0.061 −0.016 −0.103 0.020 −0.011 −0.044

Total 0.293 0.159 −0.089 0.094 0.178 −0.040

h [fm2] pp −0.101 0.112 −0.028 −0.047 0.042 −0.004
h [fm2] hh −0.049 0.084 −0.049 −0.037 0.062 −0.032
h [fm2] ph −0.062 −0.090 −0.066 −0.108 −0.116 −0.044

Total −0.212 0.106 −0.143 −0.192 −0.012 −0.080

k [fm2] pp −0.085 0.064 0.014 −0.057 0.037 0.010
k [fm2] hh −0.036 0.052 −0.017 −0.028 0.039 −0.008
k [fm2] ph −0.058 −0.017 0.075 −0.034 −0.019 0.042

Total −0.178 0.098 0.072 −0.119 0.056 0.043

l [fm2] ph 0.135 −0.031 −0.279 −0.062 −0.147 −0.161

TABLE IV: Second-order contributions to the L = 0, 1, 2 Fermi liquid parameters in neutron matter characterized by the
Fermi momentum kf = 1.7 fm−1. We have separately listed the particle-particle (pp), hole-hole (hh) and particle-hole
(ph) contributions for both the bare N3LO chiral NN interaction as well as the low-momentum NN potential Vlow−kwith
Λlow−k = 2.1 fm−1.
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FIG. 5: (Color online) Density-dependent Fermi liquid parameters from the N2LO chiral three-nucleon force for the
quasiparticle interaction in neutron matter. The low energy constants have the values c1 = −0.81GeV−1 and c3 =
−3.2GeV−1.
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FIG. 6: (Color online) Density-dependent Fermi liquid parameters inlcuding first- and second-order contributions from
the chiral N3LO nucleon-nucleon potential of ref. [19] as well as the N2LO chiral three-nucleon force to leading order.

where additional three-nucleon forces proportional to the low-energy constants c4, cD and cE are present. The
qualitative similarities between the quasiparticle interaction in neutron matter and symmetric nuclear matter
from three-body forces are due to the dominant role played by contributions proportional to the low-energy
constant c3 [2]. From the Landau parameters f0 and f1 we obtain for the compression modulus of neutron matter
at kf = 1.7 fm−1 the values K = 550MeV and 660MeV for the chiral and low-momentum potentials. These
values compare well with those extracted numerically from the equation of state in Fig. 4. Neglecting effects from
noncentral Fermi liquid parameters, the chiral three-neutron force at leading order tends to enhance the spin
susceptibility χ of neutron matter (see eq. (6)) by lowering g0 by about 25% at ρ0 from the value obtained with
two-nucleon forces only. The three-body correction to the exchange tensor interaction is smaller in magnitude

than the central force contributions. For the exchange tensor interaction the pion-self energy correction V med,1
NN

and vertex correction V med,2
NN enter. As seen already in ref. [2, 32] both of these terms have the structure of

one-pion exchange and are individually large with opposite sign. The cross-vector interaction from chiral three-
nucleon forces is relatively small compared with the central quasiparticle interactions. However, at saturation
density ρ0 the magnitudes of the cross-vector Fermi liquid parameters l0,1,2 are comparable in magnitude to
those from two-body potential at second order.
In Fig. 6 we combine the results for the first- and second-order two-body contributions with the leading-order

three-body corrections at a resolution scale of Λ = 2.5 fm−1. All Fermi liquid parameters up to L = 2 are plotted
as a function of the neutron density ρ. The same quantities are compiled in Table V at a Fermi momentum
of kf = 1.7 fm−1 together with the corresponding values from the low-momentum interaction Vlow−kat the
scale Λ = 2.1 fm−1. From Fig. 6 one observes that all of the Fermi liquid parameters considered here for the
spin-independent part of the quasiparticle interaction vary strongly with the density up to ρ ≃ ρ0. In particular
the parameter f0 has a nearly linear dependence on the density, and gives rise to a compression modulus of
neutron matter that grows strongly with increasing density. The Landau parameter f1 decreases rapidly at small
densities, but flattens out close to nuclear matter saturation density, where it nearly vanishes thereby yielding
an effective mass M∗/Mn ≃ 1 according to eq. (5). The L = 2 component of the spin-independent quasiparticle
interaction exhibits a nearly linear decrease with the neutron density, and owing to coherent effects from all
contributions it attains a large negative value at and beyond saturation density. From Table V we see that this
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kf = 1.7 fm−1 Chiral N3LO V 2.1
low−k

L 0 1 2 0 1 2

f [fm2] 0.679 −0.018 −0.959 1.072 0.135 −0.686
g [fm2] 1.025 0.388 0.302 0.880 0.298 0.380
h [fm2] 0.160 0.316 −0.252 0.175 0.317 −0.263

k [fm2] −0.156 0.085 0.063 −0.108 0.051 0.039
l [fm2] −0.050 −0.161 −0.160 −0.295 −0.330 −0.029

TABLE V: Fermi liquid parameters for the quasiparticle interaction in neutron matter at a density corresponding to
a Fermi momentum of kf = 1.7 fm−1. The low-energy constants of the N2LO chiral three-nucleon force are chosen
to be c1 = −0.81GeV−1 and c3 = −3.2GeV−1 when employed together with the bare chiral NN interaction and
c1 = −0.76GeV−1 and c3 = −4.78GeV−1 with the low-momentum interaction Vlow−k.

is a scale-independent prediction that to our knowledge has not been previously observed in the literature. In
fact, such a large negative value could help in fulfilling the forward scattering Pauli principle sum rule, which
in the absence of noncentral interactions takes the form

∞
∑

L=0

[

FL

1 + FL/(2L+ 1)
+

GL

1 +GL/(2L+ 1)

]

= 0. (68)

The presence of noncentral interactions modifies this sum rule [48], but the effect of center-of-mass tensor and
cross-vector interactions has not yet been explored [50]. The isotropic component of the spin-spin quasiparticle
interaction, g0, decreases with the neutron density. For densities larger than ρ0, the density-dependence of g0
is governed mainly by the three-neutron force contributions, which decrease g0 and consequently increase the
neutron matter spin susceptibility χ. Considering only central interactions we find no evidence for a phase
transition to a ferromagnetic state (characterized by G0 = N0g0 ≤ −1) close to nuclear matter saturation
density. The additional noncentral interactions considered in the present work are expected to modify the
general stability conditions for Fermi liquids [49], but to date the effects of neither the center-of-mass tensor nor
cross-vector interactions have been included. The isotropic component h0 of the exchange tensor interaction is
nearly independent of the density, since the medium corrections from two- and three-body forces approximately
cancel. The Fermi liquid parameters of the novel center-of-mass tensor and cross-vector interactions are relatively
small in magnitude, but k0, l0 and l2 have a strong density dependence. From Table V we see that there remains
a moderate dependence on the resolution scale and choice of low-energy constants. These variations lead to
differences on the order of 10-30% for most of the L = 0, 1, 2 Fermi liquid parameters.

VI. CONCLUSIONS AND OUTLOOK

In the present work we have computed the L = 0, 1, 2 Fermi liquid parameters for the quasiparticle interaction
in neutron matter employing realistic two- and three-nucleon interactions derived within chiral effective field
theory. In addition to the free-space contribution from the two-body interaction, we have calculated without any
simplifying approximations the second-order two-body corrrection as well as the leading three-body correction.
A general method for extracting all components of the quasiparticle interaction, both central and noncentral
parts, for two-body interactions given in a partial-wave representation has been developed and tested with
simple model interactions that can be treated semi-analytically. Employing realistic two- and three-neutron
forces, we find that medium-dependent loop corrections play an important role in increasing the compression
modulus of neutron matter from an unphysically small value to about K = 600MeV at nuclear matter saturation
density ρ0. Second-order effects from two-body forces strongly enhance the quasiparticle effective mass M∗,
while three-neutron forces play only a minor role for this quantity. The first- and second-order contributions
to g0 from two-body forces are positive for the densities considered in the present work, though they decrease
in magnitude for increasing density. When combined with the medium-dependent loop corrections from the
leading-order chiral three-neutron forces, the Landau parameter g0 decreases with density, which in the absence
of noncentral interactions would lead to an increasing spin susceptibility χ of neutron matter. The noncentral
components of the quasiparticle interaction hL, kL and lL have been computed as a function of the neutron
density ρ. The extent to which they affect the spin susceptibility of neutron matter as well as the response
functions for electroweak probes will be studied in future work.
Work supported in part by BMBF, the DFG cluster of excellence Origin and Structure of the Universe, by

the DFG, NSFC (CRC110) and US DOE Grant No. DE-FG02-97ER-41014.
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VII. APPENDIX A: ENERGY PER PARTICLE FROM MODEL INTERACTIONS AT SECOND

ORDER

Organizing the second-order calculation of the energy density ρĒ in the number of medium insertions, see
eq. (22), one must evaluate (two-ring) Hartree and (one-ring) Fock diagrams each with two or three medium
insertions. We give first the pertinent analytical expressions for the pseudoscalar interaction in eq. (23) at
second order.
Hartree diagram with two medium insertions:

Ē(kf )
(H2) =

g4Mn

(8π)3

{

21

2u
− 15u+ 32 arctan2u− 7

8u3
(3 + 20u2) ln(1 + 4u2)

}

, (69)

Fock diagram with two medium insertions:

Ē(kf )
(F2) =

g4Mn

(4πu)3

{

2u2 − 7u3 arctanu+ 6
√
2u3 arctan(

√
2u)

+
(

1 +
9u2

2

)

ln(1 + u2)− 3
(1

2
+ 2u2

)

ln(1 + 2u2)

+4

∫ u

0

dxx(u − x)2(2u+ x)
1 + 4x2 + 8x4

(1 + 2x2)3
(arctanx− arctan 2x)

}

, (70)

Hartree diagram with three medium insertions:

Ē(kf )
(H3) =

g4Mn

32π4u3

∫ u

0

dxx2

∫ 1

−1

dy

[

2uxy + (u2 − x2y2) ln
u+ xy

u− xy

]

s6

(1 + s2)3
, (71)

Fock diagram with three medium insertions:

Ē(kf )
(F3) =

3g4Mn

64π4u3

∫ u

0

dx

{

− 2

[

u− 1 + u2 + x2

4x
ln

1 + (u + x)2

1 + (u − x)2

]2

+ x2

∫ 1

−1

dy

∫ 1

−1

dz

× yz θ(y2 + z2 − 1)

|yz|
√

y2 + z2 − 1

[

ln(1 + s2)− s2

1 + s2

][

ln(1 + t2)− t2

1 + t2

]

}

, (72)

with abbreviations u = kf/m, s = xy +
√

u2 − x2 + x2y2 and t = xz +
√
u2 − x2 + x2z2.

For the spin-orbit interaction, eq. (38), at second order the analogous expressions read

Ē(kf )
(H2) =

g4sMn

(4π)3

{

5u

2
− 2u3

3
− 3

4u
− 4 arctan2u+

3 + 28u2

16u3
ln(1 + 4u2)

}

, (73)

Ē(kf )
(F2) =

g4sMn

(2πu)3

{

u2

2
− 4u3 arctanu+ 3

√
2u3 arctan(

√
2u)

+(1 + 3u2) ln(1 + u2)− 3
(1

4
+ u2

)

ln(1 + 2u2)

+2

∫ u

0

dxx(u − x)2(2u+ x)
1 + 4x2 + 8x4

(1 + 2x2)3
(arctanx− arctan 2x)

}

, (74)

Ē(kf )
(H3) =

g4sMn

64π4u3

∫ u

0

dxx2

∫ 1

−1

dy

[

2uxy
(5u2

3
+ 2x2 − 3x2y2

)

+(u2 − x2y2)(u2 + 2x2 − 3x2y2) ln
u+ xy

u− xy

]

s4(3 + s2)

(1 + s2)3
, (75)

Ē(kf )
(F3) =

3g4sMn

16π4u3

∫ u

0

dx

{

−
[

u− 1 + u2 + x2

4x
ln

1 + (u+ x)2

1 + (u− x)2

]2

+ x2

∫ 1

−1

dy

∫ 1

−1

dz

× yz θ(y2 + z2 − 1)

|yz|
√

y2 + z2 − 1

[

ln(1 + s2)− s2

1 + s2

][

ln(1 + t2)− t2

1 + t2

]

}

, (76)

where u = kf/ms. An interesting feature of the second-order spin-orbit interaction is that for large mass ms

the Hartree and Fock contributions become equal with the same sign. It is worth noting that the agreement
between these semi-analytic results and those based on the partial wave decomposition eq. (66) agree on the
per mille level.
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VIII. APPENDIX B: FORWARD SCATTERING AMPLITUDES FOR MODEL INTERACTIONS

AND CHIRAL THREE-NUCLEON FORCE

The forward scattering amplitude for two quasiparticles on the Fermi surface receives the following contribu-
tion from pseudoscalar boson exchange eq. (23) at second order in many-body perturbation theory:

F(~p1, ~p1) = (1− ~σ1 · ~σ2)
g4Mn

64π2m3

{

arctan2u− π

2
− 2u(3 + 20u2)

3(1 + 4u2)2

}

, (77)

with u = kf/m, while one gets from a scalar boson exchange, VC(q) = −g2/(m2 + q2), at second order:

F(~p1, ~p1) = (1− ~σ1 · ~σ2)
g4Mn

16π2m3
(2 arctan2u− π) . (78)

The spin-orbit interaction eq. (38) at second order leads in fact to a vanishing contribution to F(~p1, ~p1). Fur-
thermore, the N2LO chiral three-neutron interaction treated at first order gives rise to a quasiparticle forward
scattering amplitude of the form:

F(~p1, ~p1) = (1− ~σ1 · ~σ2)
g2Am

3
π

16π2f4
π

{

4u(c3 − c1)−
4c3u

3

3

+(6c1 − 5c3) arctan 2u+
3c3 − 4c1

2u
ln(1 + 4u2)

}

, (79)

with u = kf/mπ. We note that in all of these cases only the central components of the quasiparticle scattering
amplitude remain in the forward limit ~p2 → ~p1. The important feature about these forward scattering amplitudes
is their proportionality to the operator (1−~σ1 ·~σ2). It makes them to vanish identically in the spin-triplet state
as required by the Pauli principle.
Next, we investigate the convergence of the Legendre polynomial expansion of the quasiparticle interaction in

the simple case of one-pion exchange. The obvious vanishing of one-pion exchange in forward direction (~q = 0)
implies that the following sequence converges to zero:

Sn =
n
∑

L=0

(2L+ 1)

∫ 1

−1

dz PL(z)
u2(1− z)

1 + 2u2(1− z)
, (80)

with u = kf/mπ and the prefactor from coupling constants has been omitted. Choosing kf = 1.7 fm−1, we list
below the values of Sn (divided by S0) at u = 2.48 for various increasing n:

n Sn/S0

5 0.23

10 0.04 (81)

15 0.006

20 0.0001 .

One observes from this example that in practice satisfying the Pauli principle zero sum rule with good accuracy
will be delicate and requires the knowledge of a large number of Landau parameters.
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[42] O. Sjöberg, Nucl. Phys. A209 (1973) 363.
[43] J. W. Holt, G. E. Brown, J. D. Holt and T. T. S. Kuo, Nucl. Phys. A785 (2007) 322.
[44] K. Hebeler, S. K. Bogner, R. J. Furnstahl, A. Nogga and A. Schwenk, Phys. Rev. C 83 (2011) 031301.
[45] L. Coraggio, J. W. Holt, N. Itaco, R. Machleidt and F. Sammarruca, arXiv:1209.5537.
[46] S. Babu and G.E. Brown, Ann. Phys. 78 (1973) 1.
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