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Background: Recent experiments on the electric dipole (E1) polarizability in heavy nuclei have stimulated
theoretical interest in the low-energy electric dipole strength, both isovector and isoscalar.

Purpose: We study the information content carried by the electric dipole strength with respect to isovector
and isoscalar indicators characterizing bulk nuclear matter and finite nuclei. To separate isoscalar and isovector
modes, and low-energy strength and giant resonances, we analyze the E1 strength as a function of excitation
energy E and momentum transfer q.

Methods: We use the self-consistent nuclear density functional theory with Skyrme energy density functionals,
augmented by the random phase approximation, to compute the E1 strength, and covariance analysis to assess
correlations between observables. Calculations are performed for spherical, doubly-magic nuclei 208Pb and 132Sn.

Results: We demonstrate that E1 transition densities in the low-energy region below the giant dipole resonance
exhibit appreciable state dependence and multi-nodal structures, which are fingerprints of weak collectivity. The
correlation between the accumulated low-energy strength and symmetry energy is weak, and dramatically depends
on the energy cutoff assumed. On the other hand, a strong correlation is predicted between isovector indicators
and the accumulated isovector strength at E around 20 MeV and momentum transfer q ∼ 0.65 fm−1.

Conclusions: Momentum- and coordinate-space pattern of the low-energy dipole modes indicate a strong frag-
mentation into individual particle-hole excitations. The global measure of low-energy dipole strength poorly
correlates with the nuclear symmetry energy and other isovector characteristics. Consequently, our results do
not support the suggestion that there exists a collective “pygmy dipole resonance,” which is a strong indicator
of nuclear isovector properties. By considering nonzero values of momentum transfer, one can isolate individual
excitations and nicely separate low-energy excitations from the T = 1 and T = 0 giant collective modes. That is,
measurements at q > 0 may serve as a tool to correlate the E1 strength with certain bulk observables, such as
incompressibility or symmetry energy.

PACS numbers: 21.10.Pc, 21.60.Jz, 21.65.Mn 24.30.Cz

I. INTRODUCTION

The electric dipole response of the atomic nucleus car-
ries fundamental information on bulk nuclear proper-
ties and shell structure [1–9] and it also plays an im-
portant role in nuclear reactions involving photo-nuclear
processes. In particular, E1 strength impacts photo-
absorption and radiative particle-capture processes oc-
curring in stars during the cosmic nucleosynthesis [10]
and the transmutation of radioactive nuclear waste [11].

The significance of the E1 strength, especially in the
context of neutron-rich nuclei, has led to appreciable ex-
perimental progress in this area [12–19]. Much excite-
ment has been brought by a suggestion that the low-
energy E1 strength, dubbed “Pygmy Dipole Resonance”
(PDR) [20, 21], is collective in nature, and can be under-
stood as a motion of skin neutrons against the proton-
neutron core.

The current theoretical situation regarding the collec-
tivity of the low-energy E1 strength is fairly confusing.
While some papers advocate the existence of a collective
PDR mode [16, 18, 22–25], having strength that is corre-
lated with the nuclear symmetry energy [16, 22, 23], the
collectivity of the low-energy E1 transitions, and their
relevance to isovector nuclear matter properties (NMP),

have been questioned by several other studies [26–31]. A
recent study of a flow pattern in low-energy E1 modes
confirms these doubts [32].
In particular, the covariance analysis of Ref. [26] has

suggested the lack of correlation between PDR strength
and nuclear isovector properties, such as neutron-skin
thickness rskin and symmetry energy. One reason for
this was attributed to the local single-particle structure
around the Fermi level (i.e., shell effects), which vary
rapidly with global nuclear matter characteristics. On
the other hand, the dipole polarizability αD – a global
measure of the E1 strength – seems to be an excellent
isovector indicator [19, 26, 33, 34]. Similar conclusions
have been reached in Ref. [28], which concluded that the
current data on the low-energy strength, and theoreti-
cal predictions, are both too uncertain for a quantitative
analysis.
The aim of this work is to clarify the situation by

means of the stringent correlation analysis based on
methods of data analysis using least-squares optimiza-
tion. We will consider, in particular, the correlations be-
tween various nuclear observables (including NMP and
properties of finite nuclei) and E1 strength. Our pa-
per is organized as follows. Section II describes our nu-
clear EDF+RPA approach and motivates the choice of
EDFs used. The definitions pertaining to E1 form fac-
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tors, strength functions, and resulting E1 sum rules are
discussed in Sec. III. The dependence of the low-energy
E1 strength on selected nuclear matter properties is stud-
ied in Sec. V. The results for transition densities are
presented in Sec. IV, and Sec. VI contains the correla-
tion analysis. While most calculations in this study were
done for 208Pb, Sec. VII contains illustrative examples
for 132Sn that demonstrate that our findings are general.
Finally, Sec. VIII contains conclusions of the work.

II. MODEL

The present investigation is based on the self-consistent
nuclear density functional theory in the Skyrme-Hartree-
Fock (SHF) variant [35, 36]. The form of the SHF energy
density functional (EDF) is derived from rather general
arguments of a low-momentum expansion [37, 38]. How-
ever, since the coupling constants of EDF cannot be de-
termined precisely from underlying nuclear forces, they
are usually adjusted to selected nuclear data [35, 39, 40].
We use here two recent EDF parameterizations which
try to embrace a large collection of various nuclear data
[39, 41]. The survey [39] selected a pool of spherical nuclei
which have been checked to be well described by a mean-
field model [42]. The resulting parameterization SV-min
was optimized by means of a least-squares procedure. Its
(parabolic) least-squares landscape χ2 = χ2(p), where p

stands for the multitude of SHF parameters, carries im-
portant information on the uncertainties, in particular
on model features that are weakly determined by the op-
timization process. This can be exploited by applying
the standard covariance analysis as was done, e.g., in
Refs. [26, 43]. To estimate the uncertainty related to the
choice of fit observables, we alternatively look at the pa-
rameterization UNEDF0 [41], which covers a much larger
set of ground state data, also including many deformed
nuclei.
It is found that many aspects of EDF can be charac-

terized by relatively few NMP, such as incompressibility
K, isoscalar effective massm∗/m, symmetry energy asym,
and Thomas-Reiche-Kuhn (TRK) sum rule enhancement
κ (related to the isovector effective mass). By providing
a set of parameterizations for which these NMP are sys-
tematically varied [39], one can track explicitly the in-
fluence of the NMP on various nuclear properties. Base
point of this set is the EDF called SV-bas, for which
four NMP had been fixed: K = 234 MeV, m∗/m = 0.9,
asym = 30 MeV, and κ = 0.4 (chosen such that the giant
dipole resonance (GDR) in 208Pb is described correctly).
Starting from SV-bas, four sets of parameterizations were
produced [39] by systematic variation of each one of the
four NMP. It is to be noted that SV-bas and its system-
atically varied sister parameterizations are adjusted with
additional constraints on NMP. SV-min, on the other
hand, is fitted only to data from finite nuclei and thus
covers all uncertainty on NMP as left open by nuclear
ground state data, a feature which make it ideally suited

for our covariance analysis.
The focus of our survey is on properties of nuclear exci-

tations in the electric dipole channel. To compute the E1
strength function, we employ the random phase approx-
imation (RPA), using the same EDF as for the ground
state to guarantee the full self-consistency. The details
of RPA calculations follow Ref. [44, 45].

III. STRENGTH FUNCTIONS

In the following, we discuss various aspects of the elec-
tric dipole strength, both isoscalar (T = 0) and isovector
(T = 1). Detailed information on the strength is con-
tained in the dipole transition form factor:

F (T )
ν (q) = 〈Ψν |

A
∑

α=1

j1(qrα)Y10(Ωα)Π̂T |Ψ0〉 (1)

where α runs over all nucleons, Ψν is the wave function of
the ν-th RPA excitation, Ψ0 the ground state wave func-
tion, q is momentum transfer, T is the isospin quantum
number, and Π̂T stands for the isospin projector:

Π̂0 = Π̂prot+Π̂neut , Π̂1 =
N

A
Π̂prot−

Z

A
Π̂neut. (2)

(For spherical nuclei, such as 208Pb and 132Sn considered
in this work, it is sufficient to consider the single mode
with the magnetic quantum number µ = 0.) The q-
dependence carries the pattern of an excitation mode.
A complementing coordinate-space view is provided by
radial transition density, which is the Fourier transform

of F
(T )
ν (q):

ρ(T )
ν (r) = 4π

∫ ∞

0

dq q2 j1(qr)F
(T )
ν (q). (3)

Since the RPA excitation spectrum of a heavy nucleus
such as 208Pb is fairly dense, it is more convenient to
consider the energy distribution of form factor strength:

S
(T )
F (q, E) =

1

q2

∑

ν

|F (T )
ν (q)|2GΓ(E − Eν), (4)

where Eν is the RPA excitation energy of
state ν and GΓ(E − EN ) is a Gaussian fold-
ing function having energy-dependent width
Γ(Eν) = max [0.2MeV, (Eν − 8MeV)/6MeV] – to
simulate nuclear damping effects, which increase with
energy. We note small Γ (and improved resolution) in
the low energy region, which is the very focus of this
work.
The factor q−2 in Eq. (4) is introduced to cancel

the leading q2-dependence of F
(T )
ν (q) at small momen-

tum transfer. Indeed, at q → 0, the isovector strength

S
(1)
F (q, E) is proportional to that of the familiar dipole

operator D̂ = rY10Π̂1, which we denote by SD(E). The
next-order term in q leads to the “compressional dipole”
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operator D̂
(T )
c = (r3 − 5

3 〈r
2〉r)Y10Π̂T , the leading ob-

servable in the isoscalar channel [46–50], and the corre-

sponding strength is denoted by S
(T )
Dc

(E). For energy cuts
at finite q, we shall consider the general dipole operator
F̂ = j1(qr)Y10Π̂T as in Eq. (1).
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FIG. 1. (Color online) Isoscalar and isovector E1 strength

SD (solid line), S
(0)
Dc

(dotted line), and S
(1)
Dc

(dashed line) in
208Pb predicted with (a) UNEDF0, (b) SV-bas, and (c) SV-
min EDFs. The region of GDR is marked by vertical dot-
ted lines; these limits are somewhat arbitrary as the GDR
strength does not show clear energy bounds.

To assess the importance of the low-energy E1
strength, we introduce the accumulated strength:

AO
n (E) =

∫ E

0

dE′ E′n SO(E
′), (5)

where O can mean either the mere dipole D, compres-
sional dipole Dc, or general dipole F at a given value of
q. In Eq. (5), we use a constant folding width Γ = 0.5
MeV in SO. For the dipole operator, the inverse-energy-
weighted sum ruleAD

−1(∞) is related to the electric dipole
polarizability [5]

αD = 2
∑

ν∈RPA

(|〈Ψν |D̂|Ψ0〉|
2/Eν), (6)

while the energy-weighted sum rule AD
1 (∞) is the TRK

sum rule.
Figure 1 shows E1 strength SD(E) and S

(T )
Dc

(E) in
208Pb predicted with UNEDF0, SV-bas, and SV-min

EDFs. The isovector dipole strength SD is concentrated
in the GDR region of 12-16 MeV. The systematic shift
of the GDR strength between EDFs reflects the change
in TRK sum rule enhancement (κ=0.4 for SV-bas, 0.25
for UNEDF0, and 0.08 for SV-min) [39]. The isovector

compressional strength S
(1)
Dc

roughly follows SD. It does
also contain a high energy branch above 30 MeV which,
however, is not of interest in the context of this study.
The isoscalar compressional strength is fairly broad, with
a low-energy component at 5-18 MeV and a high-energy
concentration at 20-30 MeV [8].
Using the standard representation of E1 strength as

shown in Fig. 1, it is difficult to separate the low-
energy strength from the tails of giant resonance modes.
A better separation can be obtained by considering
nonzero values of q, i.e., by analyzing the full distri-

bution S
(T )
F (q, E). Figure 2 shows the structure of the

E1 strength (4) – together with individual proton and
neutron strength distributions – for SV-bas in the (E, q)
plane. As expected, the isoscalar channel shown in
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FIG. 2. (Color online) E1 strength (4) for 208Pb computed
with SV-bas as a function of E and q. (a) Neutron strength;
(b) proton strength; (c) T = 1 strength (scaled by 2); and (d)
T = 0 strength (scaled by 0.25). Since SF rapidly decreases
with q, rather than the actual strength (4) we show the q-

scaled strength S̃
(T )
F (q, E) = S

(T )
F (q, E)(1 + aqq

2)2 with aq =
9 fm2.

Fig. 2(d) has no strength at q → 0, as the spurious
isoscalar collective center-of-mass E1 mode is removed
in our calculations. The large isoscalar strength ap-
pears at somewhat larger momentum transfer around
q = 0.65fm1. Therein, one can clearly see the two
branches of the isoscalar dipole compressional mode at 6-
13 MeV and 24 MeV. The GDR centered around 13 MeV
dominates the T = 1 strength at low values of q. It seems
that the group of excitations between 6 and 11 MeV has
predominantly isoscalar compressional character. They
seem to be higher-q extensions of some low-energy isovec-
tor dipole strength (often referred to as PDR strength).
These low-energy dipole transitions can thus be consid-
ered as shadows of the low-energy dipole compressional
modes. The neutron and proton E1 strengths displayed
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in Figs. 2(a) and (b), respectively, show that the states
having large transition form factors are all mixed proton
and neutron excitations. While the neutrons carry more
strength generally, pure neutron modes do not appear.
The upper branch of the compressional mode around

22–26 MeV shown in Fig. 2 is not so interesting for our
study. Therefore, in the following, we will restrict the
energy range. Figure 3 illustrates the low-energy pattern
of the E1 strength for three EDFs of Fig. 1. It is en-
couraging to see that the general behavior of E1 strength
is EDF-independent, so the detailed discussion of RPA
modes will be based on SV-bas calculations. In the en-
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FIG. 3. (Color online) Similar as in Fig. 2 for T = 0 (left)
and T = 1 (right) E1 strength computed with (a) UNEDF0,
(b) SV-min, and (c) SV-bas EDFs.

ergy range below 10MeV, only a handful of modes can be
seen. Actually, we find more RPA states (e.g., 20 modes
between 6 and 10 MeV) in that range, but only a third
of them are visible in E1 excitation. These strong-E1,
low-E modes have a fairly diverse character. The low-
est states below 7.5MeV are predominantly isoscalar in
character, having some contribution to the T = 1 chan-
nel. The mode at 8MeV has a mixed character (isovector
at low q-values and isoscalar at higher q), while the mode
at 9 MeV is predominantly an isovector excitation. The
states around 10 MeV are again dominated by T = 0.
Their T = 1 component is weak, and it is mainly concen-
trated at larger q, i.e., these states do not carry significant
dipole (q = 0) strength.

IV. TRANSITION DENSITIES

The interesting question is to what extent the lowest
E1 modes can be considered as collective, as discussed (or
assumed) in some studies. To this end, it is instructive

to study this point in the coordinate-space in terms of

the transition density ρ
(T )
ν of Eq. (3). In order to present

results as a function of E, we performed a Gaussian fold-
ing as in Eq. (4). Figure 4 depicts the general behavior
of E1 transition density in 208Pb as a function of E and
r. At E < 12MeV, ρ(T ) varies rapidly with E, exhibiting
a complex multi-nodal behavior in both isospin channels
(cf. discussion in Refs. [34, 51]). The strong state depen-
dence, together with the lack of a common pattern across
the various nearly-lying states, both suggest a weak col-
lectivity. A different situation is encountered in the GDR
region. Although the energy band of 12-17 MeV covers a
large number of RPA states, the T = 1 transition density
has the same pattern of a pronounced surface bump in
the whole GDR region. Note that we have plotted here
the transition densities with an energy-dependent fold-
ing width to simulate a realistic broadening. However,
we have checked that a very similar picture emerges at
a higher resolution (i.e., using a small folding width of
0.2MeV). A similar pattern, indicative of collectivity, is
seen for the T = 0 compressional mode at 22-28 MeV.
Such coherent behavior is characteristic of a collective
mode.
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FIG. 4. (Color online) Energy-averaged E1 transition density
in 208Pb calculated with SV-bas as a function of E and r for
T = 0 (top) and T = 1 (bottom).

V. LOW-ENERGY ELECTRIC DIPOLE

STRENGTH

Although transition density and form factor reveal a
world of local details, it is desirable to quantify their
information content in terms of a few integrated quan-
tities. One such quantity is the accumulated low-energy
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E1 strength,

B(E1;Emax) =
∑

ν∈RPA,Eν<Emax

B(E1, ν), (7)

which is proportional to the accumulated strength
AD

0 (Emax). This observable is somewhat ambiguous as
it depends on an assumed cutoff energy Emax. Figure 5
shows the predicted B(E1;Emax) in

208Pb as a function
of two isoscalar (incompressibility K and isoscalar effec-
tive mass m∗/m) and two isovector (symmetry energy
asym and TRK sum rule enhancement κ) NMP indicators
[26]. The calculations were carried out with four sets of
EDF parameterizations around SV-bas [39] by systemat-
ically varying the NMP of interest. We used the value
Emax=10MeV that corresponds to the beginning of the
GDR region in SV-bas, see Fig. 3.
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FIG. 5. (Color online) Dependence of the low-energy E1
strength (7) in 208Pb on selected NMP: (a) m∗/m; (b) κ; (c)
K; and (d) asym. Calculations were carried out with SV-bas
family of EDFs. The cutoff energy is Emax=10 MeV.

When considering each variation independently, one
can see a monotonic trend in each case. But does it mean
that a well-defined correlation exists between the low-
energy E1 strength and the bulk properties considered?
Clearly, the answer to this question cannot be given based
on Fig. 5 alone, as B(E1;Emax) seems to depend on sev-
eral NMP, both isoscalar and isovector in character, and
the plot says nothing about the possible coupling be-
tween them as an underlying EDF parametrization is
systematically varied. Second, if a parametrization is too
constrained in a given interaction channel, all variations
probing this channel are correlated by construction. (An
example of such a situation was given in Ref. [26] in the
context of a relativistic mean field model RMF-δ-t, too
constrained in the isovector channel to be used in a mean-
ingful correlation analysis.) Although the explicit track-
ing with respect to single NMP, as done in Fig. 5, can

be very useful to uncover hidden dependencies between
observables, it does not explore all conceivable variations
and is thus insufficient to quantify true correlations. A
more exhaustive method will be discussed in the next
section.

VI. CORRELATIONS

Thus far we have analyzed the structure of dipole
modes in terms of transition form factor and transition
density. These structures do not show convincing signa-
tures of collectivity in the low-energy region below GDR.
As a more global measure, we inspected the integrated
low-energy dipole strength, which indeed displays some
complex dependence on NMP. For a more exhaustive
(and quantitative) analysis, we will now exploit the strin-
gent method of covariance analysis and scrutinize the cor-
relations between integrated dipole observables and col-
lective bulk properties (NMP, dipole polarizability, and
neutron skin).
As already mentioned in section II, the empirical ad-

justment of EDF parameters produces a nearly-parabolic
χ2 landscape near the minimum, i.e., χ2(p) ≈ χ2

0 +
∑

ij pipj∂
2
pipj

χ2. The vicinity of the minimum in the

p-space, for which χ2(p) = χ2
0 + 1, is considered as

the space of acceptable parameter variations (1σ region).
Observables are also functions of the EDF parameters:
A = A(p). A correlation between observables A and B
within a given model can then be assessed by means of
the correlation coefficient

CAB =
|∆A∆B|

√

∆A2 ∆B2
, (8)

where the overline means an average over the space of ac-
ceptable parameters [24, 26, 43]. Such correlation analy-
sis had been proven useful in previous surveys. For exam-
ple, it was concluded that the electric dipole polarizabil-
ity is a good isovector indicator that strongly correlates
with the neutron radius of 208Pb [24, 26].
The correlation between E1 strengths in 208Pb and ba-

sic nuclear matter properties (K,m∗/m, asym, κ) is dis-
cussed in Figs. 6-8 as a function of E. Figure 6 il-
lustrates the correlation with the accumulated dipole
strength AD

n (E) (5). The case of n = −1 is shown in
Fig. 6(a). As noted earlier, AD

−1(E) is the accumulator for
the dipole polarizability αD. It is interesting to see how
the sensitivity to asym (and insensitivity to other NMP)
develops at high energies. At GDR energies and below,
however, the correlations vary dramatically. The changes
are particularly rapid around the lower end of the GDR
region (9-10MeV), which is often used as a cutoff energy
Emax to determine the low-energy E1 strength (7). It
is apparent that even small changes in Emax may change
correlations. This result casts serious doubts on standard
(cutoff-dependent) definitions of the pygmy strength.
The corollary of the emerging specific sensitivity is seen

in Fig. 6(b), which illustrates the case of n = 1. At large
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FIG. 6. (Color online) Correlation between the energy-
weighted accumulated strength AD

n (E) (5) in 208Pb and se-
lected NMP (incompressibility K, isoscalar effective mass
m∗/m, symmetry energy asym, and TRK sum rule enhance-
ment κ) as a function of E obtained with SV-min. Top:
n = −1; bottom: n = 1. The GDR region is marked by
vertical dotted lines.

energies, the accumulated dipole strength AD
1 (E) devel-

ops into an unambiguous measure of κ. As expected, K
and m∗/m never correlate with AD

±1(E), regardless of the
energy region. This is to be expected as these NMP are
isoscalar indicators [26].

The summed dipole strength AD
0 (E) is often used as a

measure of the pygmy mode. We show in Fig. 7 how
it correlates with NMP. At zero momentum transfer,
Fig. 7(a), the correlation pattern strongly resembles that
of Fig. 6(b), including strong correlation with κ at high
energies. The three cases displayed in Figs. 6 and 7(a)
have certain common features. Namely, they all show (i)
rapid changes near the lower and the upper end of the
GDR region; (ii) strong correlation with κ in the GDR
region; and (iii) medium correlation with asym around
E = 7MeV.

A stronger handle on asym is provided by the summed
dipole strength AD

0 (E) at nonzero momentum transfer.
Figure 7(b) illustrates the case of integrated form factor
strength at q = 0.65 fm−1. A particularly large correla-
tion with asym is predicted in a wide energy range above
the GDR region and below 25MeV. A strong correlation
with κ in the GDR region still holds at this value of q.

The complementing n = 0 isoscalar strengths are
shown in Fig. 8(a). At low values of q, the summed

compressional dipole strength ADc

0 (E) contains little in-
formation on NMP. The sensitivity to asym at the low-
E region, suggested in [34], is minor. Figure 8(b)

208Pb, SV-min, T=1, n=0
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FIG. 7. (Color online) Similar to Fig. 6 but for the accu-
mulated dipole strength AD

0 (E) for two values of momentum
transfer: (a) q = 0 and (b) q = 0.65 fm−1.
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FIG. 8. (Color online) Similar as in Fig. 7 but for the T = 0
compressional dipole E1 strength.

demonstrates that some sensitivity to K appears at
q = 0.65 fm−1, especially at low energies below the GDR
region and in the high energy region above 20MeV.
We now turn to a correlation between isovector form

factor strength AF
0 (E) and the four strong isovector in-

dicators: the slope of symmetry energy a′sym at the satu-
ration density, slope of the neutron EoS Eneut/N at neu-
tron density 0.08 fm3, E1 polarizability αD, and neutron-
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skin thickness rskin in 208Pb. Recall that these four ob-
servables are highly correlated with each other and with
asym [26]. Consequently, all four correlations displayed in
Fig. 9 are practically identical, and also agree with the
results for asym shown in Fig. 7: the summed isovector
E1 strength (n = 0) above the GDR at the intermediate
values of momentum transfer around q = 0.65 fm−1 is an
excellent isovector indicator. As illustrated in Fig. 9(c),
however, this correlation deteriorates at higher values of
q.
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FIG. 9. (Color online) Correlation between the T = 1 accu-
mulated E1 strength in 208Pb and selected isovector indica-
tors (a′

sym, Eneut/N, αD, rskin) in SV-min as a function of E
for q = 0 (a); q = 0.65 fm−1 (b); and q = 1.14 fm−1 (c).

Fig. 10 illustrates the information content of the ac-
cumulated inverse-energy-weighted E1 strength AF

−1(E)
with respect to the four isovector observables discussed in
the context of Fig. 9. Again, we see that the correlations
are similar for all four observables and the T = 1 accu-
mulated strength at q = 0 nicely correlates with isovector
indicators. At q = 0.65 fm−1, however, this correlation is
weaker; they maximize around E = 23MeV. The accu-
mulated inverse-energy-weighted isoscalar strength does
not seem to correlate well with isovector observables.
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FIG. 10. (Color online) Correlation between the T = 1
(left) and T = 0 (right) accumulated inverse-energy-weighted
E1 strength AF

−1 in 208Pb and selected isovector indicators
(a′

sym, Eneut/N, αD, rskin) in SV-min as a function of E for
q = 0 (top) and q = 0.65 fm−1 (bottom).

VII. A QUICK GLANCE AT 132Sn
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FIG. 11. (Color online) Similar as in Fig. 2, panels (c) and
(d), except for 132Sn.

It is interesting to check whether the findings obtained
for 208Pb are specific to this nucleus or whether they are
of a more general nature. To this end, we inspect the case
of a neutron-rich, doubly-magic nucleus 132Sn. Figure 11
shows its T = 1 and T = 0 E1 strength predicted with
SV-bas. The overall pattern, with GDR transitions in
the isovector channel and the dominant dipole compres-
sional mode in the isoscalar channel, closely resembles
that shown in Fig 2 for 208Pb. In particular, the low-
energy modes are isoscalar at low-q values and isoscalar
at higher momentum transfer.
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FIG. 12. (Color online) Similar as in Fig. 4, except for 132Sn.

Figure 12 shows the transition densities for 132Sn.
Again, the pattern is extremely similar to the case of
208Pb. Finally Fig. 13 shows the correlations of the four
basic NMP with accumulated isovector dipole strength.
It is, again, similar to the analogous Fig. 7(a) for 208Pb.
We also carried out calculations for other neutron-rich

132Sn, SV-min, T=1, n=0
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FIG. 13. (Color online) Similar as in Fig. 7(a), except for
132Sn.

nuclei, such as 140Sn, and our conclusion is that the case
of 208Pb is representative to other spherical closed-shell
heavy systems.

VIII. CONCLUSIONS

To clarify the ambiguous theoretical situation with
regard to the interpretation of the low-energy electric
dipole strength, we study its information content with
respect to isovector and isoscalar indicators characteriz-
ing bulk nuclear matter and finite nuclei. As a theoretical
tool, we use self-consistent nuclear density functional the-
ory augmented by the random phase approximation. The
inter-observable correlations are computed by means of

covariance analysis. We use well-calibrated Skyrme en-
ergy density functionals that allow for systematic varia-
tions of isoscalar and isovector parameters characterizing
nuclear matter properties. (The extension of the correla-
tion analysis to other models, including relativistic EDF,
will be carried out in a forthcoming study [52].) To avoid
ambiguities due to strong shell effects and pairing, our in-
vestigations have been limited to the doubly-magic heavy
nuclei 208Pb and on 132Sn, and the results were very close
in both cases. To separate various electric dipole modes,
we study the E1 strength as a function of excitation en-
ergy E and momentum transfer q. By going to the q-
dimension, we are able to resolve excitation modes that
are close in energy, and can nicely separate low-energy
excitations from the T = 1 and T = 0 giant resonances.

Our study fully confirms the main conclusion of our
previous work [26]. Namely, the low-energy dipole ex-
citations cannot be interpreted in terms of a collective
pygmy dipole resonance mode associated with the mo-
tion of skin neutrons. The detailed inspection of transi-
tion form factor and density shows a pattern of rapidly
varying particle-hole excitations. Moreover, it seems that
a large fraction of the low lying states are isovector “shad-
ows” of the underlying low-energy part of the isoscalar
compressional mode.

At the level of more global observables, we have studied
the E1 strength integrated up to a given cutoff energy. As
a first indicator of correlations, we have plotted in Fig. 5
the changes of the low-energy strength with systemati-
cally varied nuclear matter properties. This has led to
a complex picture where every NMP has some influence
on the low energy strength. To assess correlations in a
meaningful way, we went beyond the simple inspection
of trends and employed the standard tools of statistical
analysis. While the local E1 strength at low energies
shows some correlations with isovector indicators such
as symmetry energy, the magnitude of those correlations
varies rapidly around the lower end of the GDR region.
This strong dependence on the cutoff energy indicates
that a pygmy strength cannot be unambiguously defined;
hence, its usefulness might be limited.

Of particular importance are the fully integrated
strength; the much celebrated sum rules. The T = 1 sum
rules, such as the dipole polarizability αD (the inverse
energy weighted sum rule), the sum rule enhancement
factor κ (strongly correlated with the energy weighted
sum rule), and the total accumulated E1 strength are
all excellent probes of nuclear isovector properties. At
the isoscalar side, we found a relatively strong corre-
lation between nuclear incompressibility and the accu-
mulated isoscalar dipole strength for q = 0.65 fm−1 (at
E = 9MeV and above 20MeV). In general, experimental
studies at q > 0 in the isovector and isoscalar channel
could provide an excellent window for a better charac-
terization of E1 strength and relating it to fundamental
nuclear properties.
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