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Abstract

We calculate the energy per particle in infinite neutron matter perturbatively using chiral N3LO

two-body potentials plus N2LO three-body forces. The cutoff dependence of the predictions is

investigated by employing chiral interactions with different regulators. We find that the inclusion

of three-nucleon forces, which are consistent with the applied two-nucleon interaction, leads to a

strongly reduced regulator dependence of the results.
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I. INTRODUCTION

A major breakthrough in the last decade has been the derivation of nucleon-nucleon (NN)

potentials, VNN , based on chiral perturbation theory (ChPT) that are able to reproduce

accurately the NN data [1–3].

The idea to construct realistic two- and three-nucleon forces (2NF and 3NF) starting

from a chiral Lagrangian goes back to the seminal work of Weinberg [4–6], who invoked

the concept of an effective field theory (EFT) to study the S-matrix for processes involving

arbitrary numbers of low-momentum pions and nucleons. In this approach, the long-range

forces are ruled by the symmetries of low-energy QCD (particularly, spontaneously broken

chiral symmetry), and the short-range dynamics is absorbed into a complete basis of contact

terms that are proportional to low-energy constants (LECs) fit to 2N data.

One great advantage of ChPT is that it generates nuclear two- and many-body forces

on an equal footing [3, 7, 8]. Most interaction vertices that appear in the 3NF and in the

four-nucleon force (4NF) also occur in the 2NF. The parameters carried by these vertices

are fixed (along with the LECs of the 2N contact terms) in the construction of the chiral

2NF. Consistency then requires that for the same vertices the same parameter values are

used in the 2NF, 3NF, 4NF, . . . .

A crucial theme in EFT is regulator independence within the range of validity of the the-

ory. In other words, the physical observables calculated in the theory must be independent

both of the choice of the regulator function as well as its cutoff scale Λ. ChPT is a low-

momentum expansion which is valid only for momenta Q < Λχ ' 1 GeV, where Λχ denotes

the chiral symmetry breaking scale. Therefore, NN potentials derived in this framework

are usually multiplied by a regulator function

f(p′, p) = exp[−(p′/Λ)2n − (p/Λ)2n] , (1)

where typical choices for the cutoff parameter are Λ ' 0.5 GeV. In regards to the physics of

the two-nucleon problem, it is obvious that the solutions of the Lippmann-Schwinger equa-

tion, that are related to the two-nucleon observables, may depend sensitively on the regulator

and its cutoff parameter. This unwanted dependence is then removed by a renormalization

procedure, in which the contact terms are re-adjusted to reproduce the two-nucleon phase

shifts and data. However, it is well-known that phase equivalent potentials do not neces-

sarily yield identical results in the many-body problem. Thus, one may be confronted with
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cutoff dependence in the many-body system [9]. However, in the many-body problem, also

3NF, 4NF, ... contribute, which will have impact on the final predictions and may either

increase or reduce the cutoff dependence.

A convenient theoretical laboratory to investigate this issue is infinite nuclear matter and

neutron matter. The advantage of pure neutron matter is that the contact interaction, VE,

and the 1π-exchange term, VD, that appear in the N2LO three-body force, vanish [10]. Thus,

the low-energy constants of VE and VD (known as cE and cD), which cannot be constrained

by two-body observables, are not needed. Consequently, the calculation of the ground state

energy of infinite neutron matter, with chiral 3NFs up to N2LO, depends only on parameters

that have been fixed in the two-nucleon system.

We note that there have been already some attempts to study the uncertainties in neutron

matter predictions using chiral forces, e. g., by Hebeler and Schwenk [10], and Tews et al.

[11], who come up with uncomfortably large uncertainties—for reasons to be discussed below.

It is also worth noting that, aside from the above considerations, neutron matter, and more

generally isospin-asymmetric nuclear matter, is currently of great interest in the nuclear

physics community because of its close connection with the physics of neutron-rich nuclei

and, for higher densities, with the structure of neutron stars.

It is the purpose of the present paper, to investigate how the equation of state of neutron

matter, calculated using chiral nuclear potentials, depends on the choice of the regulator

function. More precisely, we employ three different chiral potentials, whose cutoff parameters

are Λ = 414 [12], 450, and 500 MeV [1, 3] and calculate, including 3NF effects, the energy per

nucleon for neutron matter at nuclear densities in the framework of many-body perturbation

theory. The crucial point of our calculations is that we use in the 3NF exactly the same LECs

as well as the same cutoff parameters as in the 2NF. We will show that this consistent use of

the LECs in the 2NF and 3NF leads to a substantial reduction of the regulator dependence

of the neutron matter predictions.

The paper is organized as follows. In Sec. II, we briefly describe the features of the

different chiral potentials employed and, in Sec. III, we give an outline of the calculation of

the energy per nucleon in neutron matter that takes into account 3NF effects. Our results

are presented in Sec. IV and some concluding remarks and an outlook are given in Sec. V.
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II. THE CHIRAL POTENTIALS

During the past two decades, it has been demonstrated that chiral effective field theory

(chiral EFT) represents a powerful tool to deal with hadronic interactions at low energy

in a systematic and model-independent way (see Refs. [3, 13] for recent reviews). For the

construction of an EFT, it is crucial to identify a separation of scales. In the hadron

spectrum, a large gap between the masses of the pions and the masses of the vector mesons,

like ρ(770) and ω(782), can clearly be identified. Thus, it is natural to assume that the

pion mass sets the soft scale, Q ∼ mπ, and the rho mass the hard scale, Λχ ∼ mρ ∼ 1

GeV, also known as the chiral-symmetry breaking scale. This is suggestive of considering a

low-energy expansion arranged in terms of the soft scale over the hard scale, (Q/Λχ)ν , where

Q is generic for an external momentum (nucleon three-momentum or pion four-momentum)

or a pion mass. The appropriate degrees of freedom are, obviously, pions and nucleons, and

not quarks and gluons. For this EFT to rise above the level of phenomenology, it must

have a firm link with QCD. The link is established by having the EFT observe all relevant

symmetries of the underlying theory, in particular, the broken chiral symmetry of low-energy

QCD [4]. The past 15 years have seen great progress in applying ChPT to nuclear forces.

As a result, NN potentials of high precision have been constructed, which are based upon

ChPT carried to N3LO.

Since ChPT is a low-momentum expansion, valid only for momenta Q < Λχ, the poten-

tials are either abruptly set to zero for momenta above a certain cutoff Λ < Λχ (“sharp

cutoff”) or they are multiplied with a smooth regulator function, like, e. g., the one of

Gaussian shape given in Eq. (1).

In this investigation, we consider three N3LO potentials which differ by the cutoff pa-

rameter Λ and/or the regulator function:

• Λ = 414 MeV together with a sharp cutoff (published in Ref. [12]).

• Λ = 450 MeV using the regulator function Eq. (1) with n = 3. We have constructed

this potential for the present investigation.

• Λ = 500 MeV using the regulator function Eq. (1) with n = 2 for the 2π exchange

contributions. This potential was published in 2003 [1].

All three potentials use the same (comprehensive) analytic expressions which can be found
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in Ref. [3]. Note that the Gaussian regulator function Eq. (1) suppresses the potential also

for Q < Λ, which is why we use a sharp cutoff function in the case of the lowest cutoff of 414

MeV. Cutoff-independence is an important aspect of an EFT. In lower partial waves, the

cutoff dependence of the NN phase shifts is counter balanced by an appropriate adjustment

of the contact terms which, at N3LO, contribute in S, P , and D waves. The extent to which

cutoff independence can be achieved in lower partial waves is demonstrated in Figs. 1-2.

In F and higher partial waves (where there are no NN contact terms) the LECs of the

dimension-two πN Lagrangian can be used to obtain cutoff independence of the phase shift

predictions, see Table I and Fig. 3.

An important advantage of the EFT approach to nuclear forces is that it creates two-

and many-body forces on an equal footing. The first non-vanishing 3NF occurs at N2LO. At

this order, there are three 3NF topologies: the two-pion exchange (2PE), one-pion exchange

(1PE), and 3N-contact interactions. The 2PE 3N-potential is given by

Vc =

(
gA
2fπ

)2
1

2

∑
i 6=j 6=k

(~σi · ~qi)(~σj · ~qj)
(q2i +m2

π)(q2j +m2
π)
F ab
ijk τ

a
i τ

b
j (2)

with ~qi ≡ ~pi
′−~pi, where ~pi and ~pi

′ are the initial and final momenta of nucleon i, respectively,

and

F ab
ijk = δab

[
−4c1m

2
π

f 2
π

+
2c3
f 2
π

~qi · ~qj
]

+
c4
f 2
π

∑
c

εabc τ ck ~σk · [~qi × ~qj] . (3)

Note that the 2PE 3NF does not contain any new parameters, because the LECs c1, c3, and

c4 appear already in the 2PE 2NF. The 1PE contribution is

VD = − cD
f 2
πΛχ

gA
8f 2

π

∑
i 6=j 6=k

~σj · ~qj
q2j +m2

π

(τ i · τ j)(~σi · ~qj) (4)

and the 3N contact potential reads

VE =
cE
f 4
πΛχ

1

2

∑
j 6=k

τ j · τ k . (5)

In the above, we use gA = 1.29, fπ = 92.4 MeV, mπ = 138.04 MeV, and Λχ = 700 MeV.

The last two 3NF terms involve the two new parameters cD and cE, which do not appear

in the 2N problem. There are many ways to pin these two parameters down. The triton

binding energy and the nd doublet scattering length 2and can be used. Alternatively, one

may choose the binding energies of 3H and 4He or an optimal over-all fit of the properties

of light nuclei. However, in neutron matter, VD and VE do not contribute such that we do
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not have to worry about their values here. Note also that the c4 term of Vc, Eqs.(2) and (3),

vanishes in neutron matter.

III. CALCULATION OF THE ENERGY PER PARTICLE IN NEUTRON MAT-

TER

We calculate the ground-state energy per particle (g.s.e.) of infinite neutron matter

within the framework of many-body perturbation theory. In particular, we express the g.s.e.

as a sum of Goldstone diagrams up to third order.

In order to take into account the effects of the N2LO 3NF, a density-dependent two-body

potential V NNN is added to the chiral N3LO potential VNN . This potential V NNN is obtained

by summing one nucleon over the filled Fermi sea, which leads to a density-dependent two-

nucleon interaction [16, 17]. Hebeler et al. [10] have pointed out that to take care of the

correct combinatorial factors of the normal-ordering at the two-body level of the 3NF, the

matrix elements of V NNN(kF ) are to be multiplied by a factor 1/3 in the first-order Hartree-

Fock (HF) diagram, and by a factor 1/2 in the calculation of the single-particle energies

(s.p.e.).

In Fig. 4 we show the diagrams we have included in our calculation, where only the VNN

vertices are taken into account. The only diagram we do not include is the third-order ph

diagram. The diagrams that include the effects of VNNN are shown in Fig. 5.

The first-order HF contribution is explicitly given by

E1 =
8

π

∫ kF

0

k2dk

[
1− 3

2

k

kF
+

1

2

(
k

kF

)3
]∑
JLS

(2J + 1)[V JLLS
NN (k, k) +

1

3
V
JLLS

NNN(k, k)] . (6)

The second-order diagrams are computed using the so-called angle-average (AA) approx-

imation [18], and their contribution is

E2 = − 6

π2k3F

∫ 2kF

0

K2dK

∫ ∞
0

k′2dk′
∫ ∞
0

k2dkP (k′, K)Q(k,K)

∑
JLLS

(2J + 1)
[V JLLS
NN (k, k′) + V

JLLS

NNN(k, k′)]2

E(k, k′, K)
. (7)

The operators P and Q are defined through the relationships:
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Q(k,K) = 0 , 0 ≤ k ≤ (k2F −
K2

4
)1/2

= −k2F−k
2−K2/4

kK
, (k2F −

K2

4
)1/2 ≤ k ≤ (kF +

K

2
)

= 1 , k ≥ (kF +
K

2
)

P (k,K) = 1 , 0 ≤ k ≤ (kF −
K

2
)

=
k2F−k

2−K2/4

kK
, (kF −

K

2
) ≤ k ≤ (k2F −

K2

4
)1/2

= 0 , k ≥ (k2F −
K2

4
)1/2 .

In Eq. 7, the denominator is E(k, k′, K) = ~2k′2
M

+2U

(√
K2

4
+ k′2

)
− ~2k2

M
−2U

(√
K2

4
+ k2

)
,

U(k̃) being the self-consistent single-particle potential:

U(k̃) = 8
∑

JLLS(2J + 1)2
{[∫ 1

2
(kF−k̃)

0
k̃′2dk̃′ + 1

2k̃

∫ 1
2
(kF+k̃)

1
2
(kF−k̃)

k̃′dk̃′(1
4
(k2F − k̃2)− k̃′(k̃′ − k̃))

]
[
V JLLS
NN (k̃′, k̃′) + 1

2
V
JLLS

NNN(k̃′, k̃′)
]}

. (8)

The particle-particle (pp) and hole-hole (hh) third-order diagrams are also computed in

the AA approximation, and their explicit expressions are:

E3(pp) =
12

(πkF )3

∫ 2kF

0

K2dK

∫ ∞
0

k2dk

∫ ∞
0

k′2dk′
∫ ∞
0

k′′2dk′′P (k,K)Q(k′, K)Q(k′′, K) (9)∑
JLLL

′
S

(2J + 1)[V JLLS
NN (k, k′) + V

JLLS

NNN(k, k′)][V JLL
′
S

NN (k′, k′′) + V
JLL

′
S

NNN (k′, k′′)]

[V JL
′
LS

NN (k′′, k) + V
JL

′
LS

NNN (k′′, k)]/[E(k′′, k) · E(k′, k)] ,

E3(hh) =
2

(πkF )3

∫ 2kF

0

K2dK

∫ ∞
0

k2dk

∫ ∞
0

k′2dk′
∫ ∞
0

k′′2dk′′P (k,K)Q(k′, K)P (k′′, K) (10)∑
JLLL

′
S

(2J + 1)[V JLLS
NN (k, k′) + V

JLLS

NNN(k, k′)][V JLL
′
S

NN (k′, k′′) + V
JLL

′
S

NNN (k′, k′′)]

[V JL
′
LS

NN (k′′, k) + V
JL

′
LS

NNN (k′′, k)]/[E(k′, k′′) · E(k′, k)] .
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We have also calculated the [2|1] Padé approximant [19]

E[2|1] = E0 + E1 +
E2

1− E3/E2

, (11)

Ei being the ith order energy contribution in the perturbative expansion of the g.s.e.. The

Padé approximant is an estimate of the value to which the perturbative series may converge.

Thus, the comparison between the third-order results and those obtained by means of the

[2|1] Padé approximant provides an indication of the size of the higher-order perturbative

terms. It is worth mentioning that the role of Padé approximants in many-body perturbation

theory for nuclear systems has been explored in the last decade for finite nuclei [20–23].

IV. RESULTS

As explained in the previous section, we calculate the energy per particle of neutron

matter in the framework of many-body perturbation theory, including contributions up to

third-order in the interaction. Therefore, it is of interest to obtain an idea of the convergence

of the perturbative expansion of the g.s.e..

In Fig. 6, we show the neutron-matter energy per nucleon as a function of density, calcu-

lated at various orders in the perturbative expansion applying the chiral N3LO NN potential

with a cutoff parameter equal to 500 MeV. We have chosen here the potential with the largest

cutoff since it has the worst perturbative behavior. From the inspection of Fig. 6, it can be

seen that the energy per nucleon calculated at second order, E2, does not differ much from

the one computed at third order, E3, for the whole range of densities shown. The pertur-

bative character is also indicated by the fact that E3 is quite close to the energy obtained

with the [2|1] Padé approximant.

For completeness, we mention that we also performed calculations employing the chiral

N3LO NN potential with a cutoff parameter equal to 600 MeV [3], but we found its pertur-

bative behavior unsatisfactory, in agreement with the observations by Tews et al. [11].

We have also investigated the perturbative behavior of our calculations when including

the effects of VNNN . Fig. 7 shows that, starting from the same N3LO potential, there is a

small enhancement of the higher-order terms when including the N2LO 3NF. Nevertheless,

the results at third order are very close to those obtained with the [2|1] Padé approximant.
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Our main goal is to calculate the g.s.e. per particle in infinite neutron matter, starting

from N3LO chiral NN potentials that apply different regulator functions. This is done by

using the chiral potentials introduced in Sec. II. We have added to each 2NF a chiral N2LO

3NF whose low-energy constants c1 and c3, cutoff parameters, and regulator function are

exactly the same as in the corresponding N3LO NN potential, see Table I.

In Fig. 8, we show our results, obtained at third-order in the perturbative expansion,

with and without taking into account 3NF effects. The results obtained with 2NFs show

considerable dependence on the choice of the regulator and its cutoff parameter. This is

at variance with the desired regulator independence of the EFT. However, when including

the contributions of the three-body potentials, which are consistent with their 2NF partner,

regulator dependence is strongly reduced. This is our main result and, at the same time,

the first clear evidence that modern chiral potentials can provide model-independent results

in many-body calculations if 2NF and 3NF are treated consistently.

V. CONCLUDING REMARKS AND OUTLOOK.

In this paper we have studied the regulator dependence of many-body predictions when

employing chiral two- and three-nucleon potentials, using as a testing ground the pertur-

bative calculation of the neutron-matter energy per particle. We find substantial regulator

dependence of the predictions when only 2NFs are taken into account. The main outcome

of this study is the observation that the 3NF can play a crucial role in the restoration of

regulator independence. However, this mechanism works properly only when the chiral 2NF

and 3NF are treated consistently in the sense that the same parameters are used for the

same vertices that occur in all topologies involved. This is particularly true for the LECs c1

and c3 occurring first at N2LO in the chiral power counting.

In Refs. [10, 11] the large uncertainties of the results for the ground-state energy per

neutron trace back to the choice of using a range of values for c1 and c3 obtained from a

high-order analysis of πN scattering [24]. This is at variance with the cis employed in the

present paper which, as reported in Section II, are uniquely fixed in peripheral NN partial

waves.

In closing, we note that the present investigation deals only with identical nucleon sys-

tems, and that the regulator dependence should also be investigated in systems with different
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concentrations of interacting protons and neutrons. In infinite symmetric nuclear matter also

contributions from the intermediate-range 1π-exchange component VD, and from the short-

range contact interaction VE come into play. This means that the calculation of the g.s.e.

depends also on the coupling constants cD and cE. Even though these parameters can be

fixed in few-body systems, there is some freedom in doing so, resulting in more latitude for

the 3NF contribution in nuclear matter (as compared to pure neutron matter).

This will be an interesting subject for a future study, that may shed more light on

the topic of regulator independence of many-body calculations with chiral potentials. The

results of such investigations will provide valuable guidance for the proper application of

these interactions in microscopic nuclear structure calculations.
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FIG. 1: (Color online) Neutron-proton phase parameters as predicted by chiral N3LO potentials

with different cutoff scale Λ. Solid (red) curve, Λ = 414 MeV; dashed (blue) curve, Λ = 450 MeV;

and dotted (black) curve, Λ = 500 MeV. Partial waves with total angular momentum J ≤ 1 are

displayed. The solid dots and open circles are the results from the Nijmegen multi-energy np phase

shift analysis [14] and the VPI/GWU single-energy np analysis SM99 [15], respectively.
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FIG. 2: (Color online) Same as Fig. 1, but J = 2 phase shifts and J ≤ 2 mixing parameters are

shown.
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FIG. 3: (Color online) Same as Fig. 1, but some representative peripheral partial waves are shown.
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FIG. 4: First-, second-, and third-order diagrams of the Goldstone expansion included in our

calculations with VNN vertices only. Latin-letter subscripts denote particle states, greek-letter

subscripts correspond to hole states.
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FIG. 6: (Color online) Neutron matter energy per particle obtained from the N3LO 2NF with

cutoff Λ = 500 MeV. The first, second, and third order in the perturbative expansion and the Padé

approximant [2|1] are shown as a function of density ρ.
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FIG. 7: (Color online) Same as in Fig. 6, but including the contribution of the N2LO 3NF.
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FIG. 8: (Color online) Results obtained for the g.s.e. per particle of infinite neutron matter at

third-order in perturbation theory for three sets of chiral interactions which differ by the cutoff Λ.

Tables
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TABLE I: For the various chiral N3LO NN potentials used in the present investigation, we show

the cutoff Λ, the type of regulator, the exponent n used in the regulator function, Eq. (1), and

the LECs of the dimension-two πN Lagrangian, ci (in units of GeV−1), which are relevant for the

N2LO 3NF in neutron matter.

Cutoff parameter Λ (MeV)

414 450 500

Regulator type sharp Gaussian Gaussian

n – 3 2

c1 –0.81 –0.81 -0.81

c3 –3.00 –3.40 –3.20
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