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Background: Neutrinoless double beta decay, if observed, would reveal physics beyond the Stan-
dard Model (SM) of particle physics, namely it would prove that neutrinos are Majorana fermions
and that the lepton number is not conserved.
Purpose: The analysis of the results of neutrinoless double beta decay observations requires an
accurate knowledge of several nuclear matrix elements (NME) for different mechanism that may
contribute to the decay. We provide a complete analysis of these NME for the decay of the ground
state (g.s.) of 48Ca to the g.s. 0+1 and first excited 0+2 state of 48Ti.
Method: For the analysis we used the nuclear shell model with effective two-body interactions that
were fine-tuned to describe the low-energy spectroscopy of pf -shell nuclei. We checked our model
by calculating the two-neutrino transition probability to the g.s. of 48Ti. We also make predictions
for the transition to the first excited 0+2 state of 48Ti.
Results: We present results for all NME relevant for the neutrinoless transitions to the 0+1 and 0+2
states, and using the lower experimental limit for the g.s. to g.s. half-life we extract upper limits
for the neutrino physics parameters.
Conclusions: We provide accurate NME for the two-neutrino and neutrinoless double beta decay
transitions in A=48 system, which can be further used to analyze the experimental results of double
beta decay experiments when they become available.

PACS numbers: 23.40.Bw, 21.60.Cs, 23.40.-s, 14.60.Pq
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I. INTRODUCTION

Neutrinoless double beta (0νββ) decay, which can only
occur by violating the conservation of the total lepton
number, if observed it will reveal physics beyond the
Standard Model, and it will represent a major milestone
in the study of the fundamental properties of neutri-
nos [1]-[7]. Indeed, its discovery would decide if neu-
trinos are their own antiparticles [8], and would provide
a hint about the scale of their absolute masses. That
is why there are intensive investigations of this process,
both theoretical and experimental. Recent results from
neutrino oscillation experiments have demonstrated that
neutrinos have mass and they can mix [9]-[11]. However,
the neutrino oscillations experiments cannot be used to
determine the neutrino mass hierarchy and the lowest
neutrino mass. Neutrinoless double beta decay is viewed
as one of the best routes to decide these unknowns. A key
ingredient for extracting the absolute neutrino masses
from 0νββ decay experiments is a precise knowledge of
the nuclear matrix elements (NME) for this process.

There are potentially many mechanisms that could
contribute to the neutrinoless double beta decay pro-
cess that will be briefly reviewed below. Several of these
mechanisms do not provide contributions to the decay
rate that explicitly depend on the neutrino masses, but
their effect would vanish if the neutrinos are not massive
Majorana particles [8]. In all cases the half-lives depend
on the nuclear matrix elements that need to be accurately

∗Electronic address: mihai.horoi@cmich.edu

calculated using low-energy nuclear structure models. In
particular, if the exchange of light left-handed neutri-
nos is proven to be the dominant mechanism, one could
be able to use the experimental results and the associ-
ated NME to extract the neutrino mass hierarchy and
the lowest neutrino mass [7]. The two-neutrino double
beta (2νββ) decay is an associate process that is allowed
by the Standard Model, and it was observed in about
ten isotopes. Therefore, a good but not sufficient test of
nuclear structure models would be a reliable description
of the 2νββ half-lives.
Since most of the ββ decay emitters are open shell nu-

clei, many calculations of the NME have been performed
within the pnQRPA approach and its extensions [12]-[23].
However, the pnQRPA calculations of the more common
two-neutrino double beta decay half-lives, which were
measured for about 10 cases [24], are very sensitive to the
variation of the so called gpp parameter (the strength of
the particle-particle interactions in the 1+ channel) [12]-
[14], and this drawback still persists in spite of various
improvements brought by its extensions [15]-[20], includ-
ing higher-order QRPA approaches [21]-[23]. The out-
come of these attempts was that the calculations became
more stable against gpp variation, but at present there
are still large differences between the values of the NME
calculated with different QRPA-based methods, which
do not yet provide a reliable determination of the two-
neutrino double beta decay half-life. Therefore, although
the QRPA methods do not seem to be suited to predict
the 2νββ decay half-lives, one can use the measured 2νββ
decay half-lives to calibrate the gpp parameters, which
are further used to calculate the 0νββ decay NME [25].
Other methods that were recently used to provide NME
for most 0νββ decay cases of interest are the Interacting
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Boson Model (IBM-2) [26, 27], the Projected Hatree-Fock
Bogoliubov (PHFB) [28], and the Generator Coordinate
Method (GCM) [29].
Recent progress in computer power, numerical algo-

rithms, and improved nucleon-nucleon effective interac-
tions, made possible large scale shell model calculations
(LSSM) of the 2νββ and 0νββ decay NME [30]-[32]. The
main advantage of the large scale shell model calcula-
tions is that they seem to be less dependent on the ef-
fective interaction used, as far as these interactions are
consistent with the general spectroscopy of the nuclei in-
volved in the decay. Their main drawback is the limi-
tation imposed by the exploding shell model dimensions
on the size of the valence spaces that can be used. The
most important success of the large scale shell model cal-
culations was the correct prediction of the 2νββ decay
half-life for 48Ca [30, 33]. In addition, these calcula-
tions did not have to adjust any additional parameter,
i.e. given the effective interaction and the Gamow-Teller
(GT) quenching factor extracted from the overall spec-
troscopy in the mass-region (including beta decay proba-
bilities and charge-exchange strength functions), one can
reliably predict the 2νββ decay half-life of 48Ca.
Clearly, there is a need to further check and refine these

calculations, and to provide more details on the analysis
of the NME that could be validated by experiments. We
have recently revisited [34] the 2νββ decay of 48Ca using
two recently proposed effective interactions for this mass
region, GXPF1 and GXPF1A, calculating the NME and
half-lives for the transition of the 48Ca g.s. to the g.s.
and the first excited 2+ state of 48Ti.
In this paper we add to the analysis the 2νββ transi-

tion to the first excited 0+2 state of 48Ti. We also extend
our analysis [36] of the 0νββ decay of 48Ca by provid-
ing the NME associated with the most important 0νββ
mechanisms for transitions to the g.s. 0+1 and first excited
0+2 state of 48Ti. Future experiments on double beta de-
cay of 48Ca (CANDLES [37] and CARVEL [38]) may
reach the required sensitivity of measuring such transi-
tions, and our results could be also useful for planning
these experiments.

II. TWO-NEUTRINO DOUBLE BETA DECAY

LSSM calculations of 2νββ decay NME can now be
carried out rather accurately for many nuclei [39]. In the
case of 48Ca, Ref. [30] reported for the first time a full pf -
shell calculation of the NME for the 2νββ decay mode,
for both transitions to the g.s. and to the 2+1 excited
state of 48Ti. As an effective interaction it was used the
Kuo-Brown G-matrix [40] with minimal monopole mod-
ifications, KB3 [41]. In Ref. [34] we use the recently
proposed GXPF1A two-body effective interaction, which
has been successfully tested for the pf shell [42]-[44], to
perform 2νββ decay calculations for 48Ca. Our goal was
to obtain the values of NME for this decay mode, for both
transitions to the g.s. and to the 2+1 state of 48Ti, with

increased degree of confidence, which would allow us to
consider similar calculations for the 0νββ decay mode of
this nucleus [32]. The 2νββ transitions to excited states
have longer half-lives, as compared with the transitions
to the g.s., due to the reduced values of the correspond-
ing phase space factors, but they were measured in some
cases, such as 100Mo [45].
For the 2νββ decay mode the relevant NME are of

Gamow-Teller type, and has the following expression for
decays to states in the grand-daughter that have the an-
gular momentum J = 0, 2 [1]-[6],

M2ν
GT (J

+) =
1√

J + 1

∑

k

〈J+
f ||στ−||1+k 〉〈1+k ||στ−||0+i 〉

(Ek + EJ)J+1
.

(1)
Here Ek is the excitation energy of the 1+k state of inter-
mediate odd-odd nucleus, and EJ = 1

2Qββ(J
+) + ∆M .

Qββ(J
+) is the Q-value corresponding to the ββ decay

to the final J+
f state of the grand-daughter nucleus, and

∆M is the mass difference between the parent and the
intermediate nucleus 48Sc. The most common case is the
decay to the 0+1 g.s. of the grand-daughter, but decays to
the first excited 0+2 and 2+1 states are also investigated.
The 2νββ decay half-life expression is given by

[

T 2ν,J
1/2

]−1

= G2ν
J |M2ν

GT (J)|2 (2)

where G2ν
J are 2νββ phase space factors. Specific values

of G2ν
J for different 2νββ decay cases can be found in

different reviews, such as Ref. [3]. For a recent analysis
of G2ν

J see Ref. [46]. In Ref. [34] we explicitly analyzed
the dependence of the double-Gamow-Teller sum enter-
ing the NME Eq. (1) vs the excitation energy of the 1+

states in the intermediate nucleus 48Sc. This sum was re-
cently investigated experimentally [35], and it was shown
that indeed, the incoherent sum (using only absolute val-
ues of the Gamow-Teller matrix elements) would provide
an incorrect NME, thus validating our prediction. We
have also corrected by several orders of magnitude the
probability of transition of the g.s. of 48Ca to the first
excited 2+ state of 48Ti reported in Ref. [30].
In Ref. [34] we fully diagonalized 250 1+ states in the

intermediate nucleus to calculate the 2νββ decay NME
for 48Ca. This procedure can be used for somewhat heav-
ier nuclei using the J-scheme shell model code NuShellX
[48], but for cases with large dimension one needs an al-
ternative method. The pioneering work on 48Ca [30] used
a strength-function approach that converges after a small
number of Lanczos iterations, but it requires large scale
shell model diagonalizations when one wants to check the
convergence. Ref. [49] proposed an alternative method,
which converges very quickly, but it did not provide a
complete recipes for all its ingredients, and it was never
used in practical calculations. Recently [47], we proposed
a simple numerical scheme to calculate all coefficients of
the expansion proposed in Ref. [49]. Following Ref. [49],



3

TABLE I: Matrix elements and half-lives for 2ν decay calcu-
lated using GXPF1A interaction and two quenching factors.
Matrix elements are in MeV−1 for transitions to 0+ states
and in MeV−3 for transitions to 2+ states.

qf = 0.77 qf = 0.74

Jπ
n M2ν T 2ν

1/2 (y) M2ν T 2ν
1/2 (y)

0+1 0.054 3.3× 1019 0.050 3.9× 1019

2+1 0.012 8.5× 1023 0.010 1.0× 1024

0+2 0.050 1.6× 1024 0.043 1.9× 1024

we choose as a starting Lanczos vector, L±

1 , either the
initial or final state in the decay (only 0+ to 0+ tran-
sitions are considered), to which we apply the Gamow-
Teller operator. This approach is very efficient for large
model spaces, as for example the jj55 space (consisting of
the 0g7/2, 1d, 2s, and h11/2 orbits), which for the 128Te
decay leads to m-scheme dimensions of the order of 10
billions necessary to calculate the g.s. of 128Xe. In the
calculation of 48Ca decay we use the standard quenching
factor, qf = 0.77, for the Gamow-Teller operator στ . We
checked the result reported in Ref. [34] using this alter-
native method and we found the same result. The novel
result report here for the first time is for the transition
to the first excited 0+ state in 48Ti at 2.997 MeV. The
matrix element when using GXPF1A interaction is 0.050,
very close to that for the transition to the g.s. Using the
phase space factor G2ν

0+
2

= 2.43×10−22 MeV −1 from Ref.

[3] (a new set of phase space factors were recently pro-
posed [46], but for 2νββ decays they differ only by 4%
from those of Ref. [3]) we found that the half-life for this
transition is 1.6× 1024 y. We recall here that our results
reported in [34] for the half-lives of the transitions to g.s.
and to the first 2+ excited state are 3.3 × 1019 y and
8.5×1023 y, respectively. One can see that the transition
to the first excited 0+2 state at 2.997 MeV is predicted to
compete with the transition to the first excited 2+1 state
at 0.994 MeV.
The half-life for the transition to the g.s. 0+1 was mea-

sured by several groups with increased precision (see e.g.
[24]). The most recent result from NEMO-3 (see [24] and
references therein) is T 2ν

1/2 = 4.4+0.5
−0.4(stat.) ± 0.4(syst.).

Our GXPF1A result is marginally out of the recently
reduced error bars. However, a recent publication [50]
found a quenching factor of 0.74 for the pf -shell nuclei
using GXPF1A interaction. The same quenching factor
was proposed some time ago [51] using a different ef-
fective interaction. Using the smaller quenching factor
of 0.74 brings the calculated half-life within the experi-
mental limits. A comparison of the matrix elements and
the associated half-lives for the two quenching factors

used here is given in Table I. Potential observation of the
2νββ transitions to the excited states of 48Ti could shed
some light on the variation of the quenching factor for
the Gamow-Teller operator in this nucleus. One should
also mention that the excitation energy of the 0+2 state
in 48Ti calculated with GXPF1A interaction is about 1
MeV higher than the experimental value, while it is about
right for 48Ca. Other available effective interactions do
no provide a better description of this state. This re-
sult may raise concerns about the validity of the nuclear
structure description of this state within the pf -shell. An
experimental observation of the 2νββ transition to this
state could be used to validate (or not) our result.

III. NEUTRINOLESS DOUBLE BETA DECAY

The 0νββ decay, (Z,A) → (Z + 2, A) + 2e−, requires
the neutrino to be a massive Majorana fermion, i.e. it
is identical to the antineutrino [8]. We already know
from the neutrino oscillation experiments that some of
the neutrinos participating in the weak interaction have
mass, and that the mass eigenstates are mixed by the
PNMS matrix Ulk, where l is the lepton flavor and k is
the mass eigenstate number (see e.g. Ref. [52]). How-
ever, the neutrino oscillations experiments cannot decide
the mass hierarchy, the mass of the lightest neutrino, and
some of the CP non-conserving phases of the PNMS ma-
trix (assuming that neutrinos are Majorana particles).
Considering only contributions from the exchange of

light, left-handed(chirality), Majorana neutrinos [7], the
0νββ decay half-live is given by

[

T 0ν
1/2

]−1

= G0ν
∣

∣M0ν
ν

∣

∣

2
( | 〈mββ〉 |

me

)2

. (3)

Here, G0ν is the phase space factor, which depends on
the 0νββ decay energy, Qββ, the charge of the decaying
nucleus Z, and the nuclear radius [3, 46]. The effective
neutrino mass, 〈mββ〉, is related to the neutrino mass
eigenstates, mk, via the left-handed lepton mixing ma-
trix, Uek,

〈mββ〉 /me ≡ ηνL =
∑

k=light

mkU
2
ek /me. (4)

me is the electron mass. The NME, M0ν
ν , is given by

M0ν
ν = M0ν

GT −
(

gV
gA

)2

M0ν
F −M0ν

T , (5)

where M0ν
GT , M

0ν
F and M0ν

T are the Gamow-Teller (GT),
Fermi (F) and tensor (T) matrix elements, respectively.
Using closure approximation these matrix elements are
defined as follows:
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M0ν
α =

〈

0+f |
∑

m,n

τ−mτ−nO
α
mn | 0+i

〉

=
∑

jpjp′ jnjn′Jπ

TBTD (jpjp′ , jnjn′ ; Jπ) 〈jpjp′ ; JπT | τ−1τ−2O
α
12 | jnjn′ ; JπT 〉a , (6)

where Oα
mn are 0νββ transition operators, α =

(GT, F, T ), | 0+i > is the g.s. of the parent nucleus,
and | 0+f > is the final 0+ state of the grand daugh-

ter nucleus. The two-body transition densities (TBTD)
can be obtained from LSSM calculations [36]. Expres-
sions for the anti-symmetrized two-body matrix elements
(TBME) 〈jpjp′ ; JπT | τ−1τ−2O

α
12 | jnjn′ ; JπT 〉a can be

found elsewhere, e.g. Refs. [36, 53]. Assuming that
one can unambiguously measures a 0νββ half-life, and
one can reliably calculate the NME for that nucleus, one
could use Eqs. (3) and (4) to extract information about
the lightest neutrino mass and the neutrino mass hierar-
chy [52]. In addition, one could consider the contribution
from the right-handed currents to the effective Hamilto-
nian, which can mix light and heavy neutrinos of both
chiralities (L/R)

νeL =
∑

k=light

UekνkL +
∑

k=heavy

UekNkL

νeR =
∑

k=light

VekνkR +
∑

k=heavy

VekNkR , (7)

where Nk are the heavy neutrinos that are predicted by
several see-saw mechanisms for neutrino masses [52]. Ulk

and Vlk are the left and right-handed components of the
unitary matrix that diagonalizes the neutrino mass ma-
trix [54]. One should also mention that there are several
other mechanisms that could contribute to the 0νββ de-
cay, such as the exchange of supersymmetric (SUSY) par-
ticles (e.g. gluino and squark exchange [55]), etc, whose
effects are not directly related to the neutrino masses,
but indirectly via the Schechter-Valle theorem [8]. As-
suming that the masses of the light neutrinos are smaller
than 1 MeV and the masses of the heavy neutrinos, Mk,
are larger than 1 GeV, the particle physics and nuclear
structure parts get separated, and the inverse half-life
can be written as

[

T 0ν
1/2

]−1

= G0ν
∣

∣ηνLM
0ν
ν + < λ > X̃λ+ < η > X̃η + (ηNL + ηNR)M

0ν
N

+ ηλ′M0ν
λ′ + ηq̃M

0ν
q̃ + ηKKM0ν

KK

∣

∣

2
, (8)

where ηνL was defined in Eq. (4), and

ηNL =
∑

k=heavy

U2
ek

mp

Mk
,

ηNR ≈
(

MWL

MWR

)4
∑

k=heavy

V 2
ek

mp

Mk
,

< λ > = ǫ
∑

k=light

UekVek,

< η > =

(

MWL

MWR

)2
∑

k=light

UekVek . (9)

Here ǫ is the mixing parameter for the right heavy bo-
son WR and the standard left-handed heavy boson WL,
WR ≈ ǫW1 + W2, MWR and MWL are their respective

masses, and mp is the proton mass. The ηλ′ and ηq̃ are
the R-parity violation contributions in supersymmetric
(SUSY) Grand Unified Theories (GUT) related to the
long range gluino exchange and squark-neutrino mech-
anism, respectively [52]. Finally, the ηKK term is due
to possible Kaluza-Klein (KK) neutrino exchange in an
extra-dimensional model [56]. The set of nuclear ma-

trix elements M0ν
ν , X̃λ, X̃η, M0ν

N , M0ν
λ′ , and M0ν

q̃ are

discussed in many reviews, e.g. Ref. [52]. The M0ν
KK

analysis can be found in Ref. [56]. In particular, using
the factorization ansatz [56] one gets

ηKKM0ν
KK =

< m >SA

me
M0ν

ν +mp < m−1 > M0ν
N

≡ ηlKKM0ν
ν + ηhKKM0ν

N , (10)
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where < m >SA and < m−1 > KK masses depend on the
brane shift and bulk radius parameters, and are given in
Table II of [56]. One can see that the mass parameters
< m >SA /me andmp < m−1 > has the effect of modify-
ing ηνL and ηNR respectively. | mp < m−1 >|< 10−8 and
it could in principle compete with ηNR. |< m >SA /me |
varies significantly with the model parameters and it
could also compete with ηνL. One needs to go beyond
the factorization ansatz, and use information from several
nuclei [57] to discern any significant contribution from the
KK mechanism.
Constraints from colliders experiments suggest that

terms proportional with the mixing angles, ǫ, Uek(heavy),
and Vek(light) are very small [54]. The present limits are

|< λ >|< 10−8 and |< η >|< 10−9, but they are expected

to be smaller. In addition, the contributions from X̃λ and
X̃η terms in Eq. (8) would produce angular and energy
distribution of the outgoing electrons different than that
coming from all other terms [2], and these signals are un-
der investigation at SuperNEMO [58]. Here we assume
that these contributions are small and can be neglected.
In addition, if < λ > is small, Eq. (9) suggests that
ηNL is small. Information from colliders also puts some
limits on (MWR

, MN) ∼ (2.5GeV, 1.4GeV ), and these
limits will be refined at LHC in the coming years. Based
on this information and the present limit on the 0νββ
decay of 76Ge one can estimate that | ηνL |< 10−6, and
| ηNR |< 10−8. Then, the half-life can be written as

[

T 0ν
1/2

]−1

= G0ν
∣

∣η̃νLM
0ν
ν + η̃NM0ν

N + ηλ′M0ν
λ′ + ηq̃M

0ν
q̃

∣

∣

2
, (11)

TABLE II: Matrix elements for 0ν decay using GXPF1A in-
teraction and two SRC models [61], CD-Bonn (SRC1) and
Argonne (SRC2). For comparison, the (a) values are taken
from Ref. [27], and the (b) value is taken from Ref. [62] for
gpp = 1 and no SRC.

M0ν
ν M0ν

N M0ν
λ′ M0ν

q̃

0+1 SRC1 0.90 75.5 618 86.7

SRC2 0.82 52.9 453 81.8

others 2.3(a) 46.3(a) 392(b)

0+2 SRC1 0.80 57.2 486 84.2

SRC2 0.75 40.6 357 80.6

where we adjusted ηνL and ηNR for potential KK contri-
butions, η̃νL = ηνL + ηlKK and η̃N = ηNR + ηhKK .
If one neglects the SUSY and KK contributions until

a hint of their existence is provided by colliders experi-
ments or future results of 0νββ decay experiments show
that these contributions are necessary [57], then

[

T 0ν
1/2

]−1

= G0ν
(

∣

∣M0ν
ν

∣

∣

2 |ηνL|2 +
∣

∣M0ν
N

∣

∣

2 |ηNR|2
)

,

(12)
where we used the fact that the interference between the
left-handed terms and the right-handed terms is negligi-
ble [52].
The structure of the M0ν

N is the same as that described
in Eqs. (5)-(8), with slightly different neutrino potentials

Hα(r) (see e.g. page 68 of Ref. [52]). A detailed descrip-
tion of the matrix elements of Oα

12 for the jj-coupling
scheme consistent with the conventions used by modern
shell model effective interactions is given in Ref. [36].
One should also mention that our method [36] of calcu-
lating the TBTD. Eq. (6), is different from that used in
other shell model calculations [32]. We included in the
calculations the recently proposed higher order terms of
the nucleon currents, three old and recent parametriza-
tion of the short-range correlations (SRC) effects, finite
size (FS) effects, intermediate states energy effects, and
we treated careful few other parameters entering the into
the calculations. We found very small variation of the
NME with the average energy of the intermediate states,
and FS cutoff parameters, and moderate variation vs the
effective interaction and SRC parametrization. We could
also show that if the ground state wave functions of the
initial and final nucleus can be accurately described us-
ing only the valence space orbitals, the contribution from
the core orbitals can be neglected. This situation is dif-
ferent from that of the nuclear parity-nonconservation
matrix elements [59], for which the ”mean-field” type
contribution from the core orbitals could be significant
[60]. Another important result that clearly transpires
from our formalism is that in the closure approximation
the neutrinoless transition to the first excited 2+ state
is zero. This result is due to the rotational invariance
of the TBME entering Eq. (6) (see also Appendix of
Ref. [36]). The structure of the R-parity breaking SUSY
mechanisms NME is similar to that of light and heavy
neutrino exchange mechanisms, but with no α = F com-
ponent [55]. The neutrino potentials used here for the
M0ν

N , and those used for the most significant contribu-
tions to M0ν

λ′ and M0ν
q̃ NME are given in Ref. [52], but

for completeness they are reviewed in the Appendix with
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TABLE III: Single mechanism upper limits for neutrino
physics parameters ηj extracted from the lower limit of the
half-life for the transition to the ground state of 48Ti [52] and
using the matrix elements from Table II.

|η̃νL| × 105 |η̃N | × 107 |ηλ′ | × 108 |ηq̃| × 107

0+1 SRC1 3.79 4.52 5.52 3.93

SRC2 4.16 6.45 7.53 4.17

the specific parameters included in these calculations.

The results for all NME entering Eq. (11) for the tran-
sition to the 0+1 g.s. and first excited 0+2 state of 48Ti are
presented in Table II. Comparison with results of other
models, when available, are also included. For the light
neutrino exchange matrix element we choose to compare
with the IBA-2 results, which is very different from ours.
Other shell model analyses of this particular NME gives
similar results for both transitions to 0+1 and 0+2 states
[32, 63]. To our knowledge, with the exception of the light
neutrino exchange NME, no other results of shell model
calculations for these matrix elements were reported so
far (with the possible exception of Ref. [64] where the
NME as a function of neutrino mass is reported and it
could potentially be used to extract the corresponding
M0ν

N ). Based on these calculations and using the exper-
imental lower limit of the half-life, one can extract the
”single-mechanism dominance” upper limits for | ηj |,
where j = (νL), N, λ′, q̃. At present there is available
only the lower limit of the half-life for the transition to the
g.s. of 48Ti, 1.4×1022 y [52]. Using the phase-space factor
from Ref. [46], G0ν = 61.4 × 10−15 y−1 (for gA = 1.254
and R = 1.2A1/3 fm), we obtained the upper limits for
| ηj | shown in Table III. Alternatively, assuming that
two or more mechanisms are contributing to the half-life
in Eq. (11) compete, one could use the experimental data
from several isotopes to assess the contribution of each
mechanism [55]. Clearly, this scenario requires as many
as possible accurate half-lives and associated NMEs. For
example, in the likely scenario that no more than two
mechanisms are competing and they are the light and
heavy neutrino exchange, then Eq. (12) can be used to
analyze the data. If the exchange of light neutrino will be
determined as the dominant mechanism, then our results
could possible be used to decide the light neutrino mass
hierarchy and the lowest neutrino mass [52].

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we analyzed the 2νββ and several mech-
anisms that could compete to the 0νββ decays of 48Ca
using shell model techniques. We described very efficient
techniques to calculate accurate 2νββ NME for cases that

involve large shell model dimensions. These techniques
were tested for the case of 48Ca, and we provided NME
and half-lives for 2νββ transitions to the g.s. and ex-
cited states of 48Ti. These techniques can be used to
make predictions for 76Ge, 82Se using the jj44 model
space (0f5/2, 1p, 0g9/2), and for 128Te, 130Te and 136Xe
using the jj55 model space.

We reviewed the main contributing mechanisms to the
0νββ decay, and we showed that based on the present
constraints from colliders one could reduce the contribu-
tion to the 0νββ half-life to the relevant terms described
in Eq. (11). A reliable analysis of the 0νββ decay exper-
imental data requires accurate calculations of the associ-
ated NME. We extended our recent analysis [36] of the
0νββ NME for 48Ca to include the heavy neutrino ex-
change NME, the long range gluino exchange NME, and
the squark-neutrino mechanism NME. We also presented
for the first time shell model results of these new NME
for the 0νββ transitions to the g.s. and the first excited
0+2 state in 48Ti.

To extend this analysis to the A > 48 cases, more ef-
forts have to be done to include all spin-orbit partners in
the valence space and satisfy the Ikeda sum-rule, reduce
the center-of-mass spurious contributions, and better un-
derstand the changes in the effective 0νββ transition op-
erators [65, 66]. In addition, the closure approximation
used to calculate the NME within the shell model ap-
proach and by other methods (e.g. IBA-2 [26], PHFB
[28], and GCM [29]) needs to be further checked for accu-
racy, especially for the heavy neutrino exchange, the long
range gluino exchange, and the squark-neutrino mecha-
nism. An analysis of the double beta decay of 136Xe that
addresses some of these issues is in preparation.

V. APPENDIX

The matrix elements for the light and heavy neutrino
exchange in Eq. (11) have the same structure as that
described in Eqs. (3)-(6) of Ref. [36]. For M0ν

ν the
neutrino potential is the same as in Eq. (7) of [36]

Hα(r) =
2R

π

∫ ∞

0

fα(qr)
hα(q

2)

q + 〈E〉Gα(q
2)qdq, (13)

with the same ingredients described in Eqs. (9)-(12) of
[36]. Here we corrected the (µp − µn) value to 4.71, an
error that seems to be propagating for some time through
the literature [7]. This correction explains the small dif-
ference between the M0ν

ν values of Table II and corre-
sponding ones reported in Ref. [36]. Fortunately, this
correction only changes the matrix elements by few per-
cents. All other constants are the same as in Ref. [36].
In particular, we used gA = 1.254 and R = 1.2A1/3 fm.
For the M0ν

N there is a slight change in the neutrino po-
tentials
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Hα(r) =
2R

πmemp

∫ ∞

0

fα(qr)hα(q
2)Gα(q

2)q2dq,(14)

where me and mp are the electron and proton mass, re-
spectively.
The most significant contributions to M0ν

λ′ and M0ν
q̃

have a similar structure as M0ν
ν and M0ν

N , however, only
the α = GT, T terms in Eq. (5) are contributing. The
radial neutrino potentials for M0ν

λ′ have the same form as
those used for M0ν

N , Eq. (14), but with different hα:

hGT,T = −
(

c1π + c2π
)

[

mempq
2/m4

π

1 + q2/m2
π

+
2mempq

2/m4
π

(1 + q2/m2
π)

2

]

,

(15)
where mπ is the charged pion mass, 139 MeV. Expres-
sions for c1π and c2π are given in Ref. [52]. The numerical
values we used are c1π = −85.23 and c2π = 368.0.

The radial neutrino potentials for M0ν
q̃ have the same

form as those used for M0ν
ν , Eq. (13), but with different

hα:

hGT,T = −1

6

m2
π

me (mu +md)

q2/m2
π

(1 + q2/m2
π)

2 , (16)

where mu and md are the current up and down quark
masses. In the calculation we used mu + md = 11.6
MeV.
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