
This is the accepted manuscript made available via CHORUS, the article has been
published as:

Electromagnetic structure of A=2 and 3 nuclei in chiral
effective field theory

M. Piarulli, L. Girlanda, L. E. Marcucci, S. Pastore, R. Schiavilla, and M. Viviani
Phys. Rev. C 87, 014006 — Published 30 January 2013

DOI: 10.1103/PhysRevC.87.014006

http://dx.doi.org/10.1103/PhysRevC.87.014006


Electromagnetic structure of A=2 and 3 nuclei in chiral effective field theory

M. Piarullia, L. Girlandab, L.E. Marcuccic,d, S. Pastoree, R. Schiavilla a,f , and M. Viviani d

aDepartment of Physics, Old Dominion University, Norfolk, VA 23529, USA
bDepartment of Mathematics and Physics, University of Salento, and INFN-Lecce, I-73100 Lecce, Italy

cDepartment of Physics, University of Pisa, I-56127 Pisa, Italy
dINFN-Pisa, I-56127 Pisa, Italy

ePhysics Division, Argonne National Laboratory, Argonne, IL 60439, USA
fJefferson Lab, Newport News, VA 23606, USA

Background: The A = 2 and 3 form factors are among the observables of choice for testing models of nuclear interactions
and associated electromagnetic charge and current operators. Here we investigate the validity of the chiral-effective-field-
theory (χEFT) approach to describe the strong-interaction dynamics in these few-nucleon systems, and their response
to electromagnetic probes.

Purpose: The objectives of the present work are twofold. The first is to address and resolve some of the differences present
in independent, χEFT derivations up to one loop, recently appeared in the literature, of the nuclear charge and current
operators. The second objective is to provide a complete set of χEFT and hybrid predictions for the structure functions
and tensor polarization of the deuteron, for the charge and magnetic form factors of 3He and 3H, and for the charge and
magnetic radii of these few-nucleon systems.

Methods: The calculations use wave functions derived from either chiral or conventional two- and three-nucleon potentials
and Monte Carlo methods to evaluate the relevant matrix elements.

Results: In reference to the two objectives mentioned earlier, we find that i) there are no differences between the χEFT
magnetic dipole operator at one-loop derived in our formalism and that obtained by Kölling et al. with the unitary
transformation method; and ii) there is excellent agreement between theory and experiment for the static properties and
elastic form factors of these A = 2 and 3 nuclei up to momentum transfers q . 2.0–2.5 fm−1. A complete analysis of the
results is provided.

Conclusions: Nuclear χEFT provides a very satisfactory description of the isoscalar and isovector charge and magnetic
structure of the A = 2 and 3 nuclei at low momentum transfers q . 3 mπ. In particular, contributions from two-body
charge and current operators are crucial for bringing theory into close agreement with experiment. At higher q’s the
present χEFT predictions are similar to those obtained in the hybrid approach as well as in older studies based on the
conventional meson-exchange picture, and fail to reproduce the measured A = 2 and 3 form factors in the diffraction
region.

PACS numbers: 12.39.Fe, 13.40.-f

I. INTRODUCTION

Over the past two decades, chiral effective field theory (χEFT), originally proposed by Weinberg in a series of
papers in the early nineties [1], has blossomed into a very active field of research. The chiral symmetry exhibited
by quantum chromodynamics (QCD) severely restricts the form of the interactions of pions among themselves and
with other particles. In particular, the pion couples to baryons, such as nucleons and ∆-isobars, by powers of its
momentum Q, and the Lagrangian describing these interactions can be expanded in powers of Q/Λχ, where Λχ ∼ 1
GeV specifies the chiral-symmetry breaking scale. As a result, classes of Lagrangians emerge, each characterized by
a given power of Q/Λχ and each involving a certain number of unknown coefficients, so called low-energy constants
(LEC’s), which are then determined by fits to experimental data (see, for example, the review papers [2] and [3], and
references therein). Thus, χEFT provides, on the one hand, a direct connection between QCD and its symmetries, in
particular chiral symmetry, and the strong and electroweak interactions in nuclei, and, on the other hand, a practical
calculational scheme susceptible, in principle, of systematic improvement. In this sense, it can be justifiably argued
to have put low-energy few-nucleon physics on a more fundamental basis.
Nuclear electromagnetic charge and current operators in χEFT up to one loop were derived originally by Park et

al. [4] in covariant perturbation theory. Recently, two independent derivations, based on time-ordered perturbation
theory (TOPT), have appeared in the literature, one by some of the present authors [5, 6] and the other by Kölling
et al. [7, 8]. The expressions in Refs. [5, 6] and [7] for the two-pion-exchange charge and current operators are
in agreement with each other. Differences between the expressions reported in Refs. [5, 6] and those in Ref. [8]
are found in some of the loop corrections to the one-pion-exchange (OPE) and short-range currents as well as the
minimal currents originating from four-nucleon contact interactions involving two gradients of the nucleon fields. The
differences in the loop corrections have their origin in the different implementations of TOPT adopted in Refs. [5, 6]
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and Ref. [8], and relate to the treatment of reducible diagrams. One of the objectives of the present work is to resolve
some of these differences. This is addressed in Sec. II and Appendices A and B.
The other objective is to provide predictions for the charge and magnetic radii and form factors of the deuteron and

trinucleons (3He and 3H), by utilizing two- and three-nucleon potentials derived either in χEFT or in the conventional
framework, in combination with the charge and current operators obtained here. The methods used to carry out the
calculations are discussed in Sec. III, and a detailed analysis of the results is presented in Sec. IV. This last section
is organized into three subsections: the first illustrates the different strategies adopted for the determination of the
low-energy constants (LEC’s) that characterize the current operator up to one loop (no unknown LEC’s enter the
one-loop charge operator); the second and third report results, respectively, for the A(q) and B(q) structure functions
and tensor polarization T20(q) of the deuteron, and for the charge and magnetic form factors of 3He and 3H, as well
as results for the charge and magnetic radii of these few-nucleon systems. The conclusions are summarized in Sec. V,
while details on the evaluation of the loop integrals entering the charge operator are relegated in Appendix C.
There have been earlier χEFT studies of the deuteron electromagnetic structure in Refs.[9–11] and, most recently,

in Ref. [12]—this latter work has focused on the B(q) structure function. To the best of our knowledge, however, the
one-loop χEFT predictions reported here for the 3He and 3H elastic form factors are new.
In reference to the two objectives mentioned earlier, we find that i) there are no differences between the χEFT

magnetic dipole operator at one-loop derived in our formalism and that obtained by Kölling et al. [8] with the unitary
transformation method; and ii) there is excellent agreement between theory and experiment for the static properties
and elastic form factors of these A = 2 and 3 nuclei up to momentum transfers q . 2.0–2.5 fm−1. In particular,
contributions from two-body charge and current operators are crucial for bringing theory into this close agreement
with experiment. At higher q’s the present χEFT predictions are similar to those obtained in the hybrid approach as
well as in older studies based on the conventional meson-exchange picture, and fail to reproduce the measured A = 2
and 3 form factors in the diffraction region.

II. NUCLEAR CHARGE AND CURRENT OPERATORS UP TO ONE LOOP

The two-nucleon current (j) and charge (ρ) operators have been derived in χEFT up to one loop (to order eQ) in
Refs. [5] and [6], respectively. In the following, we denote the momentum due to the external electromagnetic field
with q, and define

ki = p′
i − pi , Ki = (p′

i + pi) /2 , (2.1)

k = (k1 − k2) /2 , K = K1 +K2 , (2.2)

where pi (p
′
i) is the initial (final) momentum of nucleon i. We further define

j =

+1∑

n=−2

j(n) , ρ =

+1∑

n=−3

ρ(n) , (2.3)

where the superscript n in j(n) and ρ(n) specifies the order eQn in the power counting. The lowest-order (LO)
contributions j(−2) and ρ(−3) consist of the single-nucleon current and charge operators, respectively:

j(−2) =
e

2mN

[
2 eN,1(q

2)K1 + i µN,1(q
2)σ1 × q

]

×δ(p′
2 − p2) + 1 ⇋ 2 , (2.4)

and

ρ(−3) = e eN,1(q
2) δ(p′

2 − p2) + 1 ⇋ 2 , (2.5)

where mN is the nucleon mass, q = ki with i = 1 or 2 (the δ-functions enforcing overall momentum conservation
q = k1 have been dropped for simplicity here and in the following),

eN,i(q
2) =

GS
E(q

2) +GV
E(q

2) τi,z
2

,

µN,i(q
2) =

GS
M (q2) +GV

M (q2) τi,z
2

, (2.6)

and G
S/V
E and G

S/V
M denote the isoscalar/isovector combinations of the proton and neutron electric (E) and magnetic

(M) form factors, normalized as GS
E(0) = GV

E(0) = 1, GS
M (0) = 0.880µN , and GV

M (0) = 4.706µN in units of the
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nuclear magneton µN . The counting eQ−2 (eQ−3) of the leading-order current (charge) operator results from the
product of a factor eQ (eQ0) due to the coupling of the external electromagnetic field to the individual nucleons,
and the factor Q−3 from the momentum δ-function entering this type of disconnected contributions. Of course, this
counting ignores the fact that the nucleon form factors themselves also have a power series expansion in Q. Here,
they are taken from fits to elastic electron scattering data off the proton and deuteron [13]—specifically, the Höhler
parametrization [14]—rather than derived consistently in chiral perturbation theory (χPT) [15]. The calculations of
the A = 2 and 3 nuclei elastic form factors that follow are carried out in the Breit frame, in which the electron-
energy transfer vanishes. Hence, the hadronic electromagnetic form factors are evaluated at four-momentum transfer
qµqµ = −q2.
At order n =−1 (NLO) there is a one-pion exchange (OPE) contribution to the current operator which reads

j(−1) = −i e g
2
A

F 2
π

GV
E(q

2) (τ1 × τ2)z

(
σ1 − k1

σ1 · k1

ω2
k1

)

×σ2 · k2

ω2
k2

+ 1 ⇋ 2 , (2.7)

where we have defined ω2
k = k2 +m2

π, mπ being the pion mass. However, there are no n =−2 contributions to the

charge operator. The presence of the isovector electric form factor GV
E in j(−1) follows from the continuity equation

q · j(−1) =
[
v(0)π , ρ(−3)

]
, (2.8)

where [. . . , . . . ] denotes the commutator, ρ(−3) is the charge operator given in Eq. (2.5), and v
(0)
π is the static OPE

potential

v(0)π (k) = − g2A
F 2
π

τ1 · τ2
σ1 · kσ2 · k

ω2
k

. (2.9)

The l.h.s. of Eq. (2.8) is of order Q0, the same as the r.h.s. since the commutator brings in an additional factor Q3 due
to the implicit momentum integrations. It should be emphasized that the continuity equation requires that the same
form factor be used to describe the electromagnetic structure of the hadrons in the longitudinal part of the current
operator and in the charge operator. However, it places no restrictions on the electromagnetic form factors which
may be used in the transverse parts of the current. Ignoring this ambiguity, the choice made here (GV

E) satisfies the
“minimal” requirement of current conservation [16].
Relativistic corrections to the leading order one-body current and charge operators enter, respectively, at n = 0

and n = −1 (both denoted as N2LO), and are given by

j(0) = − e

8m3
N

eN,1(q
2)
[
2
(
K2

1 + q2/4
) (

2K1

+iσ1 × q
)
+K1 · q (q+ 2 iσ1 ×K1)

]

− i e

8m3
N

[
µN,1(q

2)− eN,1(q
2)
] [

K1 · q

×
(
4σ1 ×K1 − iq

)
− (2 iK1 − σ1 × q) q2/2

+2 (K1 × q) σ1 ·K1

]
δ(p′

2 − p2) + 1 ⇋ 2 , (2.10)

ρ(−1) = − e

8m2
N

[
2µN,1(q

2)− eN,1(q
2)
] (
q2

+2 iq · σ1 ×K1

)
δ(p′

2 − p2) + 1 ⇋ 2 , (2.11)

while the n = 0 (N3LO) OPE two-body charge operators, illustrated in Fig. 1, read
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(b) (c)(a)

FIG. 1: Diagrams illustrating the two-body charge operators at order n = 0 or eQ0. Nucleons, pions and photons are denoted
by solid, dashed, and wavy lines, respectively. The solid circle in panel (a) is associated with a γπN vertex of order eQ. Only
one among the possible time orderings is shown.

ρ(0)a =
e

2mN

g2A
F 2
π

[
GS

E(q
2) τ1 · τ2 +GV

E(q
2) τ2z

]

×σ1 · q σ2 · k2

ω2
k2

+ 1 ⇋ 2 , (2.12)

ρ
(0)
b (ν) = − e

4mN

g2A
F 2
π

σ1 · k2 σ2 · k2

ω4
k2

[
(1− ν)

×
[
GS

E(q
2) τ1 · τ2 +GV

E(q
2) τ2,z

]
q · k2

+2 i GV
E(q

2) (τ1 × τ2)z k2 ·
[
(1− ν)K1

+(1 + ν)K2

]]
+ 1 ⇋ 2 , (2.13)

ρ(0)c = i
e

mN

g2A
F 2
π

Gπ(q
2) (τ1 × τ2)z k1 ·K1

×σ1 · k1 σ2 · k2

ω2
k1
ω2
k2

+ 1 ⇋ 2 . (2.14)

The operator of panel (a) is due to a γπN vertex of order eQ originating from the interaction Hamiltonian

e gA
2mNFπ

∫
dxN †

σ ·
(
∇A0

)
(τ · π + πz)N ,

derived first by Phillips [10]. In the context of meson-exchange phenomenology, an operator of precisely this form
results from considering the low-energy limit of the relativistic Born diagrams associated with virtual pion photo-
production amplitudes, see the review paper [17] and references therein. From this perspective, it appears reasonable
to include the nucleon form factors GS

E and GV
E in Eq. (2.12).

The operator of panel (b) depends on the off-energy-shell extrapolation, specified by the parameter ν, adopted for
the non-static corrections of order Q2 to the OPE potential [18],

v(2)π (k,K; ν) = (1− 2 ν)
v
(0)
π (k)

ω2
k

(k ·K)
2

4m2
N

. (2.15)

As shown in Ref. [18] (and within the present approach in Ref. [6]), different off-shell prescriptions for v(2)(ν) and
ρ(0)(ν) are unitarily equivalent:

ρ(−3)+ρ
(0)
b (ν) = e−i U(ν)

[
ρ(−3) + ρ

(0)
b (0)

]
e+i U(ν)

≃ ρ(−3)+ρ
(0)
b (0)+

[
ρ(−3), i U (0)(ν)

]
, (2.16)

where the hermitian operator U(ν) admits the expansion

U(ν) = U (0)(ν) + U (1)(ν) + . . . , (2.17)

and U (0)(ν) and U (1)(ν) (see below) have been constructed, respectively, in Refs. [18] and [6] (in this last paper,
Eqs. (28) and (55), which give equivalent momentum-space expressions for U (1)(ν), contain a typographical error: the
imaginary unit on the l.h.s. should be removed). Phenomenological potentials, such as the Argonne v18 (AV18) [19],
and χEFT potentials, such as those recently derived by Entem and Machleidt [20], make the choice ν = 1/2 in
Eq. (2.15), i.e., ignore non static corrections to the OPE potential.
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(c)(a) (b) (d) (e)

(j) (k)

(f) (g) (h) (i)

FIG. 2: Diagrams illustrating the two-body current operators at order n = 1 or eQ. Nucleons, pions and photons are denoted
by solid, dashed, and wavy lines, respectively. The solid circle in panel (b) is associated with a γπN vertex of order eQ2. Only
one among the possible time orderings is shown.

The operator of panel (c), containing the γππ vertex, is obtained by expanding the energy denominators as [6]

1

Ei − EI − ωπ
= − 1

ωπ

[
1 +

Ei − EI

ωπ
+ . . .

]
, (2.18)

where EI denotes NN (or NNγ) intermediate energies and ωπ the pion energy (or energies, as the case may be), and
by noting that the leading (static) corrections vanish, when summed over the possible six time orderings. However, the
terms proportional to the ratio (Ei −EI)/ωπ, which is of order Q, lead to the non-static operator given in Eq. (2.14).
It is multiplied by the pion form factor Gπ(q

2), which we parametrize in vector-meson dominance and consistently
with experimental data at low momentum transfers as

Gπ(q
2) =

1

1 + q2/m2
ρ

, (2.19)

where mρ is the ρ-meson mass.

A. Current operators at order n = 1 (eQ)

The currents at order eQ (N3LO) are illustrated diagrammatically in Fig. 2, and consist of: (i) terms generated by
minimal substitution in the four-nucleon contact interactions involving two gradients of the nucleon fields as well as
by non-minimal couplings to the electromagnetic field; (ii) OPE terms induced by γπN interactions beyond leading
order; and (iii) one-loop two-pion-exchange (TPE) terms. We discuss them below.
The contact minimal and non minimal currents, denoted by the subscripts “min” and “nm” respectively, are written

as

j
(1)
a,min =

i e

16
GV

E(q
2) (τ1 × τ2)z

[
(C2 + 3C4 + C7)k1

+(C2 − C4 − C7)k1 σ1 · σ2

+C7 σ1 · (k1 − k2) σ2

]
− i e

4
eN,1(q

2)C5

×(σ1 + σ2)× k1 + 1 ⇋ 2 , (2.20)

j(1)a,nm = −i e
[
GS

E(q
2)C′

15 σ1 +GV
E(q

2)C′
16

×(τ1,z − τ2,z)σ1

]
× q+ 1 ⇋ 2 . (2.21)

The expression above for j
(1)
a,min is the Fierz-transformed version of the current given in Eq. (3.11) of Ref. [5], see

App. A for a derivation. We note that the first three terms in Eq. (2.20) agree with the first line of Eq. (5.3) of
Kölling et al. [8], while the term proportional to C5 differs by the isoscalar piece, which, however, can be absorbed
in a redefinition of C′

15. The low-energy constants (LEC’s) C1, . . . , C7, which also enter the two-nucleon contact



6

potential, have been constrained by fitting np and pp elastic scattering data and the deuteron binding energy. We
take their values from the Machleidt and Entem 2011 review paper [20]. The LEC’s C′

15 and C′
16 (and d′8, d

′
9, and

d′21 below) are determined by fitting measured photo-nuclear observables of the A = 2 and 3 systems, as discussed
in Sec. IV. Finally, we observe that there is no a priori justification for the use of GS

E/G
V
E (or GS

M/G
V
M ) in the non-

minimal contact current, and these form factors are included in order to provide a reasonable fall-off with increasing
q2 for the strength of this current.
The isovector (IV) OPE current at N3LO is given by

j
(1)
b,IV = i e

gA
F 2
π

GγN∆(q
2)

µγN∆

σ2 · k2

ω2
k2

[
d′8τ2,z k2

−d′21(τ1 × τ2)z σ1 × k2

]
× q+ 1 ⇋ 2 , (2.22)

and depends on the two (unknown) LEC’s d′8 and d′21. They can be related [5] to the N -∆ transition axial coupling
constant and magnetic moment (denoted as µγN∆) in a resonance saturation picture, which justifies the use of the
γN∆ electromagnetic form factor for this term. It is parametrized as

GγN∆(q
2) =

µγN∆

(1 + q2/Λ2
∆,1)

2
√
1 + q2/Λ2

∆,2

, (2.23)

where µγN∆ is taken as 3 µN from an analysis of γN data in the ∆-resonance region [21]. This analysis also gives
Λ∆,1=0.84 GeV and Λ∆,2=1.2 GeV. The isoscalar (IS) piece of the OPE current depends on the LEC d′9 mentioned
earlier,

j
(1)
b,IS = i e

gA
F 2
π

d′9Gγπρ(q
2) τ1 · τ2

σ2 · k2

ω2
k2

k2 × q+ 1 ⇋ 2 , (2.24)

and, again in a resonance saturation picture, reduces to the well known γπρ current [5]. Accordingly, we have
accounted for the q2 fall-off of the electromagnetic vertex by including a γπρ form factor, which in vector-meson
dominance is parametrized as

Gγπρ(q
2) =

1

1 + q2/m2
ω

, (2.25)

mω is the ω-meson mass. We can now clarify the differences in these tree-level currents as reported here and in
Ref. [8]. We first note that the relations between the primed d ′

i and di in Ref. [5] should have read: d ′
8 = −8 d8,

d ′
9 = −8 d9, d

′
21 = 2 d21 − d22. The term proportional to d22 originates from the Lagrangian

term ∝ d22 =
2 e

Fπ
d22N

†Sµ [∂ν(τ × π)z Fµν ]N . (2.26)

Kölling et al. [8] integrate it by parts to obtain

term ∝ d22 = − 2 e

Fπ
d22

[
(∂νN)†Sµ (τ × π)z FµνN

+N †Sµ(τ × π)z Fµν(∂
νN)

]
, (2.27)

while the authors of Ref. [5] use the equations of motion for the electromagnetic field tensor at leading order, ∂νFµν = 0,
to express it as

term ∝ d22 =
2 e

Fπ
d22N

† Sµ Fµν (τ × ∂νπ)z N. (2.28)

These two different treatments lead to the d22 current as given in Ref. [5] and [8]. They differ by a term proportional to
(σ1 ×q)×q, which does not contribute to the magnetic moment (M1) operator µ = −(i/2)∇q× j

∣∣
q=0

[5]. Similarly,

the term proportional to f5(q) in Eq. (4.28) of Ref. [8] does not give any contribution to µ, since f5(q) ∝ q2 for small q.
The term proportional to f6(q) is included in Eq. (2.7) provided g2A −→ g2A

(
1− d18m

2
π/gA

)
. The value adopted here
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for gA is obtained from two-nucleon scattering data (Sec. IV). Therefore, for processes induced by M1 transitions,
such as the n d and n 3He radiative captures at thermal neutron energies studied in Ref. [22] or the magnetic scattering
under consideration in this work, the differences above are irrelevant.
The one-loop TPE currents, diagrams (c)–(k) of Fig. 2, are written as

j
(1)
loop = −i eGV

E(q
2) (τ1 × τ2)z ∇k F1(k) + i eGV

E(q
2) τ2,z

×
[
F0(k)σ1 − F2(k)

kσ1 · k
k2

]
× q+ 1 ⇋ 2 , (2.29)

where the functions Fi(k) are

F0(k) =
g2A

8 π2F 4
π

[
1− 2 g2A +

8 g2Am
2
π

k2 + 4m2
π

+G(k)

[
2− 2 g2A

−4 (1 + g2A)m
2
π

k2 + 4m2
π

+
16 g2Am

4
π

(k2 + 4m2
π)

2

]]
, (2.30)

F1(k) =
1

96 π2 F 4
π

G(k)

[
4m2

π(1 + 4g2A − 5g4A)

+k2(1 + 10g2A − 23g4A)−
48 g4Am

4
π

4m2
π + k2

]
, (2.31)

F2(k) =
g2A

8 π2F 4
π

[
2− 6 g2A +

8 g2Am
2
π

k2 + 4m2
π

+G(k)

[
4 g2A

−4 (1 + 3 g2A)m
2
π

k2 + 4m2
π

+
16 g2Am

4
π

(k2 + 4m2
π)

2

]]
, (2.32)

and the loop function G(k) is defined as

G(k) =

√
4m2

π + k2

k
ln

√
4m2

π + k2 + k√
4m2

π + k2 − k
. (2.33)

The expression above results from expanding j
(1)
loop(q,k) in a power series in q as j

(1)
loop(q,k) = j

(1)
loop(0,k) − iq ×

µ
(0)(k) + . . . , where µ

(0) is the magnetic dipole operator, and j
(1)
loop(0,k), which corresponds to the first term in

Eq. (2.29), satisfies current conservation with the TPE potential v
(2)
2π (k) (of order Q

2), since

[
v
(2)
2π (k) , ρ(−3)

]
= e

[
v
(2)
2π (k− q/2) , eN,1

]
+1⇋2

≃ −i e (τ1 × τ2)z q ·∇kF1(k)+1⇋2 (2.34)

to leading order in q. In fact, the current j
(1)
loop(0,k) is proportional to the electric dipole operator, and does not

contribute to elastic electromagnetic transitions, such as those of interest here.
Finally, we note that a more careful analysis, detailed in Appendix B, of the loop short-range currents corresponding

to diagrams (h)-(k) in Fig. 2 shows that they vanish, in contrast to that which was reported in Ref. [5] and in agreement
with the result of Ref. [8].

B. Charge operators at order n = 1 (eQ)

The two-body charge operators at one loop (N4LO) are illustrated in Fig. 3, and have been derived in Ref. [6]. The
contributions from diagrams of type (a)-(b) and (g)-(h) vanish, and after carrying out the loop integrations (discussed
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in App. C), those from diagrams of type (c)-(f) and (i)-(j) read:

ρ(1)c = −e 1

2 π

g2A
F 4
π

GV
E(q

2) τ2,z

∫ 1/2

0

dx

[
4L(x, k2)

− m2
π

L(x, k2)

]
+ 1 ⇋ 2 , (2.35)

ρ
(1)
d = e

1

2 π

g2A
F 4
π

Gπ(q
2) τ2,z

∫ 1/2

0

dx

[
4L(x, k1)

− m2
π

L(x, k1)

]
+ 1 ⇋ 2 , (2.36)

ρ(1)e (ν) = −e 1

16 π

g2A
F 4
π

GV
E(q

2)

∫ 1/2

0

dx

[
[4 τ2,z + ν (τ1 × τ2)z]

[
− 24L(x, k2) +

k22 + 8m2
π

L(x, k2)
+

m4
π

L3(x, k2)

]

+ [4 τ1,z − ν (τ1 × τ2)z]
(σ2 × k2) · (σ1 × k2)

L(x, k2)

]
+ 1 ⇋ 2 , (2.37)

ρ
(1)
f = −e 1

8 π

g4A
F 4
π

Gπ(q
2)

∫ 1

0

dxx

∫ 1/2

−1/2

dy

[
− 2 τ1,z

[
− 15λ(x, y) +

1

λ(x, y)

[
3A · (B+C) + (A+B) · (A+C)

+(σ1 ×A) · (σ2 ×A)− (σ1 ×A) · (σ2 ×C)− (σ1 ×B) · (σ2 ×A) + (σ1 ×B) · (σ2 ×C)
]

+
1

λ3(x, y)

[
(A ·B)(A ·C) + σ1 · (A×B)σ2 · (A×C)

]]
+

1

λ(x, y)
(τ1 × τ2)z

[
− 3σ2 · (A×C)

−B · (σ2 ×A) + (A+B) · (σ2 ×C)− 1

λ2(x, y)
A ·Bσ2 · (A×C)

]]
+ 1 ⇋ 2 , (2.38)

ρ
(1)
i = e

1

π

g2A
F 2
π

CT G
V
E(q

2) τ1,z σ1 · σ2mπ + 1 ⇋ 2 , (2.39)

ρ
(1)
j = −e 1

π

g2A
F 2
π

CT Gπ(q
2) τ1,z

∫ 1/2

0

dx

[
3L2(x, q)−m2

π

L(x, q)
σ1 · σ2

−1/4− x2

L(x, q)
σ1 · q σ2 · q

]
+ 1 ⇋ 2 , (2.40)

where we have defined

L2(x, p) = (1/4− x2)p2 +m2
π , (2.41)

λ2(x, y) = xq2/4−
[
x y q− (1− x)k

]2
+ (1− x)k2 +m2

π , (2.42)

A = −x (y q+ k) , (2.43)

B = (1− 2 x y)q/2 + (1− x) k , (2.44)

C = − (1 + 2 x y)q/2 + (1− x) k . (2.45)

It is easily verified that the charge operators (c)+(d), (e)+(f), and (i)+(j) vanish at q = 0. Finally, we note that the
form of the operator (e) depends on the off-the-energy-shell prescription adopted for the non-static corrections to the
TPE potential. As in the OPE case, however, these different forms for the TPE non-static potential and accompanying

charge operator are unitarily equivalent [6], in particular ρ
(1)
e (ν) = ρ

(1)
e (0) +

[
ρ(−3) , i U (1)(ν)

]
. In closing, we note

that the re-analysis, outlined in Appendix B, of the loop corrections to the short-range charge operators illustrated
in panels (g)-(j) has led to expressions which are different from those reported originally in Ref. [5]. They also differ
from those in Ref. [8].
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(e)

(a) (b) (d)(c)

(h)(g)(f)

(j)(i)

FIG. 3: Diagrams illustrating two-body charge operators entering at order n = 1 or eQ. Nucleons, pions, and photons are
denoted by the solid, dashed, and wavy lines, respectively. Only one among the possible time orderings is shown.

III. CALCULATION

The deuteron charge (GC), magnetic (GM ), and quadrupole (GQ) form factors are obtained from [23]

GC(q) =
1

3

∑

M=±1,0

〈d;M | ρ(q ẑ) | d;M〉 , (3.1)

GM (q) =
1√
2 η

Im [ 〈d; 1 | jy(q ẑ) | d; 0〉 ] , (3.2)

GQ(q) =
1

2 η

[
〈d; 0 | ρ(q ẑ) | d; 0〉

−〈d; 1 | ρ(q ẑ) | d; 1〉
]
, (3.3)

where | d;M〉 is the deuteron state with spin projection Jz = M , ρ and jy denote, respectively, the charge operator
and y component of the current operator, the momentum transfer q is taken along the z-axis (the spin quantization
axis), and η = (q/2md)

2 (md is the deuteron mass). They are normalized as

GC(0) = 1 , GM (0) = (md/mN)µd , GQ(0) = m2
dQd , (3.4)

where µd and Qd are the deuteron magnetic moment (in units of µN ) and quadrupole moment, respectively. Expres-
sions relating the form factors to the measured structure functions A and B, and tensor polarization T20 are given
in Ref. [23]. The calculations are carried out in momentum space [23] with techniques similar to those described in
some detail below for the trinucleons.
The charge and magnetic form factors of the trinucleons are derived from

FC(q) =
1

Z
〈+ | ρ(q ẑ) |+〉 , (3.5)

FM (q) = −2mN

q
Im [ 〈−| jy(q ẑ) |+〉 ] , (3.6)

with the normalizations

FC(0) = 1 , FM (0) = µ , (3.7)

where µ is the magnetic moment (in units of µN ). Here | ±〉 represent either the 3He state or 3H state in spin
projections Jz = ±1/2. In momentum space, the one-body electromagnetic operators in Sec. II have the generic form

O1b(q) =
∑

cyclic l,m,n

δ(kl − q) δ(km) δ(kn) O1b(kl,Kl) , (3.8)
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and their matrix elements can be written as

〈O1b(q)〉 =
∑

cyclic l,m,n

∫

pl,pm,pn

ψ†
M ′(pl + q/2,pm,pn)

×O1b(q,pl)ψM (pl − q/2,pm,pn) , (3.9)

where we have defined
∫

pi

=

∫
dpi

(2 π)3
and δ(. . . ) = (2 π)3 δ(. . . ) . (3.10)

For an assigned configuration (pl,pm,pn), the wave functions are expanded on a basis of 8× 3 spin-isospin states for
the three nucleons as

ψ(pl,pm,pn) =

24∑

a=1

ψa(pl,pm,pn) |a〉 , (3.11)

where the components ψa are complex functions and the basis states (for 3H, for example) | a〉 =| (p ↑)1, (n ↑)2, (n ↑)3〉,
| (n ↑)1, (p ↑)2, (n ↑)3〉, and so on. The spin-isospin algebra for the overlaps

ψ†Oψ =

24∑

a,b=1

ψ∗
a Oab ψb , (3.12)

is carried out with the techniques developed in Ref. [24]. Monte Carlo (MC) methods are used to evaluate the
integrations in Eq. (3.9) by sampling momenta from a (normalized) probability density | ψM (pl,pm,pn) |2 according
to the Metropolis algorithm.
The two-body operators in Sec. II have the momentum-space representation

O2b(q) =
∑

cyclic l,m,n

δ(Klm − q) δ(kn)

×O2b(Klm/2 + klm,Klm/2− klm) , (3.13)

where the momenta Klm = kl + km and klm = (kl − km)/2. These operators have power law behavior at large
momenta, and need to be regularized. This is accomplished by introducing a momentum cutoff function of the form

CΛ(klm) = e−(klm/Λ)4 , (3.14)

with the parameter Λ in the range (500–600) MeV (see discussion in Sec. IV). The matrix elements are expressed as

〈O2b(q)〉 =
∑

cyclic l,m,n

∫

klm

∫

pl,pm,pn

ψ†
M ′ (pl + q/4 + klm/2,pm + q/4− klm/2,pn)CΛ(klm)

×O2b(q,klm)ψM (pl − q/4− klm/2,pm − q/4 + klm/2,pn) . (3.15)

The spin-isospin algebra is handled as above, while the multidimensional integrations are efficiently done by a com-
bination of MC and standard quadratures techniques. We write

〈O2b(q)〉=
∫
dk̂

∫

pl,pm,pn

F (k̂,pl,pm,pn) ≃
1

Nc

Nc∑

c=1

F (c)

W (c)
, (3.16)

where c denotes configurations (k̂,pl,pm,pn) (total number Nc) sampled with the Metropolis algorithm from the

probability density W (c) =| ψM (pl,pm,pn) |2/(4 π), i.e., uniformly over the k̂ directions. For each such configuration
c, the function F is obtained by Gaussian integration over the magnitude klm (as well as the parameters x and y for
the case of the charge operators at one loop)

F (c) =
∑

cyclic l,m,n

1

(2 π)3

∫ ∞

0

dklm k2lm

24∑

a,b=1

ψ∗
a(. . . klmk̂ . . . )

×O2b,ab(q, klmk̂)ψb(. . . klmk̂ . . . ) . (3.17)
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Convergence in these Gaussian integrations requires of the order of 20–30 points, in the case of klm distributed over
a non-uniform grid up to 2Λ or so, while Nc of the order of 100, 000 is sufficient to reduce the statistical errors in
the MC integrations, which are of the order of a few % at the highest q values (and considerably smaller at lower
q). These MC errors are further reduced by taking appropriate linear combinations of the matrix elements of the
electromagnetic operators using different q̂ directions and different spin projections for the initial and final states. The
trinucleons wave functions are obtained with the hyperspherical harmonics (HH) expansion discussed in Refs. [25–27].
This method can be applied in either coordinate- or momentum-space. Below, we briefly review its momentum-space
implementation.

A. The hyperspherical harmonics method in momentum-space

The trinucleon wave functions with total angular momentum JJz are written as

|ψJJz〉 =
∑

µ

cµ |ψJJz

µ 〉 , (3.18)

where |ψJJz

µ 〉 is a suitable complete set of states, and µ is an index denoting the set of quantum numbers necessary to
specify the basis elements (see below). By applying the Rayleigh-Ritz variational principle, the problem of determining
cµ and the ground-state energy E0 of the system is reduced to a generalized eigenvalue problem.
In momentum space we define the Jacobi momenta as

k2p = (pj − pi) /
√
2 , k1p =

√
2/3
[
pk − (pi + pj) /2

]
, (3.19)

where pi denotes the momentum of nucleon i and p specifies a given permutation of the three nucleons, with p = 1
corresponding to the ordering 1,2,3. We introduce a hyper-momentum K and a set of angular and hyper-angular
variables as

K =
(
k21p + k22p

)1/2
, Ω(K)

p =
[
k̂2p, k̂1p ;φp

]
, (3.20)

where tanφp = k1p/k2p . In terms of these variables, the basis functions |ψJJz

µ 〉 are defined as

|ψJJz)
µ 〉 = gG l(K)Y{G}

(
Ω(K)

)
, (3.21)

where Y{G}

(
Ω(K)

)
are written as [28]

Y{G}(Ω
(K)) =

3∑

p=1

[
Y LLz

[G]

(
Ω(K)

p

)
⊗
[
S2 ⊗

1

2

]

SSz

]

JJz

×
[
T2 ⊗

1

2

]

TTz

, (3.22)

and the sum is over the three even permutations. The spins (isospins) of nucleons i and j are coupled to S2 (T2),
which is then coupled to the spin (isospin) of the third nucleon to give a state with total spin S (isospin TTz). The
total orbital angular momentum L and total spin S are coupled to the total angular momentum JJz . The functions

Y LLz

[G] (Ω
(K)
p ) with definite values of LLz are the hyperspherical-harmonics functions, and are written as [25]

Y LLz

[G]

(
Ω(K)

p

)
=

[
Yℓ2(k̂2p)⊗ Yℓ1(k̂1p)

]

LLz

N[G] (cosφp)
ℓ2

×(sinφp)
ℓ1 P

ℓ1+
1

2
,ℓ2+

1

2

n (cos 2φp) , (3.23)

where Yℓ1(k̂1p) and Yℓ2(k̂2p) are spherical harmonics, N[G] is a normalization factor, and P
ℓ1+

1

2
,ℓ2+

1

2

n (cos 2φp) denotes
the Jacobi polynomial of degree n. The grand angular quantum numberG is defined asG = 2n+ℓ1+ℓ2. The subscripts
{G} and [G] in Eqs. (3.21)–(3.23) stand, respectively, for {G} ≡ {ℓ1, ℓ2, L, S2, T2, S, T ;n} and [G] ≡ [ℓ1, ℓ2;n], and µ
in Eq. (3.18) stands for µ ≡ {G} l. Finally, the functions gGl(K) in Eq. (3.21) are defined as

gG l(K) =
(−i)G
K2

∫ ∞

0

dρ ρ3 JG+2(Kρ) fl(ρ) , (3.24)
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where JG+2(Kρ) are Bessel functions and the functions fl(ρ) are related to Laguerre polynomials L
(5)
l (γρ) via

fl(ρ) = γ3
√
l!/(l+ 5)! L

(5)
l (γρ) e−γρ/2 . (3.25)

The non-linear parameter γ is variationally optimized. With this form of fl(ρ), the corresponding functions gG l(K)
can easily be calculated, and are explicitly given in Ref. [26]. The form adopted for gG l(K) is such that the momentum-
space basis is simply the Fourier transform of the coordinate-space one [27].

IV. RESULTS

This section consists of three subsections. In the first one, we discuss various strategies for the determination of the
unknown LEC’s d′8, d

′
9, d

′
21, C

′
15, and C′

16 entering the current operator at N3LO. In contrast, the charge operator
up to N4LO only depends on the nucleon axial coupling constant gA, pion decay amplitude Fπ, and nucleon mass
and magnetic moments. The values adopted in the present work for gA and Fπ are, respectively, 1.28 and 184.6
MeV, which give a πN coupling constant (gπNN ) of 13.6, as obtained in analyses of NN elastic scattering data at
energies below the pion production threshold [29]. The two-body operators are regularized via the cutoff function in
Eq. (3.14), and Λ values of 500 MeV and 600 MeV are considered.
In the second and third subsections we present results, respectively, for the deuteron A(q) and B(q) structure

functions and tensor polarization T20(q), and for the charge and magnetic form factors of 3H and 3He, along with
results for the static properties of these few-nucleon systems including the deuteron quadrupole moment, the deuteron
and trinucleons charge and magnetic radii and magnetic moments. The A = 2 calculations use either the Argonne
v18 (AV18) [19] or chiral potentials at order Q4 with cutoff set at 500 MeV (N3LO) or 600 MeV (N3LO∗) [20]. Of
course, the A = 3 calculations also include three-nucleon potentials—the Urbana-IX model [30] in combination with
the AV18, and the chiral N2LO potential [31] in combination with either the N3LO or N3LO∗. The LEC’s cD and cE
(in standard notation) in the chiral three-nucleon potential have been constrained by reproducing the 3H/3He binding
energies and the tritium Gamow-Teller matrix element [32] in each case. With the AV18/UIX Hamiltonian, the 3H
and 3He binding energies are found to be 8.487 MeV and 7.747 MeV, respectively.
The calculations are carried out in configuration space in the first subsection, and in momentum space—with the

methods outlined in Sec. III—in the following two subsections. We have checked that the r- and p-space versions
of the computer codes produce identical results up to to tiny differences due to numerics and to numerically non-
equivalent implementations of the momentum cutoff function in Eq. (3.14) in these r- and p-space calculations. The
hadronic electromagnetic form factors entering the one- and two-body charge and current operators are those specified
in Sec. II. The matrix elements of these operators are evaluated in the Breit frame with Monte Carlo methods. The
number of sampled configurations is of the order of 106 for the deuteron and 105 for the A = 3 systems. The statistical
errors, which are not shown in the results that follow, are typically . 1% over the whole momentum-transfer range,
and in fact much less than 1% for q . 2 fm−1.

A. Determination of the LEC’s

As already remarked, the LEC’s Ci, i = 1, . . . , 7, in the minimal contact current, corresponding to Λ cutoffs of
500 and 600 MeV, are taken from fits to NN scattering data [20]. In reference to the LEC’s entering the OPE and

non-minimal contact currents at N3LO, it is convenient to introduce the adimensional set dS,Vi (in units of the cutoff
Λ) as

C′
15 = dS1 /Λ

4 , d′9 = dS2 /Λ
2,

C′
16 = dV1 /Λ

4 , d′8 = dV2 /Λ
2 , d′21 = dV3 /Λ

2 ,

(4.1)

where the superscript S or V on the dS,Vi characterizes the isospin of the associated operator, i.e., whether it is isoscalar
or isovector. The isoscalar dSi , listed in Table I, have been fixed by reproducing the experimental deuteron magnetic
moment µd and isoscalar combination µS of the trinucleon magnetic moments. The LEC dS1 multiplying the contact
current is rather large, but not unreasonably large, while the LEC dS2 is quite small. The cumulative contributions
to µd and µS are reported in Table II. The NLO and N3LO-loop magnetic moment operators are isovector, and
therefore do not contribute to these isoscalar observables. At N3LO the only non-vanishing contributions are those
associated with the OPE and minimal (min) and non-minimal (nm) contact currents. Of course, the last row in
Table II reproduces the experimental values for µd and µS .
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TABLE I: Adimensional values of the isoscalar LEC’s corresponding to cutoffs Λ = 500 MeV and 600 MeV obtained for the
N3LO/N2LO and N3LO∗/N2LO∗ Hamiltonians; the values in parentheses are relative to the AV18/UIX Hamiltonian.

Λ dS1 dS2 × 10
500 4.072 (2.522) 2.190 (–1.731)
600 11.38 (5.238) 3.231 (–2.033)

TABLE II: Cumulative contributions to the deuteron and trinucleons isoscalar magnetic moments in units of µN , corresponding
to cutoffs Λ = 500 MeV and 600 MeV obtained for the N3LO/N2LO and N3LO∗/N2LO∗ Hamiltonians; the contributions in
parentheses are relative to the AV18/UIX Hamiltonian. The experimental values for the deuteron and trinucleons isoscalar
magnetic moments are 0.8574 µN and 0.4257 µN , respectively.

µd µS

Λ 500 600 500 600
LO 0.8543 (0.8472) 0.8543 (0.8472) 0.4222 (0.4104) 0.4220 (0.4104)

N2LO 0.8471 (0.8400) 0.8474 (0.8400) 0.4143 (0.4027) 0.4155 (0.4027)
N3LO(min) 0.8725 (0.8739) 0.8806 (0.8760) 0.4501 (0.4455) 0.4611 (0.4483)
N3LO(nm) 0.8548 (0.8593) 0.8538 (0.8626) 0.4247 (0.4269) 0.4235 (0.4313)
N3LO(OPE) 0.8574 (0.8574) 0.8574 (0.8574) 0.4257 (0.4257) 0.4257 (0.4257)

The isovector LEC dV3 is taken as dV2 /4 by assuming ∆ dominance. The three different sets of remaining LEC’s dV1
and dV2 reported in Table III have been determined in the following way. In set I dV1 and dV2 have been constrained to
reproduce the experimental values of the np radiative capture cross section σnp at thermal neutron energies and the
isovector combination µV of the trinucleons magnetic moments. This procedure, however, leads to unreasonably large
values for both LEC’s, and is clearly unacceptable. In particular, it makes the contributions of the associated magnetic
dipole operators unnaturally large, and, as shown in Table IV, totally spoils the expected convergence pattern. This
pathology is especially severe in the case of the AV18/UIX Hamiltonian model.

In sets II and III dV2 is assumed to be saturated by the ∆ resonance, i.e.

dV2 =
4µγN∆ hAΛ2

9mN (m∆ −mN)
, (4.2)

where m∆ − mN = 294 MeV, hA/Fπ = fπN∆/mπ with f2
πN∆/(4 π) = 0.35 as obtained by equating the first-order

expression of the ∆-decay width to the experimental value, and the transition magnetic moment µγN∆ = 3µN [21]—a
similar strategy has been implemented in a number of calculations, based on the χEFT magnetic moment operator
derived in Ref. [4], of the np, nd, and n3He radiative captures, and magnetic moments of A = 2 and 3 nuclei [33]. On
the other hand, the LEC dV1 multiplying the contact current is fitted to reproduce either σnp in set II or µV in set III.
Both alternatives still lead to somewhat large values for this LEC, but we find the degree of unnaturalness tolerable
in this case. We observe that there are no three-body currents at N3LO [22], and therefore it is reasonable to fix the
strength of this M1 operator by fitting a three-nucleon observable such as µV .

Cumulative contributions to σnp and µV are listed in Table IV. At N3LO, we have identified separately those due only
to loop currents labeled as N3LO(loop), and those from loop+minimal contact currents labeled as N3LO(min). The
experimental values for σnp and µV are reproduced with set I, row labeled N3LO(OPE, dV2 -I), while only σnp or µV

are reproduced with set II or III, rows labeled N3LO(OPE, dV2 -II) or N3LO(OPE, dV2 -III). Indeed, the N3LO(OPE,
dV2 -II or III) results provide predictions for µV or σnp, respectively. These predictions are within 3% for µV and 1%
for σnp of the experimental values, and exhibit a weak cutoff and Hamiltonian-model dependence.

In Ref. [22] the dS,Vi were determined using the same procedure adopted here for set I. However, the values reported
in that work are drastically different from those obtained in the present one. These differences are due to several

TABLE III: Adimensional values of the isovector LEC’s corresponding to cutoffs Λ = 500 MeV and 600 MeV obtained for the
N3LO/N2LO and N3LO∗/N2LO∗ Hamiltonians; the values in parentheses are relative to the AV18/UIX Hamiltonian. Note
that dV3 = dV2 /4 in all cases; see text for further explanations.

Λ dV1 (I) dV2 (I) dV1 (II) dV2 (II) dV1 (III) dV2 (III)
500 10.36 (45.10) 17.42 (35.57) –13.30 (–9.339) 3.458 –7.981 (–5.187) 3.458
600 41.84 (257.5) 33.14 (75.00) –22.31 (–11.57) 4.980 –11.69 (–1.025) 4.980
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TABLE IV: Cumulative contributions to the np radiative capture cross section in mb and trinucleons isovector magnetic
moment in units of µN , corresponding to cutoffs Λ = 500 MeV and 600 MeV obtained for the N3LO/N2LO and N3LO∗/N2LO∗

Hamiltonians; the contributions in parentheses are relative to the AV18/UIX Hamiltonian. See text for further explanations.
The experimental values for the np cross section and trinucleons isovector magnetic moment are (332.6±0.7) mb and −2.553 µN ,
respectively.

σnp µV

Λ 500 600 500 600
LO 305.8 (304.6) 304.6 (304.6) –2.193 (–2.159) –2.182 (–2.159)
NLO 320.6 (319.3) 318.9 (320.9) –2.408 (–2.382) –2.392 (–2.413)
N2LO 319.2 (317.7) 317.6 (319.2) –2.384 (–2.359) –2.370 (–2.390)

N3LO(loop) 321.3 (320.9) 320.5 (322.4) –2.430 (–2.418) –2.432 (–2.448)
N3LO(min) 321.3 (320.9) 320.5 (322.4) –2.413 (–2.406) –2.415 (–2.437)

N3LO(nm, dV1 -I) 315.2 (287.4) 305.7 (242.7) –2.297 (–1.782) –2.142 (–0.9029)
N3LO(OPE, dV2 -I) 332.6 (332.6) 332.6 (332.6) –2.553 (–2.553) –2.553 (–2.553)

N3LO(nm, dV1 -II) 329.1 (328.1) 328.5 (326.2) –2.562 (–2.535) –2.561 (–2.506)
N3LO(OPE, dV2 -II) 332.6 (332.6) 332.6 (332.6) –2.612 (–2.610) –2.622 (–2.616)

N3LO(nm, dV1 -III) 326.0 (324.9) 324.7 (322.7) –2.502 (–2.478) –2.491 (–2.443)
N3LO(OPE, dV2 -III) 329.4 (329.4) 328.8 (329.1) –2.553 (–2.553) –2.553 (–2.553)

TABLE V: Cumulative contributions to the deuteron root-mean-square charge radius and quadrupole moment corresponding
to cutoffs Λ = 500 and 600 MeV obtained with the N3LO and N3LO∗ Hamiltonians; results in parentheses are relative to the
AV18 Hamiltonian. The experimental values for rd and Qd are 1.9734(44) fm [34] and 0.2859(3) fm2 [35], respectively.

rd (fm) Qd (fm2)
Λ 500 600 500 600
LO 1.976 (1.969) 1.968 (1.969) 0.2750 (0.2697) 0.2711 (0.2697)

N2LO 1.976 (1.969) 1.968 (1.969) 0.2731 (0.2680) 0.2692 (0.2680)
N3LO(OPE) 1.976 (1.969) 1.968 (1.969) 0.2863 (0.2818) 0.2831 (0.2814)

N3LO(ν = 1/2) 1.976 (1.969) 1.968 (1.969) 0.2851 (0.2806) 0.2820 (0.2802)

factors: i) in Ref. [22] the M1 operator derived from Eq. (2.29) included an isovector loop correction proportional
to the LEC’s CS and CT , which turns out to vanish in a more careful analysis of the relevant diagrams (the loop
short-range currents discussed in Appendix B); ii) in Ref. [22] the values for the LECs C1, . . . , C7 were taken from a
chiral potential obtained at Q2 (NLO) [5] rather than at Q4 (N3LO) [20] as in the present case; iii) in Ref. [22] the
minimal contact current is the Fierz-transformed version of that given in Eq. (2.20) (see discussion in Appendix A).
However, this Fierz equivalence is spoiled by the regularization procedure, i.e. by the inclusion of the same cutoff
function CΛ(k) for both. Hence the contribution of this current in the present work is different from that obtained in
Ref. [22].

B. Static properties and form factors of the deuteron

The deuteron root-mean-square charge radius and quadrupole moment, obtained with the chiral and AV18 potentials
and cutoff parameters Λ = 500 MeV and 600 MeV, are listed in Table V. We denote the leading order (n = −3 in
the notation of Sec. II) term of Eq. (2.5) with LO, the n = −1 relativistic correction of Eq. (2.11) with N2LO, and
the n = 0 terms of Eqs. (2.12) and (2.13)–(2.14) with N3LO(OPE) and N3LO(ν), respectively. The remaining charge
operators at N4LO (n = 1), being isovector, do not contribute to these observables (and corresponding form factors).
The N3LO/N3LO∗ and AV18 potentials neglect retardation corrections in their OPE component, which corresponds
to setting ν = 1/2 in Eq. (2.15). Note that the isoscalar piece of the N3LO(ν) charge operator scales as 1 − ν,
and contributes less than 0.5% of the LO result for ν = 1/2. The N2LO and N3LO corrections to rd, which is well
reproduced by theory, are negligible. The chiral potential predictions for Qd are within 1% of the experimental value,
while the AV18 ones underestimate it by about 2%. Variation of the cutoff in the (500–600) MeV range leads to about
1% (negligible) changes in the N3LO/N3LO∗ (AV18) results. The LO and N2LO charge operators do not include the
cutoff function and the AV18 results are independent of Λ. This is not the case for the results corresponding to the
N3LO and N3LO∗ potentials because of their intrinsic Λ dependence.
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FIG. 4: (Color online). The deuteron A(q) structure function and tensor polarization T20(q) (top panels), and charge and
quadrupole form factors GC(q) and GQ(q) (bottom panels), obtained at leading order (LO) and with inclusion of charge
operators up to N3LO (TOT), is compared with experimental data from Refs. [36–57]. Predictions corresponding to ν = 1/2
and cutoffs Λ in the range 500–600 MeV are displayed by the bands.

The deuteron A(q) structure function and tensor polarization T20(q), obtained at LO and by including corrections
up to N3LO in the charge operator, are compared to data in Fig. 4, top panels. In this figure (as well as in those that
follow) the momentum-transfer range goes up to q = 7.5 fm−1, much beyond the ≃ 3–4 mπ upper limit, where one
would naively expect this comparison to be meaningful, given that the present theory retains up to TPE mechanisms.
On the other hand, we note that the next (non-vanishing) isoscalar contributions only enter at N5LO (n = 2) [11],
and are therefore suppressed by two powers of Q relative to those at N3LO.
The A(q) structure function is well reproduced by theory up to q ≃ 3 fm−1. At higher momentum transfers, the

N3LO results based on the AV18 tend to overestimate the data—a feature also seen in the conventional approach of
Ref. [23]—while those based on the chiral potentials still provide a good fit to the data. The cutoff dependence is
weak at low q, but becomes more pronounced as q increases.
Similar considerations hold for the T20(q) observable, although in this case the N3LO results derived from the

chiral potentials overpredict the data for q & 3 fm−1, while those from the AV18 fit reasonably well the data up to
q ≃ 4.5 fm−1. In contrast, the conventional approach [23] (also based on the AV18, of course) reproduces very well the
measured T20 over the whole q-range. The OPE charge operator in that work has the same structure as the present
N3LO(OPE) one, but includes a much harder cutoff than adopted here. Furthermore, the calculation of Ref. [23] also
retains short-range (isoscalar) mechanisms associated with ρ-meson exchange and γπρ transition, which in χEFT are
presumably subsumed in contact operators at N5LO [11]. We note that in both A(q) and T20(q) a small magnetic
contribution, discussed separately below, is accounted for (the electron scattering angle in T20 is set at 70◦).
The charge and quadrupole form factors extracted from the unpolarized and tensor polarized deuteron data are

compared to results obtained in LO and by including corrections up to N3LO in Fig. 4, bottom panels. The GC(q) and
GQ(q) form factors calculated with deuteron wave functions from the chiral potentials are in qualitative agreement
with predictions obtained by Phillips [11] at the same chiral order (although the Q4 potentials used in that study
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TABLE VI: Individual contributions to the monopole form factor GC(q) corresponding to cutoff Λ = 500 MeV for the N3LO
Hamiltonian; ν = 1/2 and (−x) stands for 10−x.

q (fm−1) LO N2LO N3LO(OPE) N3LO(ν)
0.0 1.00 0.00 0.00 0.00
0.3 0.945 –0.340(–3) –0.211(–3) –0.600(–6)
0.6 0.792 –0.113(–2) –0.799(–3) –0.500(–6)
0.9 0.614 –0.196(–2) –0.165(–2) 0.530(–5)
1.2 0.452 –0.255(–2) –0.260(–2) 0.218(–4)
1.5 0.321 –0.280(–2) –0.349(–2) 0.515(–4)
1.8 0.220 –0.273(–2) –0.422(–2) 0.932(–4)
2.1 0.146 –0.242(–2) –0.470(–2) 0.143(–3)
2.4 0.920(–1) –0.197(–2) –0.493(–2) 0.195(–3)
2.7 0.547(–1) –0.145(–2) –0.493(–2) 0.245(–3)
3.0 0.295(–1) –0.923(–3) –0.474(–2) 0.287(–3)
3.3 0.131(–1) –0.448(–3) –0.441(–2) 0.319(–3)
3.6 0.295(–2) –0.518(–4) –0.400(–2) 0.339(–3)
3.9 –0.278(–2) 0.250(–3) –0.356(–2) 0.348(–3)
4.2 –0.556(–2) 0.453(–3) –0.311(–2) 0.346(–3)
4.5 –0.645(–2) 0.566(–3) –0.269(–2) 0.335(–3)
4.8 –0.621(–2) 0.602(–3) –0.230(–2) 0.318(–3)
5.1 –0.539(–2) 0.579(–3) –0.196(–2) 0.297(–3)

TABLE VII: Same as in Table VI, but for the quadrupole form factor GQ(q), normalized at q = 0 as in Eq. (3.4).

q (fm−1) LO N2LO N3LO(OPE) N3LO(ν)
0.0 24.8 –0.172 1.20 –0.108
0.3 23.5 –0.176 1.19 –0.986(–1)
0.6 19.7 –0.182 1.13 –0.968(–1)
0.9 15.3 –0.184 1.04 –0.936(–1)
1.2 11.4 –0.179 0.930 –0.890(–1)
1.5 8.29 –0.167 0.810 –0.829(–1)
1.8 5.92 –0.150 0.690 –0.757(–1)
2.1 4.18 –0.131 0.576 –0.677(–1)
2.4 2.92 –0.111 0.473 –0.596(–1)
2.7 2.03 –0.917(–1) 0.383 –0.515(–1)
3.0 1.39 –0.740(–1) 0.307 –0.440(–1)
3.3 0.947 –0.584(–1) 0.244 –0.371(–1)
3.6 0.635 –0.449(–1) 0.193 –0.310(–1)
3.9 0.418 –0.335(–1) 0.152 –0.257(–1)
4.2 0.268 –0.242(–1) 0.119 –0.212(–1)
4.5 0.167 –0.168(–1) 0.933(–1) –0.174(–1)
4.8 0.997(–1) –0.111(–1) 0.731(–1) –0.142(–1)
5.1 0.568(–1) –0.686(–2) 0.574(–1) –0.116(–1)

are from Ref. [62] rather than from Ref. [20] as in the present work). The spread in the N3LO results due to cutoff
variations observed here is similar to that reported in Ref. [11] for both GC(q) and GQ(q). However, the central values
for these observables in the momentum-transfer region q & 2.5 fm−1 reported in that work appear to underestimate
the data appreciably. This is not the case here, particularly for GQ(q), for which the N3LO predictions provide an
excellent fit to the measured values (up to q ≃ 6 fm−1). These differences likely arise from differences in the deuteron
wave functions obtained in Ref. [20] and Ref. [62] (see Fig. 16 in the 2011 review paper [20] for a comparison). Indeed,
for these same reasons, the AV18 results are in better agreement with data for GC(q) in the diffraction region than
the N3LO/N3LO∗, while the reverse is true for GQ(q) at q & 3 fm−1. The AV18 deuteron wave function, particularly
its D-wave component, is markedly different from the N3LO/N3LO∗ (see again Fig. 16 in the Machleidt and Entem
review [20]).
The individual contributions corresponding to Λ = 500 MeV and the N3LO potential are listed in Tables VI and VII

for q values in the range (0.0–5.1) fm−1. The N2LO (N3LO) charge operators are proportional to 1/m2
N (1/mN),

and therefore vanish in the static limit. The N3LO(OPE) correction is the leading one for q & 1.5 fm−1, and is
responsible for shifting the zero in the LO GC(q) to lower q. However, this correction interferes constructively with
the LO contribution in the case of GQ(q). The ν-dependent retardation correction N3LO(ν) is found to be negligible,
which allows one to conclude that violations of the unitary equivalence between the OPE potential and associated
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FIG. 5: (Color online). The deuteron B(q) structure function (top panel) and magnetic form factor GM (q) (bottom panel),
obtained at leading order (LO) and with inclusion of current operators up to N3LO (TOT), is compared with the experimental
data from Refs. [36, 42, 43, 58–60]. Predictions corresponding to cutoffs Λ in the range 500–600 MeV are displayed by the
bands.

charge operator is of little numerical import (for ν = 0–1).
The deuteron magnetic moment is one of the two observables utilized to fix the LEC’s entering the isoscalar current

operators at N3LO, denoted as N3LO(nm) and N3LO(OPE) in Sec. IVA and Table II. The structure function B(q)
and magnetic form factor GM (q), obtained with the AV18 and chiral potentials, and currents at LO and by including
corrections up to N3LO, are compared to data in Fig. 5. There is generally good agreement between theory and
experiment for q values up to ≃ 2 fm−1. At higher q’s, the results corresponding to the chiral (AV18) potential
under-predict (over-predict) the data significantly when the current includes up to N3LO corrections. In particular,
the diffraction seen in the data at q ≃ 6.5 fm−1 is absent in the AV18 calculations, and is shifted to lower q values in
the N3LO/N3LO∗ ones. There are large differences between the N3LO/N3LO∗ and AV18 results with the LO current,
which simply reflect differences in the S- and D-wave components of the deuteron wave functions corresponding to
these potentials. The cutoff dependence is large for the chiral potentials, while it remains quite modest for the AV18
over the whole momentum transfer range. This is consistent with the rather different sensitivity of the LEC’s dS1
and dS2 to variations of Λ in the (500-600) MeV range obtained with either the chiral potential or AV18, see Table I.
There is a mismatch in the chiral counting between the potentials of Ref. [20] at order Q4 and the present current
at order eQ. This becomes obvious when considering current conservation, which for these potentials would require
accounting for terms up to order eQ3 in the current, well beyond available derivations [5, 7, 8] at this time.
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TABLE VIII: Individual contributions to the magnetic form factor GM (q), normalized at q = 0 as in Eq. (3.4), corresponding
to cutoff Λ = 500 MeV for the N3LO Hamiltonian; (−x) stands for 10−x.

q (fm−1) LO N2LO N3LO(min) N3LO(nm) N3LO(OPE)
0.0 1.71 –0.144(–1) 0.508(–1) –0.353(–1) 0.483(–2)
0.3 1.62 –0.150(–1) 0.508(–1) –0.353(–1) 0.480(–2)
0.6 1.36 –0.159(–1) 0.495(–1) –0.343(–1) 0.473(–2)
0.9 1.07 –0.166(–1) 0.474(–1) –0.329(–1) 0.461(–2)
1.2 0.807 –0.166(–1) 0.447(–1) –0.310(–1) 0.444(–2)
1.5 0.590 –0.159(–1) 0.416(–1) –0.289(–1) 0.423(–2)
1.8 0.422 –0.144(–1) 0.382(–1) –0.265(–1) 0.399(–2)
2.1 0.296 –0.125(–1) 0.347(–1) –0.241(–1) 0.372(–2)
2.4 0.202 –0.104(–1) 0.312(–1) –0.217(–1) 0.344(–2)
2.7 0.134 –0.818(–2) 0.279(–1) –0.194(–1) 0.315(–2)
3.0 0.860(–1) –0.608(–2) 0.248(–1) –0.172(–1) 0.286(–2)
3.3 0.522(–1) –0.418(–2) 0.219(–1) –0.152(–1) 0.258(–2)
3.6 0.291(–1) –0.254(–2) 0.193(–1) –0.134(–1) 0.231(–2)
3.9 0.138(–1) –0.120(–2) 0.169(–1) –0.117(–1) 0.206(–2)
4.2 0.415(–2) –0.159(–3) 0.148(–1) –0.103(–1) 0.183(–2)
4.5 –0.152(–2) 0.581(–3) 0.130(–1) –0.899(–2) 0.162(–2)
4.8 –0.444(–2) 0.105(–2) 0.113(–1) –0.785(–2) 0.143(–2)
5.1 –0.554(–2) 0.128(–2) 0.988(–2) –0.686(–2) 0.126(–2)

The AV18 results obtained here for B(q) are similar to those reported in the conventional framework of Ref. [23]
(see curve labeled IA+ρπγ-NR in Fig. 5). In that work, the current included the standard impulse-approximation
(IA) term—the LO current in χEFT—and the two-body term from ρπγ transitions. The size, and in fact sign, of
the ρπγ contribution were found to depend on whether the current was derived by retaining the fully relativistic (R)
structure of the associated Feynman amplitude, or only the leading-order term in its non-relativistic (NR) expansion—
in this latter case, it is essentially the N3LO(OPE) current of Eq. (2.24). Indeed, the ρπγ contribution had the same
(opposite) sign as the IA when it was evaluated with the NR (R) current, and the IA+ρπγ(NR) results overestimated
the data by an amount similar to that shown in Fig. 5.
Recently, a calculation of the deuteron magnetic structure, based on the same χEFT utilized here, has appeared

in the literature [12]. It uses chiral potentials at order Q2 derived in Ref. [62], and a different strategy from that
adopted here for constraining the two LEC’s in the isoscalar N3LO current. One of them is still fixed by reproducing
µd ; the other, however, is determined by a fit to B(q) data up to q ≃ 2 fm−1. Predictions for this observable in
q = (2–4) fm−1 seem to overestimate the data at the highest q values (q & 3.5 fm−1), but display much less cutoff
dependence than obtained here. This is clearly due to the different way in which the LEC’s are constrained in the
two calculations.
Finally, in Table VIII we list the individual contributions to GM (q) obtained with the N3LO potential and cutoff

Λ = 500 MeV. The notation is as follows: LO is the leading-order (eQ−2) current of Eq. (2.4); N2LO is the relativistic
correction of order n = 0 (eQ0) in Eq. (2.10); N3LO(min), N3LO(nm), and N3LO(OPE) are the corrections of order
n = 1 (eQ) in Eqs. (2.20), (2.21), and (2.24), respectively. The N3LO(min) and N3LO(nm) contributions from
the minimal and non-minimal contact currents cancel to a large extent, and their combined effect is comparable to
the N3LO(OPE) contribution. This interplay among different corrections, however, depends strongly on Λ and the
Hamiltonian model considered.

C. Static properties and form factors of the trinucleons

The notation for the various components of the charge operator is the same as given at the beginning of Sec. IVB,
except that now the one-loop (isovector) corrections at N4LO contribute too, since the 3He and 3H nuclei have
predominantly total isospin T = 1/2. As a matter of fact, the hyperspherical harmonics wave functions utilized to
represent their ground states also include small T = 3/2 admixtures due to isospin-symmetry breaking terms induced
by the electromagnetic and strong interactions.
There are no unknown LEC’s entering the charge operator up to N4LO, and the predicted root-mean-square

charge radii of 3He and 3H, obtained with the N3LO/N2LO and AV18/UIX combinations of two- and three-nucleon
potentials and cutoffs in the (500–600) MeV range, are listed in Table IX. Corrections at N2LO, N3LO, and N4LO
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FIG. 6: (Color online). The 3He and 3H charge form factors (top panels), and their isoscalar and isovector combinations
(bottom panels), obtained at leading order (LO) and with inclusion of charge operators up to N4LO (TOT), is compared with
experimental data [61]. Predictions corresponding to ν = 1/2 and cutoffs Λ in the range (500–600) MeV are displayed by the
bands.

TABLE IX: Cumulative contributions in fm to the 3He and 3H root-mean-square charge radii corresponding to ν = 1/2 and
cutoffs Λ = 500 MeV and 600 MeV, obtained with the N3LO/N2LO and N3LO∗/N2LO∗ Hamiltonians; results in parentheses
are relative to the AV18/UIX Hamiltonian. The experimental values for the 3He and 3H charge radii are [60] (1.959 ± 0.030)
fm and (1.755 ± 0.086) fm, respectively.

3He 3H
Λ 500 600 500 600
LO 1.966 (1.950) 1.958 (1.950) 1.762 (1.743) 1.750 (1.743)

N2LO 1.966 (1.950) 1.958 (1.950) 1.762 (1.743) 1.750 (1.743)
N3LO 1.966 (1.950) 1.958 (1.950) 1.762 (1.743) 1.750 (1.743)
N4LO 1.966 (1.950) 1.958 (1.950) 1.762 (1.743) 1.750 (1.743)

are negligible—the corresponding operators vanish at q = 0. The spread between the N3LO/N2LO (Λ = 500 MeV)
and N3LO∗/N2LO∗ (Λ = 600 MeV) results at LO is about 0.5%, which is much smaller, particularly for 3H, than
the experimental error. The predicted radii for both Hamiltonian models are within 0.5% of the current experimental
central values.
The calculated charge form factors of 3He and 3H, and their isoscalar and isovector combinations FS

C (q) and FV
C (q),

normalized, respectively, to 3/2 and 1/2 at q = 0, are compared to data in Fig. 6. The agreement between theory and
experiment is excellent for q . 2.5 fm−1. At larger values of the momentum transfer, there is a significant sensitivity
to cutoff variations in the results obtained with the chiral potentials. This cutoff dependence is large at LO and is
reduced, at least in 3He, when corrections up to N4LO are included. These corrections have opposite sign than the
LO, and tend to shift the zeros in the form factors to lower momentum transfers, bringing theory closer to experiment
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FIG. 7: (Color online). The 3H charge form factor obtained with the N3LO/N2LO Hamiltonian, cutoff Λ = 500 MeV, and
charge operators up to N4LO corresponding to ν = 0, 1/2, and 1.

in the diffraction region.
As already remarked, the chiral (and conventional) two-nucleon potentials utilized in the present study ignore

retardation corrections in their OPE and TPE components, which corresponds to the choice ν = 1/2 in the non-static
pieces of the corresponding potentials and accompanying charge operators in Eqs. (2.13) and (2.37) [6]. Figure 7 is
meant to illustrate how inconsistencies between the potential and charge operator impact predictions for the 3H form
factor, by presenting results obtained with the N3LO/N2LO Hamiltonian (ν = 1/2), cutoff Λ = 500 MeV, and N3LO
and N4LO corrections with ν = 0 and 1 in the charge operator. Their effect is negligible.

In Fig. 8, we show cumulatively the LO, N2LO, N3LO, and N4LO contributions to the charge form factors of 3He
and 3H. The N2LO are smallest, while the N3LO and N4LO turn out to be comparable. This is illustrated explicitly
in Tables X and XI, where we list the individual contributions of the various terms entering at each order. In these
tables, we denote with N3LO(OPE) and N3LO(ν) the operators in Eqs. (2.12) and (2.13)–(2.14), respectively; with
N4LO(cd), N4LO(ef; ν), N4LO(ij) those in Eqs. (2.35)–(2.36), Eqs. (2.37)–(2.38), and Eqs. (2.39)–(2.40). Among
the corrections at N3LO the OPE term—column N3LO(OPE)—illustrated by panel (a) in Fig. 1 is dominant, while
among those at N4LO the TPE terms—columns N4LO(ef; ν) and N4LO(ij)—illustrated by panels (e)-(f) and (i)-(j)
in Fig. 3 are dominant. The N3LO(OPE) and N4LO(ef; ν) and N4LO(ij) contributions are of similar magnitude,
indeed there is no hint of suppression in going from N3LO to N4LO, as one would have naively expected on the basis
of power counting.
The 3He contributions in Table X have been divided by the number of protons Z = 2 in order to have the form

factor normalized to one at q = 0. The N4LO charge operators are isovector and, if 3He and 3H were pure T = 1/2
states, then 2×N4LO(3He)=–N4LO(3H). That this equality is not exactly satisfied reflects the fact that the present
3He and 3H wave functions are not simply the charge mirror of each other—that is, (

∏
i τi,x) |3He〉 6= |3H〉, where τi,x

is the x-component of nucleon i isospin operator.

Moving on to the magnetic structure of the trinucleons, we note that the isoscalar combination µS of 3He and 3H
magnetic moments is used to fix one of the two (isoscalar) LEC’s entering the current at N3LO. Both the isovector
combination µV and the np radiative capture cross section σnp are used to fix the isovector LEC’s in set I of the
N3LO currents, while in sets II and III one of these LEC’s is fixed by ∆ dominance, and the other is determined by
reproducing σnp (µV ) in set II (III), see Tables II and IV. By construction, then, the 3He and 3H magnetic moments
are exactly reproduced in sets I and III, while in set II they are calculated to be, respectively, –2.186 (–2.196) µN and
3.038 (3.048) µN with the N3LO/N2LO (N3LO∗/N2LO∗) Hamiltonian and Λ = 500 (600) MeV, and similar results
with the AV18/UIX Hamiltonian. These should be compared to the experimental values of –2.127 µN and 2.979 µN .
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FIG. 8: (Color online). Cumulative contributions to the 3He and 3H charge form factors, obtained with the N3LO/N2LO
Hamiltonian, cutoff Λ = 500 MeV, and ν = 1/2, from the components of the charge operator order by order.

TABLE X: Individual contributions to the 3He charge form factor, obtained with the N3LO/N2LO Hamiltonian, cutoff Λ = 500
MeV, and ν = 1/2; (−x) stands for 10−x.

q (fm−1) LO N2LO N3LO(OPE) N3LO(ν) N4LO(cd) N4LO(ef; ν) N4LO(ij)
0.0 1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.2 0.983 –0.561(–3) –0.152(–3) 0.100(–4) –0.477(–5) 0.904(–4) 0.301(–4)
0.6 0.807 –0.406(–2) –0.125(–2) 0.870(–4) 0.108(–3) 0.785(–4) 0.346(–3)
1.0 0.562 –0.760(–2) –0.289(–2) 0.205(–3) 0.296(–3) 0.126(–4) 0.835(–3)
1.4 0.342 –0.876(–2) –0.434(–2) 0.324(–3) 0.503(–3) –0.134(–3) 0.132(–2)
1.8 0.185 –0.758(–2) –0.513(–2) 0.409(–3) 0.680(–3) –0.347(–3) 0.167(–2)
2.2 0.892(–1) –0.525(–2) –0.516(–2) 0.447(–3) 0.796(–3) –0.585(–3) 0.184(–2)
2.6 0.366(–1) –0.288(–2) –0.463(–2) 0.433(–3) 0.841(–3) –0.796(–3) 0.184(–2)
3.0 0.111(–1) –0.107(–2) –0.380(–2) 0.385(–3) 0.821(–3) –0.938(–3) 0.170(–2)
3.4 0.623(–3) –0.969(–5) –0.292(–2) 0.315(–3) 0.750(–3) –0.989(–3) 0.148(–2)
3.8 –0.258(–2) 0.488(–3) –0.213(–2) 0.241(–3) 0.644(–3) –0.949(–3) 0.122(–2)
4.2 –0.276(–2) 0.577(–3) –0.148(–2) 0.174(–3) 0.522(–3) –0.831(–3) 0.957(–3)
4.6 –0.200(–2) 0.476(–3) –0.994(–3) 0.117(–3) 0.395(–3) –0.660(–3) 0.702(–3)
5.0 –0.119(–2) 0.318(–3) –0.642(–3) 0.730(–4) 0.274(–3) –0.469(–3) 0.476(–3)

The 3He and 3H magnetic radii corresponding to sets I-III are given in Table XII. The predicted values are consistent
with experiment, although the measurements have rather large errors (10% for 3H). Their spread as Λ varies in the
(500–600) MeV range is at the 1% level or less. A recent quantum Monte Carlo study [63], using wave functions
derived from conventional two- and three nucleon potentials (the AV18 and Illinois 7 model [64]) and set III of χEFT
currents, has led to predictions for magnetic moments and transitions in nuclei with A ≤ 9 in excellent agreement
with the measured values. Therefore in the following, unless stated otherwise, we adopt set III of isovector LEC’s.
We disregard set I for the reasons already explained in Sec. IVA.
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TABLE XI: Same as in Table X, but for 3H.

q (fm−1) LO N2LO N3LO(OPE) N3LO(ν) N4LO(cd) N4LO(ef; ν) N4LO(ij)
0.0 1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.2 0.991 0.647(–3) –0.185(–3) 0.110(–4) 0.103(–4) –0.190(–3) –0.633(–4)
0.6 0.844 0.462(–2) –0.152(–2) 0.880(–4) –0.229(–3) –0.136(–3) –0.729(–3)
1.0 0.621 0.844(–2) –0.356(–2) 0.245(–3) –0.628(–3) 0.459(–4) –0.176(–2)
1.4 0.402 0.940(–2) –0.543(–2) 0.462(–3) –0.107(–2) 0.396(–3) –0.278(–2)
1.8 0.231 0.784(–2) –0.653(–2) 0.686(–3) –0.144(–2) 0.874(–3) –0.352(–2)
2.2 0.118 0.520(–2) –0.671(–2) 0.858(–3) –0.169(–2) 0.138(–2) –0.389(–2)
2.6 0.517(–1) 0.270(–2) –0.615(–2) 0.944(–3) –0.179(–2) 0.182(–2) –0.389(–2)
3.0 0.174(–1) 0.903(–3) –0.519(–2) 0.940(–3) –0.174(–2) 0.210(–2) –0.361(–2)
3.4 0.204(–2) –0.972(–4) –0.411(–2) 0.867(–3) –0.159(–2) 0.218(–2) –0.314(–2)
3.8 –0.328(–2) –0.483(–3) –0.310(–2) 0.615(–3) –0.136(–2) 0.206(–2) –0.259(–2)
4.2 –0.403(–2) –0.508(–3) –0.225(–2) 0.543(–3) –0.110(–2) 0.178(–2) –0.201(–2)
4.6 –0.313(–2) –0.383(–3) –0.159(–2) 0.483(–3) –0.825(–3) 0.139(–2) –0.147(–2)
5.0 –0.196(–2) –0.232(–3) –0.108(–2) 0.364(–3) –0.565(–3) 0.942(–3) –0.985(–3)

TABLE XII: Cumulative contributions in fm to the 3He and 3H root-mean-square magnetic radii corresponding to cutoffs
Λ = 500 MeV and 600 MeV, obtained with the N3LO/N2LO and N3LO∗/N2LO∗ Hamiltonians; results in parentheses are
relative to the AV18/UIX Hamiltonian. Predictions corresponding to sets I, II, and II of isovector LEC’s dV1 and dV2 in
Table III are listed. The experimental values for the 3He and 3H magnetic radii are [60] (1.965±0.153) fm and (1.840±0.181) fm,
respectively.

3He 3H
Λ 500 600 500 600
LO 2.098 (2.092) 2.090 (2.092) 1.924 (1.918) 1.914 (1.918)
NLO 1.990 (1.981) 1.983 (1.974) 1.854 (1.847) 1.845 (1.841)
N2LO 1.998 (1.992) 1.989 (1.984) 1.865 (1.859) 1.855 (1.854)

N3LO(I) 1.924 (1.931) 1.910 (1.972) 1.808 (1.800) 1.796 (1.819)
N3LO(II) 1.901 (1.890) 1.883 (1.896) 1.789 (1.774) 1.773 (1.778)
N3LO(III) 1.927 (1.915) 1.913 (1.924) 1.808 (1.792) 1.794 (1.797)

The magnetic form factors of 3He and 3H and their isoscalar and isovector combinations FS
M (q) and FV

M (q), nor-
malized respectively as µS and µV at q = 0, at LO and with inclusion of corrections up to N3LO in the current,
are displayed in Fig. 9. As is well known from studies based on the conventional meson-exchange framework (see
the review [16] and references therein), two-body currents are crucial for “filling in” the zeros obtained in the LO
calculation due to the interference between the S- and D-state components in the ground states of these nuclei. For
q . 2 fm−1 there is excellent agreement between the present χEFT predictions and experiment. However, as the
momentum transfer increases, even after making allowance for the significant cutoff dependence, theory tends to
underestimate the data, in particular it predicts the zeros in both form factors occurring at significantly lower values
of q than observed. Thus, the first diffraction region remains problematic for the present theory, confirming earlier
conclusions derived from studies in the conventional framework [65, 66].
Figure 10 illustrates the sensitivity of the N3LO predictions on the different ways in which the isovector LEC’s are

constrained in sets I, II, III. The set I results are strongly at variance with data. Set II leads to two-body current
contributions larger than in set III, and consequently, in contrast to set III, the corresponding form factors reproduce
the data in the diffraction region. However, the cutoff variation of the results is considerably larger than for set III,
as reflected in the change of the LEC dV1 for Λ = 500–600 MeV in Table III. Furthermore, set II overestimates µV by
about 3%.

Figure 11 exhibits cumulatively the LO, NLO, N2LO, and N3LO contributions to the 3He and 3H magnetic form
factors, obtained with the N3LO/N2LO Hamiltonian and cutoff Λ = 500 MeV. Tables XIII and XIV list the individual
components of these contributions at selected values of q. The notation is as follows: with LO we denote the one-body
current in Eq. (2.4); with NLO the OPE currents in Eq. (2.7); with N2LO the relativistic correction to the one-body
current in Eq. (2.10); with N3LO(loop) the one-loop current in Eq. (2.29); with N3LO(min) the “minimal” contact
current in Eq. (2.20); with N3LO(nm) the “non-minimal” contact current in Eq. (2.21); and finally with N3LO(OPE)
the OPE currents at N3LO given in Eqs. (2.22) and (2.24). The NLO and N3LO(loop) are purely isovector, while the
remaining operators have both isoscalar and isovector terms. As in the case of the charge form factors, the expected
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FIG. 9: (Color online). The 3He and 3H magnetic form factors (top panels), and their isoscalar and isovector combinations
(bottom panels), obtained at leading order (LO) and with inclusion of current operators up to N3LO (TOT) corresponding
to the LEC’s dS1 and dS2 in Table I and to set III of isovector LEC’s dV1 and dV2 in Table III, are compared with experimental
data [61]. Predictions relative to cutoffs Λ in the range (500–600) MeV are displayed by the bands.

suppression of the NnLO corrections as (q/Λχ)
n, where we have taken Q ∼ q as the “low-momentum” scale and

Λχ = 700–800 MeV as the chiral-symmetry breaking scale, does not appear to be satisfied (not even at the smallest
q values).

V. CONCLUSIONS

In the first part of this study (Sec. II and Appendices A and B), we have clarified the origin of some of the differences
in the N3LO and N4LO corrections to the current and charge operators, reported in Ref. [5, 6] and in Ref. [8]. In
contrast to the authors of Ref. [8], we have not yet provided a complete derivation of the contributions associated
with loop corrections to tree-level (OPE) current and charge operators (although some were discussed in Ref. [5]); in
particular, we have not carried out a full-fledged renormalization of these operators in our formalism. However, as
pointed out in Sec. II A, the renormalized OPE current in Eq. (4.28) of Ref. [8] leads to the same magnetic moment
operator obtained from the currents in Eqs. (2.7), (2.22), and (2.24) of the present work, with the understanding, of
course, that the LEC’s entering these equations are assumed to have been renormalized. There remain differences in
the pion-loop corrections to the short range charge operator, Eq. (5.5) of Ref. [8] and Eqs. (2.39)–(2.40), the latter
presumably due to the different ways in which non-iterative pieces of reducible contributions are isolated in the two
formalisms. The authors of Refs. [7, 8] use TOPT in combination with the unitary transformation method [67] to
decouple, in the Hilbert space of pions and nucleons, the states consisting of nucleons only from those including, in
addition, pions. In contrast, we construct a potential such that, when iterated in the Lippmann-Schwinger equation,
leads to a T -matrix matching, order by order in the power counting, the χEFT amplitude calculated in TOPT [6, 68].
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FIG. 10: (Color online). The 3He and 3H magnetic form factors, obtained at leading order (LO) and with inclusion of current
operators up to N3LO (TOT) corresponding to sets I, II, and III of isovector LEC’s dV1 and dV2 in Table III, is compared with
experimental data [61]. Predictions, relative to the N3LO/N2LO Hamiltonian and corresponding to cutoffs Λ = 500–600 MeV,
are displayed by the bands.

TABLE XIII: Individual contributions to the 3He magnetic form factor, obtained with the N3LO/N2LO Hamiltonian, cutoff
Λ = 500 MeV, and set III of isovector LEC’s; (−x) stands for 10−x.

q (fm−1) LO NLO N2LO N3LO (L) N3LO (min) N3LO(nm) N3LO(OPE)
0.2 –1.72 –0.196 0.162(–1) –0.385(–1) 0.511(–1) –0.109 –0.488(–1)
0.6 –1.37 –0.184 0.160(–1) –0.358(–1) 0.478(–1) –0.101 –0.414(–1)
1.0 –0.898 –0.160 0.142(–1) –0.310(–1) 0.421(–1) –0.877(–1) –0.293(–1)
1.4 –0.495 –0.128 0.105(–1) –0.253(–1) 0.352(–1) –0.716(–1) –0.164(–1)
1.8 –0.228 –0.934(–1) 0.595(–2) –0.196(–1) 0.280(–1) –0.554(–1) –0.584(–2)
2.2 –0.794(–1) –0.632(–1) 0.189(–2) –0.145(–1) 0.214(–1) –0.410(–1) 0.106(–2)
2.6 –0.964(–2) –0.402(–1) –0.912(–3) –0.103(–1) 0.159(–1) –0.292(–1) 0.448(–2)
3.0 0.158(–1) –0.241(–1) –0.234(–2) –0.709(–2) 0.114(–1) –0.201(–1) 0.542(–2)
3.4 0.199(–1) –0.138(–1) –0.266(–2) –0.473(–2) 0.796(–2) –0.134(–1) 0.496(–2)
3.8 0.159(–1) –0.756(–2) –0.231(–2) –0.306(–2) 0.543(–2) –0.869(–2) 0.392(–2)
4.2 0.103(–1) –0.396(–2) –0.170(–2) –0.191(–2) 0.360(–2) –0.543(–2) 0.281(–2)
4.6 0.576(–2) –0.198(–2) –0.108(–2) –0.115(–3) 0.231(–2) –0.326(–2) 0.185(–2)
5.0 0.272(–2) –0.929(–3) –0.584(–3) –0.658(–3) 0.143(–2) –0.186(–2) 0.113(–2)

In the second part of this study, we have provided predictions for the static properties, including charge and
magnetic radii and magnetic moments, and elastic form factors of the deuteron and trinucleons. The wave functions
describing these nuclei were derived from either χEFT or conventional two- and three-nucleon potentials. The matrix
elements of the χEFT charge and current operators were evaluated in momentum-space with Monte Carlo methods.
The χEFT calculations (based on the N3LO potential) and the hybrid ones (based on the AV18) reproduce very

well the observed electromagnetic structure of the deuteron for momentum transfers q up to 2–3 fm−1. In some cases,
as in the A(q) structure function, the agreement between the experimental and χEFT calculated values extends up to



25

TABLE XIV: Same as in Table XIII, but for 3H.

q (fm−1) LO NLO N2LO N3LO (L) N3LO (min) N3LO(nm) N3LO(OPE)
0.2 2.56 0.199 –0.325(–1) 0.413(–1) 0.178(–1) 0.659(–1) 0.517(–1)
0.6 2.11 0.188 –0.319(–1) 0.380(–1) 0.163(–1) 0.612(–1) 0.439(–1)
1.0 1.47 0.164 –0.290(–1) 0.333(–1) 0.138(–1) 0.530(–1) 0.312(–1)
1.4 0.894 0.131 –0.232(–1) 0.272(–1) 0.107(–1) 0.432(–1) 0.176(–1)
1.8 0.477 0.964(–1) –0.159(–1) 0.211(–1) 0.763(–2) 0.334(–1) 0.627(–2)
2.2 0.221 0.656(–1) –0.894(–2) 0.156(–1) 0.502(–2) 0.247(–1) –0.119(–2)
2.6 0.834(–1) 0.418(–1) –0.354(–2) 0.111(–1) 0.299(–2) 0.176(–1) –0.450(–2)
3.0 0.188(–1) 0.252(–1) 0.117(–3) 0.764(–2) 0.155(–2) 0.122(–1) –0.615(–2)
3.4 –0.591(–2) 0.145(–1) 0.156(–2) 0.508(–2) 0.607(–3) 0.815(–2) –0.576(–2)
3.8 –0.117(–1) 0.796(–2) 0.201(–2) 0.327(–2) 0.353(–4) 0.531(–2) –0.469(–2)
4.2 –0.101(–1) 0.419(–2) 0.177(–2) 0.203(–2) –0.275(–3) 0.337(–2) –0.350(–2)
4.6 –0.666(–2) 0.210(–2) 0.128(–2) 0.121(–2) –0.415(–3) 0.207(–2) –0.243(–2)
5.0 –0.365(–2) 0.993(–3) 0.777(–3) 0.681(–3) –0.451(–3) 0.124(–2) –0.159(–2)

FIG. 11: (Color online). Cumulative contributions to the 3He and 3H magnetic form factors, obtained with the N3LO/N2LO
Hamiltonian and cutoff Λ = 500 MeV, from the components of the current operator order by order. Set III is adopted for the
isovector LEC’s dV1 and dV2 in Table III.

q . 6 fm−1, a much higher momentum transfer than one would naively expect the present expansion to be valid for.
On the other hand, the measured B(q) structure function is significantly under-predicted (over-predicted) for q & 3
fm−1 in the χEFT (hybrid) calculations. The χEFT results, in contrast to the hybrid ones, have a rather large cutoff
dependence. This cutoff dependence originates, in the hybrid calculations, solely from that in the N3LO current,
while in the χEFT calculation it also reflects the Λ dependence intrinsic to the potential (the N3LO for Λ = 500 MeV
or N3LO∗ for Λ = 600 MeV).
The calculated 3He and 3H charge form factors are in excellent agreement with data up to q . 3 fm−1. However,

the observed positions of the zeros are not generally well reproduced by theory, and the measured 3He (3H) form
factor in the region of the secondary maximum at q ≃ 4 fm−1 is underestimated (overestimated) in both χEFT and
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hybrid calculations. A glance at the FS
C (q) and FV

C (q) in Fig. 6 suggests that two-body isovector contributions to the
charge operator should be considerably larger (in magnitude) than presently calculated, in order to shift the zero in
FV
C (q) to smaller q.
The isovector currents at N3LO depend on two LEC’s (dV1 and dV2 ), which have been fixed in one of three different

ways: by reproducing the experimental np radiative capture cross section σnp and isovector magnetic moment µV of
the trinucleons simultaneously (set I); by using ∆ dominance to constrain dV2 and by determining dV1 so as to fit either
σnp (set II) or µV (set III). Set I is not seriously considered for the reasons explained in Sec. IVA. The 3He and 3H
magnetic form factors calculated with N3LO currents corresponding to set III, while in excellent agreement with data
for q . 3 fm−1, under-predict them at higher momentum transfers. On the other hand, set II N3LO currents in the
χEFT calculations (based on the N3LO/N2LO and N3LO∗/N2LO∗ Hamiltonians) would lead to significantly better
agreement with data over the whole range of momentum transfers (see Fig. 10), but would overestimate the observed
µV by ≃ 3%.
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Appendix A: Minimal contact currents

In this appendix, we show the equivalence between the minimal contact current in Eq. (3.11) of Ref. [5] and that
given in Eq. (2.20) in terms of the known low-energy constants (LEC’s) C1, . . . , C7. One way to achieve this is to start
from the Lagrangian given in Eq. (2.13) of Ref. [69] (additional terms with fixed coefficients proportional to 1/m2

N

have been ignored)

L = −1

2
CS OS − 1

2
CT OT − 1

2
C1(O1 + 2O2)

+
1

8
C2(2O2 +O3)−

1

2
C3(O9 + 2O12)

−1

8
C4(O9 +O14) +

1

4
C5(O6 −O5)−

1

2
C6(O7

+2O10)−
1

16
C7(O7 +O8 + 2O13) , (A1)

where the operators Oi are the standard set in Table I of Ref. [69], and then to gauge the gradients as ∇N →
∇N − i e eN AN to obtain

j
(1)
a,min =

C2

4
(τ1,z − τ2,z) (K1 −K2)

+
C4

4
(τ1,z − τ2,z) σ1 · σ2 (K1 −K2)

− i C5

4
(σ1 + σ2)× (e1 k1 + e2 k2)

+
C7

8
(τ1,z − τ2,z)

[
σ1 · (K1 −K2)σ2

+σ2 · (K1 −K2)σ1

]
. (A2)

Because of the antisymmetry of two-nucleon states, we have

j
(1)
a,min = −P τ P σ P space j

(1)
a,min (A3)
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where P space, P σ, and P τ are, respectively, the space, spin and isospin exchange operators. Making use of the
identities:

P space(K1 −K2) = −(k1 − k2)/2 , (A4)

P σ
σ1 · σ2 = (3− σ1 · σ2)/2 , (A5)

P τ (τ1,z − τ2,z) = i (τ1 × τ2)z , (A6)

P σP space
[
σ1 ·(K1−K2)σ2+σ2 ·(K1−K2)σ1

]
= −1

2

[
(k1−k2)(1−σ1 ·σ2)+σ1 ·(k1−k2)σ2+σ2 ·(k1−k2)σ1

]
, (A7)

Eq. (2.20) in the text follows.
An alternative way to proceed is to express the original set of LEC’s C′

1, . . . , C
′
14 entering Eq. (3.11) of Ref. [5]

in terms of the twelve independent LEC’s C1, . . . , C7, C
∗
1 , . . . , C

∗
5 (in the notation of Ref. [5]), and then to set the

C∗
i = 0, that is, to ignore the currents induced by these terms, since they are suppressed by 1/m2

N . Substituting

C′
1 =

1

2
C1 , C

′
2 = C1 −

1

4
C2 , C

′
3 = −1

8
C2 ,

C′
4 + C′

6 = −1

4
C5 , C

′
5 + C′

6 = 0 ,

C′
7 +

1

2
C′

11 =
1

2
C6 +

1

16
C7 , C

′
8 −

1

2
C′

11 =
1

16
C7 ,

C′
9 =

1

2
C3 +

1

8
C4 , C

′
10 + C′

11 = C6 , C
′
12 = C3 ,

C′
13 =

1

8
C7 , C

′
14 =

1

8
C4 , (A8)

into Eq. (3.11) of Ref. [5], we find

Eq. (3.11) of Ref. [1] = Eq. (A2)− i e C′
4 (e1 + e2)

×(σ1 + σ2)× q , (A9)

and the difference can be absorbed into a redefinition of C′
15, since (τ

z
1 +τ

z
2 )(σ1+σ2)×q = 0 after antisymmetrization.

Notice also that, in view of the identity O4 + O5 = O6 + O15 (which was derived in Ref. [69], apart from O15, of
no relevance there), among the operators of the sub-leading contact Lagrangian, the operator O6 is redundant, and
indeed the dependence on the associated LEC C′

6 cancels in the observables.

Appendix B: One-loop short-range current and charge operators

In this appendix, we discuss the contributions associated with panels (h)-(k) in Fig. 2 for the current operator, and
(g)-(j) in Fig. 3 for the charge operator. We begin with the current operator. The contributions of diagrams (h) and
(j) in Fig. 2 vanish, while the contribution of diagrams of type (i) was obtained as (conventions for q-integrations and
δ-functions are the same as in Ref. [5])

j
(1)
i = 2 i

e g2ACT

F 2
π

(τ1 × τ2)z

∫

q1,q2

δ(q1 + q2 − q)

×D(ω1, ω2) (q1 − q2)σ1 · q2 σ2 · q1 , (B1)

where

D(ω1, ω2) =
ω2
1 + ω1ω2 + ω2

2

ω3
1ω

3
2(ω1 + ω2)

. (B2)

Before analyzing diagram (k), we need to consider the leading and next-to-leading contributions to the single-nucleon
diagrams shown in Fig. 12. For simplicity, we define the vertices

V1 = i
gA
Fπ

σ · q1 τa , V2 = i
gA
Fπ

σ · q2 τb , (B3)
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FIG. 12: Time-ordered diagrams illustrating one of the classes of loop corrections to the single-nucleon current. Nucleons,
pions and photons are denoted by solid, dashed, and wavy lines, respectively.

2

p′

p

p

(b)(a) (c)

1

q

Vγ = −i e ǫabz (q1 − q2) . (B4)

Then the current reads

jγππ =
V1V2Vγ
4ω1ω2

[
1

Ei − ω1 − E

1

Ei − ω1 − ω2 − E

+
1

Ei − ω1 − E

1

Ei − ωγ − ω2 − E

+
1

Ei − ωγ − ω1 − ω2 − E′

1

Ei − ωγ − ω2 − E

]
,

(B5)

where Ei = E + ωγ , and E is the energy of the intermediate nucleon of momentum p. After expanding the energy
denominators as in Eq. (2.18) to include linear terms in the nucleon kinetic energies, we find, up to next-to-leading
order included,

jγππ =
V1V2Vγ

4

[
2

ω2
1ω

2
2

+D′(ω1, ω2) (E
′ − E)

+D(ω1, ω2)(E − E) +Dγ(ω1, ω2)ωγ

]
, (B6)

where

D(ω1, ω2) =
2ω1 + ω2

ω2
1ω

3
2(ω1 + ω2)

, (B7)

D′(ω1, ω2) =
ω1 + 2ω2

ω3
1ω

2
2(ω1 + ω2)

, (B8)

Dγ(ω1, ω2) = − ω1 − ω2

ω2
1ω

2
2 (ω1 + ω2)2

, (B9)

and

D ⇋ D′ with q1 ⇋ q2 , D +D′ = 2D . (B10)

We now proceed to analyze the contributions of diagrams of type (k) in Fig. 2. To this end, we show in Fig. 13
the complete set of time-ordered diagrams of the same topology as (k), which we have separated for convenience into
the three classes A, B, and C. Class A consists only of irreducible diagrams, which at order n = 1 or eQ, i.e., in the
static limit, lead to

class A = −1

2
VγV1VCTV2D(ω1, ω2)

= −1

4
VγV1VCTV2 [D(ω1, ω2) +D′(ω1, ω2)] ,

(B11)
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FIG. 13: Set of time-ordered diagrams for the contribution illustrated by the single diagram (k) in Fig. 2. Notation as in
Fig. 12.

˜
E1

˜
E1

′

class C

E
′
1

E1

2
q

1

class B

class A

where the vertices V1, V2, and Vγ are defined as above (with the spin and isospin matrices now referring to nucleon
1), and

VCT = CS + CT σ1 · σ2 . (B12)

On the other hand, to order eQ included, class B gives

class B =
VγVCTV1V2

4ω1ω2

1

Ei − E
′

1 − E2

[
1

ω1(ω1 + ω2)

(
1 +

E1 + ωγ − E1

ω1
+

ωγ

ω1 + ω2

)
+

1

ω1ω2

(
1 +

E1 + ωγ − E1

ω1

+
E1 − E1

ω2

)
+

1

ω2(ω1 + ω2)

(
1 +

Ei − E
′

1 − E2

ω1 + ω2
− ωγ

ω1 + ω2
+
E1 − E1

ω2

)]
− VγVCTV1V2

4ω1ω2

1

ω2(ω1 + ω2)2

(B13)

where we have used energy conservation between the initial and final states E1 + E2 + ωγ = E′
1 + E′

2. We now note
that the irreducible contribution from the last diagram (in class B) is cancelled by the second term in the next to last
line of the above equation, so that we are left with

class B =
VγVCTV1V2

4

1

Ei − E
′

1 − E2

[
2

ω2
1ω

2
2

+ ωγ Dγ(ω1, ω2) + (E1 − E1)D(ω1, ω2) + (E1 + ωγ − E1)D
′(ω1, ω2)

]

= VCT
1

Ei − E
′

1 − E2

jγππ +
VγVCTV1V2

4
D′(ω1, ω2) , (B14)

since E1+ωγ−E1 = (Ei−E
′

1−E2)+(E
′

1−E1) and Vγ commutes with each of the remaining vertices. The first term
represents an iteration, while the recoil-corrected class B contribution is simply given by VγVCTV1V2D

′(ω1, ω2)/4.
A similar analysis for class C leads to the recoil-corrected class C contribution given by VγV1V2VCTD(ω1, ω2)/4.
Therefore combining the contributions from classes A, B, and C, we find

j
(1)
k =

1

4
VγV1 [V2 , VCT] D(ω1, ω2)

+
1

4
[VCT , V1] V2 Vγ D

′(ω1, ω2) , (B15)
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FIG. 14: One-loop correction to the OPE current (only one among the possible time-orderings is shown). Notation as in Fig. 12.

or explicitly

j
(1)
k = 2 i

e g2ACT

F 2
π

τ1z

∫

q1,q2

δ(q1 + q2 − q)D(ω1, ω2)

×(q1 − q2)σ2 · q2 × q1 + 1 ⇋ 2 . (B16)

The currents j
(1)
i and j

(1)
k obtained here are in agreement with those in Eq. (5.2) of [8], but for an overall factor of 2.

Ultimately, this difference has no impact, since

j
(1)
i + j

1)
k ∝ (τ1 × τ2)z (σ1 × σ2)× q

+(2 τ1z σ2 + 2 τ2z σ1)× q = 0 , (B17)

which vanishes due to antisymmetry of the two-nucleon states.
In Ref. [5] we had not considered the next-to-leading order contributions to the single-nucleon γππ vertex when

deriving the one-loop correction to the OPE current shown in Fig. 14 (see Appendix E of Ref. [5]). As a consequence
we had failed to isolate the correct non-iterative piece, which had led, in particular, to a non-hermitian operator. We
find that this term is now given by

j
(1)
OPE,loop = i e

g4A
F 4
π

(τ1 × τ2)z
σ2 · k2

ω2
k2

∫

p

p

[
2
ω2
+ + ω2

− + ω+ω−

ω3
+ω

3
−(ω+ + ω−)

(
σ1 · qk2 · p− σ1 · pk2 · q

)

−ω+ − ω−

ω3
+ω

3
−

σ1 · k2 (q
2 − p2)

]
+ 1 ⇋ 2 , (B18)

where ω± =
√

(q± p)2 + 4m2
π.

Next, we turn our attention to the charge operator. In Ref. [6] we showed that the contributions of diagrams (g)-(h)
in Fig. 3 vanish. However, in light of the previous considerations, those due to diagrams (i) and (j) given there need
to be revised. Indeed, an analysis similar to that carried out above leads to the single-nucleon charge operator (see
Fig. 12) up to next-to-leading order included

ργππ =
V1V2Ṽγ

4

[
4

ω1 ω2 (ω1 + ω2)
+ D̃′(ω1, ω2) (E

′ − E)

+D̃(ω1, ω2)(E − E) + D̃γ(ω1, ω2)ωγ

]
, (B19)

and to a contribution for diagram (j) (see Fig. 13) which reads

ρ
(1)
j = −2

e g2ACT

F 2
π

τ1z

∫

q1,q2

δ(q1 + q2 − q) D̃(ω1, ω2)

×σ1 · [q1 × (σ2 × q2)] + 1 ⇋ 2 . (B20)

We have defined Ṽγ = −i e ǫabz , and

D̃(ω1, ω2) =
3ω1 + ω2

ω2
1 ω

2
2 (ω1 + ω2)

, (B21)

D̃′(ω1, ω2) =
ω1 + 3ω2

ω2
1 ω

2
2 (ω1 + ω2)

, (B22)

D̃γ(ω1, ω2) =
ω1 − ω2

ω2
1 ω

2
2 (ω1 + ω2)2

, (B23)
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FIG. 15: Set of time-ordered diagrams for the contribution illustrated by the single diagram (i) in Fig. 3. Notation as in Fig. 12.

(a) (b) (c) (d)

˜
E1

E1
E

′
1
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′ ˜
E1

′

E1 E1

class B

class C

class A

q
1

FIG. 16: Diagrams for the single-nucleon contributions. Notation as in Fig. 12.

(b)(a)

p

p

p

1
p′

p q

p

p′

p

with

D̃ ⇋ D̃′ with q1 ⇋ q2 , D̃ + D̃′ =
4

ω2
1 ω

2
2

. (B24)

We now revise the derivation of the charge operator of type (i) illustrated in Fig. 3. The associated time ordered
diagrams are represented in Fig. 15, and have been separated into three classes. In Ref. [6], the expression reported
in Eq. (53) has been obtained by accounting for the recoil corrected class A diagrams only, i.e.

class A =
1

2ω4
1

[
V1VCTV

′
1V

′
γ + V ′

γV1VCTV
′
1

−V1VCTV
′
γV

′
1 − V1V

′
γVCTV

′
1

]

= e
2 g2A
3F 2

π

τ1,z (3CS − CT σ1 · σ2)

∫

q1

q21
ω4
1

,

(B25)

where V1 and VCT are given in Eqs. (B3) and (B12), respectively, and V ′
1 and V ′

γ are defined as

V ′
1 = −V1 , V ′

γ =
e

2
(1 + τ1,z) . (B26)

Classes B and C involve only reducible diagrams. First, we analyze the single-nucleon contributions entering the
reducible diagrams, represented in Fig. 16. We account for leading, next-to-leading, and next-to-next-to-leading order
corrections in the expansion of the energy denominators. The contributions MN and ργ , associated with panels (a)
and (b), respectively, read

MN = −V1 V
′
1

2ω2
1

[
1 +

E − E

ω1
+

(E − E)2

ω2
1

]
, (B27)

ργ =
V1 V

′
γ V

′
1

2ω3
1

(
1 +

E′ − E
′

ω1
+
E − E

ω1

)
, (B28)
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where the energies are as indicated in Fig. 16, and energy conservation (E + ωγ = E′) has been used. In terms of
these, the contributions of diagram (a) and (b) in class B are given by

Ba =MN
1

Ei − E′
1 − E′

2

VCT
1

Ei − Ẽ1 − E2

V ′
γ , (B29)

Bb =MN
1

Ei − E′
1 − E′

2

V ′
γ

1

Ei − Ẽ′
1 − E′

2 − ωγ

VCT ,

(B30)

where we have identified and isolated the nucleon self-energy terms (to be reabsorbed by mass counter-terms). Eval-
uation of panel (c) leads to

Bc =
V1 V

′
γ V

′
1

2ω3
1

[
1 +

E′
1 − E

′

1

ω1
+
Ẽ′

1 − E1

ω1

]

× 1

Ei − Ẽ′
1 − E′

2 − ωγ

VCT +
V1 V

′
γ V

′
1VCT

2ω4
1

= ργ
1

Ei − Ẽ′
1 − E′

2 − ωγ

VCT +
V1 V

′
γ V

′
1VCT

2ω4
1

,

(B31)

where the first term represents an iteration with ργ and the contact interaction, and the second term is the recoil
correction contributing to the two-nucleon charge operator. Finally, the contribution of panel (d), in which, in contrast
to panels (a) and (b), the self-energy insertion is between the photon absorption and contact interaction, is expressed
as

Bd = −V ′
γ

1

Ei − Ẽ′
1 − E′

2 − ωγ

V1 V
′
1

2ω2
1

[
1 +

Ẽ′
1 − E1

ω1
+

(Ẽ′
1 − E1)

2

ω2
1

]
1

Ei − Ẽ′
1 − E′

2 − ωγ

VCT

−
V ′
γV1 V

′
1

2ω3
1

(
1 + 2

Ẽ′
1 − E1

ω1

)
1

Ei − Ẽ′
1 − E′

2 − ωγ

VCT −
V ′
γV1 V

′
1VCT

2ω4
1

= V ′
γ

1

Ei − Ẽ′
1 − E′

2 − ωγ

MN
1

Ei − Ẽ′
1 − E′

2 − ωγ

VCT + ρ̃γ
1

Ei − Ẽ′
1 − E′

2 − ωγ

VCT −
V ′
γV1 V

′
1VCT

2ω4
1

, (B32)

where the last term is a two-nucleon term, and we interpret ρ̃γ as a further correction to the single-nucleon γN vertex.
However, the analysis and proper interpretation of this type of corrections are beyond the scope of the present work.
After a similar analysis of the class C diagrams is carried out, we find that the complete B+C contribution reads

classes B + C =
1

2ω4
1

[
V1V

′
γ V

′
1VCT − V ′

γV1 V
′
1VCT

+VCTV1V
′
γ V

′
1 − VCTV1V

′
1V

′
γ

]

= −e 2 g
2
A

F 2
π

τ1,z (CS + CT σ1 · σ2)

∫

q1

q21
ω4
1

,

(B33)

which combined with Eq. (B25) leads to the type (i) charge operator in Fig. 3

ρ
(1)
i = −e 8 g

2
ACT

3F 2
π

τ1,z σ1 · σ2

∫

q1

q21
ω4
1

+ 1 ⇋ 2 . (B34)
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Appendix C: Loop integrations

In this appendix, we outline the derivation of the two-body charge operators at one loop, listed in Sec. II B. For
the sake of illustration, we consider the contribution of panel (f) in Fig. 3, given by (in the notation of Ref. [6])

ρ
(1)
f =−e 2 g

4
A

F 4
π

∫

q1,q2,q3

δ(q2 + q3 − k2)δ(q1 − q2 − k1)

×δ(q1 + q3 − q)
1

ω2
1 ω

2
2 ω

2
3

[
2 τ1,z (q2 · q1 q2 · q3

−σ1 · q2 × q1 σ2 · q3 × q2)− (τ1 × τ2)z q1 · q2

×σ2 · q3 × q2

]
+ 1 ⇋ 2 , (C1)

which can conveniently be written as

ρ
(1)
f = −e 2 g

4
A

F 4
π

∫

p

N(q,k,p)

ω2
q/2+p

ω2
q/2−p

ω2
p−k

+ 1 ⇋ 2 , (C2)

with

N(q,k,p) = 2 τ1,z
[
(p− k) · (q/2 + p) (p− k) · (q/2− p)− σ1 · (p− k)× (q/2 + p) σ2 · (q/2− p)× (p− k)

]

− (τ1 × τ2)z (q/2 + p) · (p− k) σ2 · (q/2− p)× (p− k) , (C3)

and the momentum k defined as in Eq. (2.2). We now use standard techniques [70] to express the product of energy
denominators in the following way

1

ω2
q/2+p

ω2
q/2−p

ω2
p−k

= 2

∫ 1

0

dz1

∫ 1−z1

0

dz2

×
[ [

(q/2 + p)
2
+m2

π

]
z1 +

[
(q/2− p)

2
+m2

π

]
z2

+
[
(p− k)2 +m2

π

]
(1− z1 − z2)

]−3

, (C4)

which, in terms of

p′ = p+ (z1 − z2)q/2− (1− z1 − z2)k , (C5)

simply reads

1

ω2
q/2+p

ω2
q/2−p

ω2
p−k

= 2

∫ 1

0

dz1

∫ 1−z1

0

dz2

×
[
p ′ 2 + λ2(z1, z2)

]−3
, (C6)

where

λ2(z1, z2) = (z1 + z2)q
2/4−

[
(z1 − z2)q/2− (1− z1

−z2)k
]2

+ (1− z1 − z2)k
2 +m2

π . (C7)

After these manipulations, the charge operator can finally be written as

ρ
(1)
f = −e 4 g

4
A

F 4
π

∫ 1

0

dxx

∫ 1/2

−1/2

dy

∫

p ′

N ′(q,k,p ′)

×
[
p ′ 2 + λ2(x, y)

]−3
+ 1 ⇋ 2 , (C8)

where the function N ′ is obtained from N by expressing p in terms of p′ via Eq. (C5). We have also changed variables
in the parametric integrals by introducing [70]

x = z1 + z2 , x y = (z1 − z2)/2 , (C9)
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such that

∫ 1

0

dz1

∫ 1−z1

0

dz2 −→
∫ 1

0

dxx

∫ 1/2

−1/2

dy . (C10)

The function N ′ is a polynomial in p ′, and the p ′-integrations are carried out in dimensional regularization (see
App. A of Ref. [5]). They are finite and lead to the charge operator given in Eq. (2.38).
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