

This is the accepted manuscript made available via CHORUS, the article has been published as:

Suppression of the centrifugal barrier effects in the offenergy-shell neutron $+^{17}O$ interaction M. Gulino *et al.*

Phys. Rev. C **87**, 012801 — Published 4 January 2013 DOI: 10.1103/PhysRevC.87.012801

Suppression of the centrifugal barrier effects in the off-energy-shell neutron $+^{17}$ O interaction.

M. Gulino^{*a,b*}, C. Spitaleri^{*a,c*}, X.D. Tang^{*d*}, G.L. Guardo^{*a,c*}, L. Lamia^{*a,c*}, S. Cherubini^{*a,c*}, B. Bucher^{*d*},

V. Burjan^e, M. Couder^d, P. Davies^d, R. deBoer^d, X. Fang^d, V.Z. Goldberg^f, Z. Hons^e, V. Kroha^e,

L. Lamm^{d,†}, M. La Cognata^a, C. Li^g, C. Ma^d, J. Mrazek^e, A.M. Mukhamedzhanov^f, M. Notani^d, S. OBrien^d,

R.G. Pizzone^a, G.G. Rapisarda^{a,c}, D. Roberson^d, M.L. Sergi^{a,c}, W. Tan^d, I.J. Thompson^h, M. Wiescher^d

a) INFN Laboratori Nazionali del Sud, Catania, Italy

b) Università degli Studi di Enna "KORE", Enna, Italy

c) Dipartimento di Fisica ed Astronomia, Università degli Studi di Catania, Catania, Italy

d) Department of Physics and Joint Institute for Nuclear Astrophysics, University of Notre Dame, IN, USA

e) Nuclear Physics Institute of ASCR, Rez, Czech Republic

f) Cyclotron Institute, Texas A&M University, College Station TX, USA

g) China Institute of Atomic Energy, Beijing, China and

h) Lawrence Livermore National Laboratory, Livermore, CA, USA

(Dated: December 6, 2012)

The reaction ${}^{17}O(n, \alpha){}^{14}C$ was studied at energies from $E_{cm} = 0$ to $E_{cm} = 350$ keV using the quasi-free deuteron break-up in the three body reaction ${}^{17}O+d \rightarrow \alpha + {}^{14}C+p$, extending the Trojan Horse indirect method (THM) to neutron-induced reactions. It is found that the ${}^{18}O$ excited state at $E^* = 8.125 \pm 0.002$ MeV observed in THM experiments is absent in the direct measurement because of its high centrifugal barrier. The angular distributions of the populated resonances have been measured for the first time using this method. The results unambiguously indicate the ability of the THM to overcome the centrifugal barrier suppression effect and to pick out the contribution of the bare nuclear interaction.

PACS numbers: 25.40.-h, 28.20.-v, 26.90.+n

In the last decade, in order to extract the cross sections of two body reactions at low energies for astrophysical applications, many indirect methods have been developed. Among them, the Trojan Horse Method (THM) [1–7] has been successfully applied to the study of several chargedparticle induced reactions, bypassing the Coulomb barrier penetration effect and the electron screening effect dominant at very low energies. Briefly, in the THM the cross section of the $A + x \rightarrow C + c$ reaction is determined by measuring the differential cross section of a suitable reaction, $A + a \rightarrow C + c + s$, and selecting the events where the Trojan Horse (TH) nucleus a, having a strong $x \bigoplus s$ cluster structure, breaks up inside the nuclear field of nucleus A. This process is most likely inside the quasifree (QF) kinematics regime, i.e. when the momentum transfer to the spectator (the cluster s of the TH nucleus) is small. Hence, if the wave function of the intercluster motion is dominated by the l = 0 component, as for the deuteron, the relative momentum p_{xs} of the clusters xand s of the TH nucleus is close to zero. In the center of mass of the A-x system, the two body reaction $A + x \rightarrow C + c$ takes place at the energy given in the post-collision prescription by $E_{cm} = E_{Cc} - Q_2$, where E_{Cc} is the relative energy of the ejectiles and Q_2 is the Q-value of the two-body reaction $A + x \rightarrow C + c$. Consequently, the energy E_{cm} can lie below the Coulomb barrier, even if the reaction A + a occurs at an energy above the barrier.

The application of the THM to the indirect study of pp scattering has strongly confirmed the THM hypothesis, i.e. the suppression of Coulomb effects in the two-body cross section at sub-Coulomb energies [4]. Indeed, the deep minimum in the p-p scattering cross section, due to the interference between nuclear and Coulomb diffusion amplitudes, is missing in the TH data, because of the suppression of the Coulomb contribution resulting from this method [4].

In the present work the ability of the THM to overcome the centrifugal barrier effects is definitely and unambiguously demonstrated, by studying a neutron induced twobody reaction which does not suffer Coulomb hindrance. To perform this measurement, the deuteron QF break-up is used as a source of virtual neutrons [8].

The two-body reaction ${}^{17}\text{O}+n \rightarrow {}^{14}\text{C}+\alpha$ has been chosen to investigate the effect of centrifugal barrier suppression. This reaction is interesting for both nuclear energy and nuclear astrophysics. In fact, in nuclear reactors the neutron induced reactions on ${}^{14}\text{N}$ and ${}^{17}\text{O}$ are the dominant sources of the radioactive isotope ${}^{14}\text{C}$ ($T_{1/2} = 5730$ yr) [9]. In nuclear astrophysics, this reaction takes place in the nucleosynthesis of heavier elements in various astrophysical scenarios [10, 11], and it could also help to explain anomalies in ${}^{18}\text{O}/{}^{16}\text{O}$ and ${}^{17}\text{O}/{}^{16}\text{O}$ ratios found in asymptotic giant branch stars and in circumstellar Al_2O_3 meteorite grains [12].

For incident neutron energies from thermal up to a few hundred keV, the cross section of this reaction is characterized by the presence of several narrow resonant states in the ¹⁸O compound nucleus. Three resonances have

[†] Deceased

$E_{c.m.}$ (keV)	J^{π}	$\Gamma_{tot} (\text{keV})$	ref.
-7	1-	$<\!2.5 (rw)$	[13]
		2.4 (rw)	[14]
75	5^{-}		
166	2^{+}	1.0 ± 0.8	[13]
		1.280 ± 1.000	[15]
		2.258 ± 0.135	[14]

 8.0 ± 1.0

[13]

 $8.000\,\pm\,1.000$ [15] 14.739 ± 0.590 [14]TABLE I: Summary of the ¹⁸O resonance parameters in the energy range explored by the experiment. For the negativeenergy resonance, the reduced width (rw) is given.

3

236

(keV 8038 ± 0.7

 8125 ± 2

 8213 ± 4

 8282 ± 3

energy above the ${}^{17}\text{O}+n$ threshold (8044 keV), and one sub-threshold level is present. The resonance parameters are reported in table I. The total width (Γ_{tot}) for each resonance from the literature together with the relevant references are presented in the last two columns of the table. For the negative-energy resonance, the reduced width is given.

Direct measurements [14–20] have shown the population of the two excited states at energies 8213 keV and 8282 keV and the influence of the sub-threshold level at 8038 keV. At the astrophysical relevant temperatures $(T \in [0.01 - 1.3] \cdot 10^9 \text{ K})$, the reaction rate calculated by using the different data sets [14–16] differ by a factor 2-2.5, with a consequent change in the abundance ratios for some elements (e.g. 22 Ne, 26 Mg) [10].

The 8125 keV state of ¹⁸O would be populated by fwave neutrons, but due to the high orbital momentum barrier, the cross section is too low for direct measurement. Since the THM should not be affected by orbital momentum barrier effects, we anticipate that the three bodies ${}^{2}H({}^{17}O, \alpha{}^{14}C){}^{1}H$ study should provide observational evidence for resonance contributions from all known states.

Two experiments were performed: the first one at the Laboratori Nazionali del Sud (LNS) in Catania, Italy, and the second one at the Nuclear Science Laboratory (NSL) of the University of Notre Dame, USA. In the LNS experiment a ¹⁷O beam of 41 MeV was delivered onto a CD_2 target of thickness $150 \,\mu g/cm^2$. In the NSL experiment a beam energy of 43.5 MeV and a target tichkness of $170 \,\mu g/cm^2$ were used. The angles and the energies of the ejectiles α and ¹⁴C were detected in coincidence using an experimental set-up, symmetric with respect to the beam axis, consisting of 6 Position Sensitive Silicon Detectors (PSDs, single area, resistive readout, spatial resolution 0.5 mm). The proton was not detected in these experiments, and its energy and angle were reconstructed from kinematical calculations. The PSD detectors covered the angular ranges in the laboratory reference system $\theta_1 = 5^{\circ}$ - $10^{\circ}, \theta_2 = 13.3^{\circ} - 20.8^{\circ}$ and $\theta_3 = 21.5^{\circ} - 29.0^{\circ}$ in the LNS experiment and $\theta_1 = 5^{\circ} - 10^{\circ}$, $\theta_2 = 13.1^{\circ} - 18.1^{\circ}$ and $\theta_3 = 23.8^{\circ} - 10^{\circ}$ 28.8° in the NSL experiment. The two most forward detectors were equipped with ionization chambers (ICs)

FIG. 1: (Color online) Experimental momentum distribution (full dots for LNS experiment and open squares for NSL experiment) compared with the Hulthén function (black solid line) and the DWBA momentum distribution calculated using the FRESCO code (red dashed line).

used as ΔE detectors to identify carbon. Coincidences among either one of the two forward PSD detectors and one of the three placed on the opposite side with respect to the beam axis were recorded by the data acquisition system.

The reaction of interest was identified by selecting events in which a carbon was detected in one of the telescopes. The reconstructed Q-value for the three-body reaction $(Q = -0.6 \pm 0.3 \text{ MeV})$ is in agreement with the expected one (Q = -0.407 MeV).

The beam energy was chosen such that (i) the incident center-of-mass energy (after half target thickness $E_{cm} = 4.27$ MeV in the LNS experiment and $E_{cm} = 4.53$ MeV in the NSL experiment) was higher than the binding energy of n and p in d $(B_{xs} = 2224.5 \pm 0.2 \text{ keV})$, and (ii) the wavelength in the entrance channel ($\lambda = 1.65$ fm in the LNS experiment and $\lambda = 1.60$ fm in the NSL experiment) was smaller than the deuteron radius ($r_d = 4.5$ fm). As a result, the validity conditions of the impulse approximation (IA) approach remained fulfilled.

Following the procedure described elsewhere [1-8], many tests have been performed to ensure the presence of the QF reaction mode and to establish ways to discriminate from other reaction contributions populating the same final state. The strongest evidence of the predominance of the QF mechanism is given by the shape of the momentum distribution for the p-n intercluster motion in the deuteron. This was extracted by using the standard procedure, selecting events corresponding to the most populated resonance in the TH measurement at energy 8213 keV. The result is shown in Fig. 1 by black dots for LNS experiment and open squares for NSL experiment.

FIG. 2: (Color online) Excitation function of the ${}^{17}O(n, \alpha){}^{14}C$ reaction from LNS experiment (a) for $\theta_{cm} = 55^{\circ} \pm 5^{\circ}$ and from NSL experiment (b) for $\theta_{cm} = 65^{\circ} \pm 25^{\circ}$. The red solid line is a fit using four Gaussian functions; the black dashed lines represent their individual contributions.

The solid line in Fig. 1 represents the Hulthén function in momentum space with the standard parameter values [5–8] ($\tilde{\chi}^2$ =1.45). This is expected if the plane-wave impulse approximation (PWIA) is used to describe the reaction mechanism. A more accurate description of the momentum distribution was obtained by distorted-wave Born approximation (DWBA) using the FRESCO code [21] (dashed red line in Fig. 1, $\tilde{\chi}^2 = 0.77$). As the experimental momentum distribution is in arbitrary units, the maximum of the DWBA theoretical distribution has been scaled to the experimental data. The parameters of the potentials used in the FRESCO calculation were extrapolated from the Perey and Perey compilation [22], as there are no available optical potentials at the low energies involved in the studied reaction. To check whether the uncertainty related with the choice of potential was comparable with the experimental one, FRESCO calculations were performed on varying the optical potential parameters in the entrance and exit channels by about 30%, and using the Koning-Delaroche optical potential [23] in the exit channel. Experimental data and FRESCO calculations are still in good agreement ($\tilde{\chi}^2 < 1.5$) even in these cases.

The comparison of DWBA and PWIA calculations with data shows good agreement by both theoretical distributions for $|p_{xs}| < 50 \text{ MeV/c}$, as distortions influence only the tails of the distribution. Indeed, for higher values of p_{xs} the *s* cluster does not act as a spectator to the $A + x \rightarrow C + c$ reaction, and interactions in the final state must be taken into account [24, 25]. In the

FIG. 3: Angular distributions for the ${}^{17}O(n, \alpha){}^{14}C$ reaction for the four ${}^{18}O$ resonances populated in this work (full dots LNS exp., open squares NSL exp.) The solid lines are the theoretical angular distribution for the on-energy-shell reaction calculated as described in [27, 28]. The dashed line for $E^* = 8213$ keV represent the angular distribution for $l_1 = 0$, as discussed in the text.

following, only the events having $|p_s| < 50$ MeV/c, for which the PW constitute a viable approximation, will be selected.

A further probe of the reliability of the PW approach in describing the experimental data comes from the comparison between PWBA and DWBA calculations. The differences in the ratios of the integrated resonance cross sections calculated in PW and DW approaches are less than 19%, compared with the experimental uncertainties (statistical ~ 15%+ fitting ~ 14%). Therefore, as no absolute values of the cross sections are extracted, the PW description is used in the following.

The PWIA is generally preferred as it is less dependent from theory. In this approach the three-body cross section assumes a simple expression, from which the twobody cross section of interest is easily deduced:

$$\frac{d^3\sigma}{dE_1dE_2d\Omega} \propto KF |\Phi(p_{xs})|^2 \sum_{l_1} |L_{l_1}|^2 \frac{d\sigma_{l_1}^{HOES}}{d\Omega} \qquad (1)$$

In eq. (1) KF is a kinematical factor, depending on masses, momenta and angles of the outgoing particles, and it takes into account the final state phase space factor [1–8]. $\Phi(p_{xs})$ is the momentum distribution of the clusters in the TH nucleus. l_1 is the orbital momentum in the entrance channel A-x and $|L_{l_1}|^2$ is a coefficient expessed in terms of the Wronskian of regular and outgoing solutions of the free radial Schroedinger equation, taken at the off-shell and on-shell x-A momenta correspondingly. $d\sigma_{l_1}^{HOES}/d\Omega$ is the half-off-energy-shell (HOES) cross section of the ¹⁷O(n, α)¹⁴C reaction at the center-of-mass reaction angle θ_{cm} calculated as [26]: $\theta_{c.m.}$ =arccos ($\hat{\mathbf{k}}_{Ax} \cdot \hat{\mathbf{k}}_{Cc}$) where \mathbf{k}_{ij} is the relative momentum of the particles i and j, and $\hat{\mathbf{k}}_{ij} = \mathbf{k}_{ij}/k_{ij}$. The HOES label of the ¹⁷O(n, α)¹⁴C cross section refers to the off-energy-shell nature of the transferred neutron.

The cross section of the ${}^{17}O(n, \alpha){}^{14}C$ reaction was then extracted from eq. (1) by dividing experimental yield by the product $KF|\Phi(p_{xs})|^2$, estimated by means of a Monte Carlo simulation where the experimental momentum distribution shown in Fig. 1 was used. This introduces an uncertainty of 10% in the experimental data. Typical excitation functions for the ${}^{17}\text{O}+n$ reaction are shown in Fig. 2 in arbitrary units: Fig. 2a reports the LNS experimental data for $50^{\circ} < \theta_{cm} < 60^{\circ}$, and Fig. 2b shows the NSL experimental data for $40^{\circ} < \theta_{cm} < 90^{\circ}$. In the figure, the horizontal error bars represent the integration energy bin, and the vertical bars take into account the statistical uncertainties. The solid line represents the result of a fit performed using four gaussian functions to disentangle the contributions of the four ¹⁸O resonances populated in the explored energy and θ_{cm} range. No interference effect is taken into account in the fitting procedure, owing to the resonance widths (< 15 keV), which are much smaller than their energy separation (see table I). The use of a gaussian function for fitting the contributions due to the resonances is justified by considering the energy resolution of the THM measurement, as discussed in [6]. The width of the 4 resonances is the same and equal to the experimental resolution: $\sigma=20$ keV for the LNS experiment and $\sigma=30$ keV for the NSL experiment. The peak energies coming from the fit well-reproduce the resonance energies compiled in Ref. [13] and are shown by arrows in Fig. 2.

The extracted two-body cross section does not suffer from the centrifugal barrier penetration effect. In particular, the presence of the level at $E^* = 8125 \pm 2$ keV, $J^{\pi} = 5^-$ must be noted. It has been clearly observed in both of the present experiments, but was missed in the direct measurements. Since Coulomb effects are absent in neutron-induced reactions, it is directly evident from this result that only the pure nuclear interaction potential enters into the virtual A + x reaction studied by THM.

To confirm the spin assignment of the ¹⁸O levels, the angular distributions for the four resonances were extracted. The experimental set-up provided coverage of the c.m. angular ranges $\theta_{cm,1}=0^{\circ}-40^{\circ}$, $\theta_{cm,2}=30^{\circ}-90^{\circ}$

FIG. 4: (Color online) Cross section of the ${}^{17}O(n, \alpha){}^{14}C$ reaction from TH data after the correction for the penetrability of the centrifugal barrier (full dots). The dashed red line represents the direct data from Ref. [14], where available, while the solid line reports the direct data smeared at the TH energy resolution.

and $\theta_{cm,3}=70^{\circ}-100^{\circ}$, with overlap regions amongst the three detectors coincidences which allowed for a relative normalization of the data. The contribution of each resonance to the overall coincidence yield at different angles θ_{cm} was disentangled by using a four-gaussian fitting procedure, as in Fig. 2. The obtained angular distributions in arbitrary units are shown in Fig. 3 as full dots for LNS experiment and open squares for the NSL experiment. Following the formalism developed in [27, 28], assuming that ${}^{17}O(n, \alpha){}^{14}C$ is going through isolated compound levels of ${}^{18}O$ with spin J^{π} , the angular distributions for the free on-energy-shell reaction is given by:

$$W(l_1, S_1, J, l_2, S_2; \theta_{cm}) \propto \sum_L Z(l_1 J l_1 J; S_1 L) Z(l_2 J l_2 J; S_2 L) P_L(\cos \theta_{cm}); \qquad (2)$$
$$Z(abcd; ef) = \widehat{a} \widehat{b} \widehat{c} \widehat{d} \langle ac00 | acf0 \rangle R(abcd; ef).$$

Here $P_L(\cos \theta_{cm})$ is the Legendre polynomial of order L; $\hat{i} = (2i+1)^{1/2}$; $\langle ac00|acf0 \rangle$ is the Clebsh-Gordan coefficient; R(abcd; ef) is the Racah coefficient; $\mathbf{S}_1 = \mathbf{I}_A + \mathbf{s}_x$ where \mathbf{I}_A and \mathbf{s}_x denote the spins of target and projectile; \mathbf{l}_1 is the orbital momentum in the entrance channel, given by $\mathbf{J} = \mathbf{S}_1 + \mathbf{l}_1$; finally \mathbf{S}_2 and \mathbf{l}_2 are the spin and orbital momentum in the exit channel. The solid lines in Fig. 3 represent the results of calculations for the populated resonances without any fitting parameter except for one free parameter to normalize the yields. The comparison between the experimental data and the calculation confirms that the levels $E^* = 8038$ keV and $E^* = 8282$ keV are populated in $l_1 = 1$, and the $E^* = 8125$ keV is populated in $l_1 = 3$. However, the angular distribution of the resonance corresponding to the $E^* = 8213$ keV level is better reproduced by adopting $l_1 = 2$ (solid line, $\tilde{\chi}^2 = 0.82$) instead of $l_1 = 0$ (dashed line, $\tilde{\chi}^2 = 1.55$), as usually assumed by considering the low value of the neutron energy available in the c.m. system [29].

The differential cross section for the ${}^{17}O(n, \alpha){}^{14}C$ reaction extracted from the THM measurements was then integrated over $\theta_{c.m.}$, assuming the theoretical trend outside the angular range covered by the measurement. The uncertainty in the integration coming from the uncertainty on the fit parameters is of 3%, 20%, 11% and 8% for the resonances at energies $E^* = 8038 \text{ keV}, E^* = 8125 \text{ keV}, E^* = 8213 \text{ keV}, \text{ and } E^* = 8282 \text{ keV}, \text{ respectively.}$

To compare the TH data with the direct measurements, the TH cross section is multiplied by the penetrability factor calculated for each resonance by: $P_{l_1}(kr) =$ $1/[kr(j_{l_1}(kr)^2 + n_{l_1}(kr)^2)]$, where l_1 is deduced from the angular distribution, and $j_{l_1}(kr)$ and $n_{l_1}(kr)$ are the spherical Bessel and Neumann functions, respectively. The contribution of each resonance for a fixed value of energy is evaluated by fitting the TH cross section using four gaussian functions, following the same procedure used in Fig. 2. The reaction radius used for the calculation of the penetrability factor was given by $R = r_0(17^{1/3})$ where $r_0 = 1.6 \, fm$. The change in the scaled cross sections is still inside the experimental uncertainties if $1.2 < r_0 < 1.9$. The result is shown in Fig. 4. For comparison the direct data from [14] have been smeared to the THM experimental resolution and they are shown, where available, as a solid line in Fig. 4. Moreover, the actual direct data from [14] are shown in Fig. 4 as dashed red line (color online). The two data sets have been normalized at the maximum of the resonance at $E^* = 8213$ keV, where indirect data have smaller error

bars. The widths of the peaks are determined by the TH data experimental resolution. The agreement between the two data sets is evident.

In conclusion, this measurement has demonstrated the ability of the THM to determine nuclear structure parameter of orbital momentum-suppressed neutron capture resonances. This is evidenced by the population of the $J^{\pi} = 5^{-}$ level of ¹⁸O, present in the indirect data for the neutron-induced reaction but not observed in direct neutron capture studies. This demonstrates the effectiveness of the THM to emphasize the mere nuclear interaction, avoiding the centrifugal suppressions or the electron screening effects, opening new perspectives in the use of the method for nuclear structure studies. A particularly interesting application is the study of neutron induced reactions on short-lived radioactive nuclei using inverse kinematics. This approach will provide a unique method to study n-induced reactions on short-lived nuclei, which are crucial for both nuclear astrophysics and in nuclear engineering.

I. ACKNOWLEDGMENTS

A.M. M. acknowledges the support by the US DOE under Grant Nos. DE-FG02-93ER40773, DE-FG52-09NA29467 and DE-SC0004958 (topical collaboration TORUS) and NSF under Grant No. PHY-0852653. I.J. T. acknowledges the support by the US DOE under Grant No. DE-AC52-07NA27344 (TORUS). V.B., Z.H., V.K. and J.M. acknowledge the support of the AMVIS Project under Grant No. M10480902 and LH11001 and of the GACR Project under Grant No. P203/10/0310. The Notre Dame collaborators were supported by the NSF under Grants No. PHY-0758100 and No. PHY-0822648

- [1] S. Cherubini at al. ApJ **457**, 855 (1996)
- [2] C. Spitaleri et al., Nucl. Phys. A **719** 99 (2003)
- [3] M. La Cognata et al., Phys. Rev. C 76, 065804 (2007)
- [4] A. Tumino et al., Phys. Rev. Lett.98, 252502 (2007)
- [5] M.L.Sergi et al., Phys. Rev. C82, 032801 (2010)
- [6] M. La Cognata et al., Astroph. J. **708**, 796 (2010)
- [7] L. Lamia et al., J. Phys. G: Nucl.Part.Phys. 39, 015106 (2012)
- [8] M. Gulino et al., J. Phys. G: Nucl.Part.Phys. 37, 125105 (2010)
- [9] M-S Yim, F. Caron, Prog. Nucl. Ener. 48, 2 (2006)
- [10] J. Applegate et al. Astroph.J. 329,572 (1988)
- [11] M. Forestini et al. Astron. Astroph. 123, 241 (1997)
- [12] L.R.Nittler et al NPA621, 113c (1997)
- [13] F. Ajzenberg-Selove, Nucl. Phys. A475, 1 (1987)
- [14] J. Wagemans et al. Phys. Rev. C65(3), 034614 (2002)
- [15] H. Schatz et al. Astroph. J. **413**, 750 (1993)
- [16] P.E. Koehler, S.M. Graff Phys. Rev. C44, 2788 (1991)
- [17] R.M. Sanders, Phys. Rev. 104, 1434 (1956)

- [18] Y.M. Gledenov et al. Nucl. Instr. Meth.. A431, 201 (1999)
- [19] J. Wagemans, C.Wagemans, G. Goeminne, P. Geltenbort Phys. Rev. C61, 064601 (2000)
- [20] J. Wagemans, C. Wagemans, R. Bieber, P. Geltenbort Phys. Rev. C58(5), 2840 (1998)
- [21] I.J.Thompson Comp. Phys. Rep. 7, 167 (1987)
- [22] C.M. Perey, F.G. Perey At. Data Nucl. Data Tab. 17, 1 (1976)
- [23] A.J.Koning, J.P.Delaroche Nucl. Phys. A713 231 (2003)
- [24] R.G. Pizzone et al. Phys. Rev C **71** 058801 (2005)
- [25] R.G. Pizzone et al. Phys. Rev C 80 025807 (2009)
- [26] G.G. Ohlsen, Nucl. Inst. Meth. 37 240 (1965)
- [27] J.M.Blatt, L.C.Biedenharn Rev.Mod.Phys. 24 258 (1952)
- [28] V.V.Ketlerov et al. Nucl. Phys. A621 243 (1997)
- [29] J.A.Weinman, E.A. Silverstein Phys. Rev. 111 277 (1958)