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We present a new, fast algorithm and computing code developed to efficiently calculate the two-
body matrix elements(TBMEs) of the neutrinoless double beta decay transition operator, which are
necessary for the shell model calculation of the double beta decay matrix elements in the closure
approximation. The improvement consists in a rearrangement of the expression of the TBMEs that
allows us to do the radial integrals analytically, and thus only the integration over the momentum
remains to be performed numerically. This fast algorithm is an important step forward in inves-
tigating quenching effects of the transition operator by considering their evolution in increasingly
larger shell model spaces.
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The neutrinoless double beta (0νββ) decay is a beyond
Standard Model (SM) process of major interest for un-
derstanding the neutrino properties. Indeed, its discov-
ery would decide if neutrinos are their own antiparticles
[1], and would give a hint on the scale of their abso-
lute masses. The present status of these investigations
can be found in several more recent reviews [2]-[5], which
also contain therein a comprehensive list of references in
the domain. Of particular interest is the effective neu-
trino mass, a parameter entering the 0νββ decay half-
lives, which depends on the neutrino masses, neutrino
oscillating parameters and Majorana phases. Thus, to
extract information about the neutrino properties one
needs a precise computation of the nuclear matrix ele-
ments (NMEs) which also enter the half-lives formula.
This problem still represents a challenge in the theoreti-
cal study of the 0νββ decay. Typical calculations of the
NMEs are performed using a bare transition operator
[5]. This is almost always the case even if one uses differ-
ent approaches: pnQRPA [6]-[10], Shell model(ShM)[11]-
[14], IBA [15], PHFB [16] and energy density functional
(EDF) method [17], which are the most common methods
of calculation of these matrix elements. This is equally
true even if one uses an improved transition operator
that considers higher order effects in the nucleon current
(HOC) [18, 19]. In principle the most reliable of these
approaches to perform calculations for the NMEs (rele-
vant for 0νββ decay) is the ShM, since it incorporates all
types of correlations and uses effective nucleon-nucleon
(NN) interactions which are checked with other spec-
troscopic calculations for nuclei from the same region.
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However, it has to face the problem of the large model
spaces and the associated computational resources. Also,
it is well known that in ShM calculations of the two-
neutrino (2νββ) matrix elements the Gamow-Teller op-
erator needs to be quenched, to better describe the ex-
perimental data for beta decays and charge-exchange re-
actions. Therefore, it is important to know if the 0νββ
transition operator has to be effectively modified when
used in relatively small model spaces. Work in this direc-
tion was recently reported in Ref. [20] where an effective
operator was analyzed for the 0νββ decay of 82Se in the
jj44 model space consisting of the f5/2, p3/2, p1/2, g9/2
orbitals. For these calculations up to 8 major harmonic
oscillator shells (MHOS) were used, which implies that
one needs all two body matrix elements of the 0νββ tran-
sition operator in these large spaces. In addition, there
were recent proposals [21, 22] to investigate the modi-
fications of the transition operator in increasingly larger
shell model spaces for a fictitious 0νββ decay of a p− shell
nucleus. The calculations reported in Ref.[20] were per-
formed using a bare operator without higher order contri-
butions in the nucleon current. In these calculations the
integral over momentum in the transition operator can
be analytically done, which makes the calculation of its
two-body matrix elements very fast. It is however known
that the effect of the higher order contribution in the nu-
cleon current is a reduction of the 0νββ matrix element
by 20-30 %. This reduction could be further amplified
by the equivalent effective operator. Therefore, it is im-
portant to investigate this effect, which would require
knowledge of the two-body matrix elements of the bare
transition operator in a large number of MHOS, e.g. 8 to
12. In our previous works [14], [23], we started to develop
an efficient nuclear ShM approach to accurately calculate
the NMEs for both 2νββ and 0νββ decay modes. The
approach used in Ref. [14] to calculate the TBMEs of
the transition operator that includes higher order terms
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in the nucleon current needs to calculate two-dimensional
integrals, on the relative momentum and the relative co-
ordinate. This approach was sufficiently fast for calcu-
lating the two-body matrix elements in a single major
shell, such as pf -shell. However, calculations of these
two-body matrix elements in 8-12 major shells would be
intractable with this approach.

In this paper we present a new improved (fast, effi-
cient) ShM code which reduces substantially the com-
puting time of calculation of the TBMEs of the 0νββ
decay transition operator which are necessary to calcu-
late the NMEs. To calculate the TBMEs, normally two-
dimensional integrations need to be done, one in the coor-
dinate space and one in momentum space. The main im-
provement in this code is a rearrangement of the expres-
sion of TBMEs that allows us to do the radial integrals
(the integrals in coordinate space) analytically when har-
monic oscillator (HO) single particle wave functions are
used. Therefore, only the integration over the momentum
remains to be performed numerically. We first compare
our results for NMEs with other similar results from lit-
erature performed with both ShM and other methods.
Then, we compare the CPU times of our code with the
CPU times of our previous code [14], for the same calcu-
lations. We note that these times decrease significantly.
We get an estimation of an average CPU time per TBME
and note that the new code proves very promising for
more elaborate calculations in many MHOS.

The 0νββ decay (Z,A)→ (Z+2, A)+2e− requires that
the neutrino and the antineutrino are identical and mas-
sive particles. Considering that this decay occurs only
by exchange of light neutrinos between nucleons and in
the presence of left-handed weak interactions, the lifetime
can be expressed as:(

T 0ν
1/2

)−1
= G0ν(E0, Z) |M0ν |2

(
〈mν〉
me

)2

, (1)

G0ν is the phase space factor depending on the energy
decay E0 and nuclear charge Z, and 〈mν〉 is the effec-
tive neutrino mass parameter depending on the first row
elements of the neutrino mixing matrix Uei, Majorana
phases eiαi and the absolute neutrino mass eigenstates
mi (see e.g. Ref. [5]). The nuclear matrix elements are:

M0ν = M0ν
GT −

(
gV
gA

)2

·M0ν
F , (2)

where M0ν
GT and M0ν

F are the Gamow-Teller (GT ) and the
Fermi(F ) parts, respectively. Usually a tensor part ap-
pears as well, but the numerical calculations have shown
that its contribution is small [14]; consequently, it will
be neglected in the following. The matrix elements can
be expressed as sum of products of two-body transition
densities (TBTD) and matrix elements for two-particle
states (TBMEs),

M0ν
α =

∑
jpjp′ jnjn′Jπ

TBTD (jpjp′ , jnjn′ ; Jπ)

〈jpjp′ ; Jπ‖τ−1τ−2Oα12‖jnjn′ ; Jπ〉 , (3)

The calculation of the matrix elements of the two-body
transition operators Oα12 (α = GT, F) can be decomposed
into products of reduced matrix elements within two sub-
spaces spanned by the spin and relative wave functions
of two-particle states [14]. The most difficult step in the
computation of TBMEs is the radial part of these oper-
ators, which contains the neutrino potentials. Neutrino
potentials depend weakly on the intermediate states, and
are defined by integrals of momentum carried by the vir-
tual neutrino exchanged between the two nucleons [19]

Hα(r) =
2R

π

∫ ∞
0

j0(qr)
hα(q)

ω

1

ω + 〈E〉
q2dq

≡
∫ ∞
0

j0(qr)Vα(q)q2dq , (4)

where R = 1.2A1/3 fm, ω =
√
q2 +m2

ν is the neutrino
energy and j0(qr) is the spherical Bessel function. We
use the closure approximation in our calculations, and
〈E〉 represents the average excitation energy of the states
in the intermediate odd-odd nucleus, that contribute to
the decay. The expressions of hα(α = F,GT ) [19] are the
same as in Eqs. (8)-(9) of Ref. [14], which include finite
nucleon size (FNS) contributions and higher order terms
in the nucleon currents (HOC).

To compute the radial matrix elements 〈nl|Hα|n′l′〉 we
use the (HO) wave functions ψnl(r) (depending on the
HO parameter ν) corrected by a factor [1 + f(r)], which
takes into account the short range correlations (SRC)
induced by the nuclear interaction

f(r) = −c · e−ar
2 (

1− br2
)
, (5)

where a, b and c are constants which have particular
values in different parameterizations [19],[24]. Including
HOC and FNS effects the radial matrix elements of the
neutrino potentials become:

〈nl | Hα(r) | n′l′〉 =

∫ ∞
0

r2drψnl(r)ψn′l′(r) [1 + f(r)]
2

×
∫ ∞
0

q2dqVα(q)j0(qr) , (6)

The calculation of the radial matrix elements Eq. (6)
requires the numerical computation of two integrals, one
over the coordinate space and the other over the momen-
tum space.

Iα(µ;m) =

∫ ∞
0

q2dq Vα(q)

×
(

2

π

) 1
2

(2ν)
m+1

2

∫ ∞
0

dr e−µr
2

rmj0(qr) (7)

where µ = ν, ν + a, ν + 2a and m is integer. However,
one can reduce the computation to only one integral by
rearranging the expression of the radial integral in coor-
dinate space as a sum of terms with the same power of r
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and perform analytically this integral taking advantage
of some mathematical recursion formulae(

2

π

) 1
2

(2ν)
m+1

2

∫ ∞
0

dr e−µr
2

rmj0(qr) =

(
2ν

2µ

)m+1
2

× (m− 1)!!

m
2 −1∑
k=0

(−1)k
(m

2 − 1

k

)
e−

q2

4µ

(2k + 1)!!(2µ)k
q2k

(8)

Similar approaches to calculate TBMEs were reported in
Refs. [15, 25, 26].

Finally, the radial matrix element can be expressed as
a sum of integrals over the momentum space:

〈nl | Hα(r) | n′l′〉 =

n+n′∑
s=0

Al+l′+2s(nl, n
′l′)Kα(m) (9)

where Al+l′+2s are coefficients independent of r:

Al+l′+2s(nl, n
′l′)=

[
n!(2l + 2n+ 1)!!

2n
n′!(2l′ + 2n′ + 1)!!

2n′

]
× (−1)s

∑
k

1

k!(n− k)!(2l + 2k + 1)!!

× 1

k′!(n′ − k′)!(2l′ + 2k′ + 1)!!
(10)

with max(0, s−n′) ≤ k ≤ min(n, s) , k+k′ = s . Here
Kα(m) is a sum of six Iα(µ;m) integrals over momentum,

Kα(m) =
1√
2ν

[Iα(ν;m)− 2cIα(ν + a;m)

+ 2c

(
b

2ν

)
Iα(ν + a;m+ 2) + c2Iα(ν + 2a;m)

− 2c2
(
b

2ν

)
Iα(ν + 2a;m+ 2)

+ c2
(
b

2ν

)2

Iα(ν + 2a;m+ 4)] , (11)

where a, b, and c are the parameters entering Eq. (5).
We developed a new code for computing the TBMEs

necessary for the ShM calculations of the NME involved
in 0νββ decays, based on the formalism described above.
The new code has a flexible user interface, which allows
the selection of various nuclear effects. In order to obtain
the NMEs, the TBTD are calculated using the method
described in Ref. [14]. For 48Ca we used GXPF1A [27]
effective interaction in the full pf model space, and for
82Se we used JUN-45 [28] effective interactions in the
jj44 model space. Our code is also flexible to use with
different SRC types like Miller-Spencer [24] and coupled
cluster model (CCM) with Argonne V18 and CD-Bonn
parameterizations [19]. A first step was to compare the
results obtained with our code with results from the lit-
erature obtained with similar nuclear effects and param-
eterizations. As one can see from Table I, our results are
in good agreement with previous ones, provided that the

M0ν 48Ca 82Se
(∗) present work 0.57 2.47
[14] (2010 ShM) 0.57
[12] (2008 ISM) 0.59 2.11
[13] (2009 ISM) 0.61 2.18
[9] (2007 QRPA) 2.77

TABLE I: Comparison between the results of the present work
(∗) and other similar results from the references indicated. All
calculations include FNS, HOC and SRC of Jastrow type with
Miller-Spencer parameters.

same nuclear nuclear effects are included in the calcula-
tions.

We have also analyzed the performance of our code in
getting an improved computing speed. In Figure 1 we
show the single-core CPU times needed to compute the
TBMEs.

FIG. 1: CPU-times for the computation of the TBMEs

In the case of 48Ca, there are 94 TBMEs requiring a total
of 6.29s of CPU-time on our test machine equipped with
Intel Xeon X5560 CPUs. This translates into an average
of 6.7 · 10−2s for each individual TBMEs. When com-
puting the product of wave functions, the dependence on
the n and l quantum numbers of the nucleon orbits is
reflected in the CPU-times, as one can see in the differ-
ence between the average CPU-time/TBME of 48Ca and
those of 82Se. 82Se has required a total of 6.30s for the
computation of its 65 TBMEs, thus needing an average
time of 9.7 · 10−2s for each TBMEs. Even then, we can
still calculate TBMEs for 82Se almost as fast as for the
simpler case of 48Ca nucleus. Figure 1 also shows the con-
tribution of the SRC and FNS+HOC effects to the total
computation time for the TBMEs. ”Bare” means that
neither SRC nor FNS + HOC effects were considered.
With our new method and code, we obtain an improve-
ment in speed by a factor of about 30, as compared to the
code used in Ref. [14], where more than three minutes
where needed instead of 6.3 seconds. The performance
of the new code makes us confident that it is now possi-
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ble to rapidly, accurately and efficiently compute TBMEs
for many nuclear shells. This task is very challenging for
the TBME code of Ref. [14]. For example, if one wants
to investigate the effective transition operator in only 8
MHOS [20], one needs to calculate about 434k TBMEs
(GT plus F ). The actual average time/TBME is about
1.7 seconds, but as remarked above, is increasing with the
raise of the angular momenta of the single particle orbits
involved. Using a conservative estimate of about 10 sec-
onds/TBME one could conclude that one needs about
50 days of single-threaded processing power to calculate
all necessary TBMEs. This time could be reduced by a
factor of say 500 if the calculation of the TBMEs is dis-
tributed via a load-balancing algorithm [29], when using
1000 cores with 50% efficiency. However, this reduction
might not be sufficient if 9 or 10 MHOS need to be used.
The new algorithm presented here could be extremely
useful in reducing the calculation time by another factor
of about 30.

In summary, we developed a fast, efficient code for
computing the TBMEs, which are part of the NMEs
necessary for the analysis of the 0νββ decays. The im-
provement consists in a faster computation of the ra-
dial matrix elements using correlatedHO wave functions.
Their computation normally requires the numerical eval-
uation of two-dimensional integrals, one over the coor-
dinate space and the other over the momentum space.
By rearranging the expressions of the radial matrix ele-

ments, the radial integrals can be performed analytically
over the coordinate space, thus the computation reduces
to sum up a small number of integrals over momentum.
We check our code by comparing the values of the NMEs
for 48Ca and 82Se calculated with our new code with
similar results from literature and we found a quite good
agreement. Further, we estimated the CPU-times for
one single core needed to compute the TBMEs with our
code and compare them with the similar CPU-times ob-
tained with our previous code requiring two-dimensional
integrals. We find a significant reduction of the com-
putational time, by a actor of about 30. We also esti-
mated the average CPU-time per single TBME in the
cases 48Ca and 82Se and found very small values. This
achievement makes us confident that it is now possible
to rapidly, accurately and efficiently compute TBMEs for
many major harmonic oscillator shells, which were very
time-consuming in our earlier approach. The calcula-
tion of the TBMEs in 8 MHOS could be done in about
1-2 days using the present single-threaded code. Exten-
sion to more than 8 MHOS would require the paralleliza-
tion of the code using a load-balancing algorithm. These
TBMEs can be further used to investigate the effective
transition operator needed for 0νββ decay analyses.
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