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Abstract

We study the consistency of parton distribution functions in the presence of target mass cor-

rections (TMCs) at low Q2. We review the standard operator product expansion derivation of

TMCs in both x- and moment-space, and present the results in closed form for all unpolarized

structure functions and their moments. To avoid the unphysical region at x > 1 in the standard

TMC analysis, we propose an expansion of the target mass corrected structure functions order by

order in M2/Q2, and assess the convergence properties of the resulting forms numerically.
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I. INTRODUCTION

The application of the operator product expansion (OPE) to the phenomenological study

of Quantum Chromodynamics (QCD) has been very successful in the determination of the

quark and gluon substructure of the nucleon. The OPE allows the formal separation of cross

sections for high-energy processes such as deep-inelastic scattering (DIS) into perturbatively

calculable partonic cross sections and nonperturbative contributions parametrized by parton

distribution functions (PDFs). The factorization of the cross section becomes especially clean

in the Bjorken limit, where the energy ν and four-momentum squared Q2 transferred to a

nucleon with mass M both become infinite, with the ratio x = Q2/2Mν fixed.

In the Bjorken limit the DIS process becomes dominated by scattering at light-cone space-

time distances zµz
µ ∼ 0, with the expansion made in terms of products of singular and

non-singular terms around the light-cone. The singularities are isolated in the perturbative

Wilson coefficients, while the non-singular terms are all the possible operators allowed by

the underlying quantum field theory. The coefficient of the operators of lowest twist (where

twist is defined as the dimension minus the spin of the operator) contains the most singular

terms. Operators in the expansion with higher twist are less singular, and at large Q2 are

suppressed by powers of 1/Q2.

While this framework has met with considerable success in describing data at high Q2 ≫
M2 and large final state hadron masses W 2 =M2+Q2(1−x)/x, many recent high-precision

experiments [1] have been performed at lower energies, with Q2 down to ≈ 1−2 GeV2, where

the use of the asymptotic Bjorken limit formalism is more questionable. In addition to the

strong coupling constant αs becoming large, at low Q2 the higher twist power corrections,

which describe nonperturbative multi-parton correlations, become increasingly important.

Furthermore, even at leading twist, there are corrections arising from purely kinematic effects

associated with finite values of Q2/ν2 = 4M2x2/Q2, usually termed target mass corrections

(TMCs) [2–6].

To perform reliable perturbative QCD based analyses which include data in the low Q2

region, a careful treatment of the subleading 1/Q2 corrections is essential, and global PDF

analyses [7–11] have only recently begun to take such effects systematically into account.

Studies of quark-hadron duality [12, 13] have also strongly suggested that data at low W

can be described (to within ∼ 10–15%) by leading twist parton distributions. A more basic

2



question, however, is whether one can consistently define leading twist parton distributions

in the presence of TMCs, that can be valid at low Q2 over the entire range of x.

The first analysis to tackle this question was by Georgi and Politzer (GP) [2], who pro-

posed taking TMCs into account by defining distributions at low Q2 in terms of the Nacht-

mann scaling variable, ξ [14, 15],

ξ =
2x

1 + ρ
, with ρ =

√

1 + 4µx2 and µ =
M2

Q2
. (1)

This leads to a specific prescription for removing TMCs from measured structure functions

that has been used extensively in the literature [5].

Unfortunately, problems with the standard TMC prescription were soon realized [16–21]

in the behavior of the target mass corrected structure functions in the vicinity of x ≈ 1. In

particular, functions expressed in terms of ξ over the interval 0 ≤ ξ ≤ 1 necessarily extend

into the unphysical region between the elastic limit ξ = ξ0 ≡ ξ(x = 1) and ξ = 1 for any

finite value of Q2 [2]. This not only violates the conservation of energy and momentum, but

also makes structure functions nonzero at x = 1, at odds with the expectation that leading

twist functions should vanish at the elastic point [12, 22].

As a possible remedy, De Rujula et al. [3, 4] noted that in the threshold region analyses

of data should not be performed in terms of leading twist structure functions alone, without

also incorporating the effects of higher twist operators. They argued that a nonuniformity

in the limits as n→ ∞ and Q2 → ∞ renders the entire approach untenable at very low W ,

when higher twists exceed ∼ nM2/Q2 for the n-th structure function moment.

Attempts were also made by Tung and collaborators [19, 20] to phenomenologically re-

move the threshold problem by utilizing an ansatz to smoothly merge the moments in the

perturbative region at large Q2 with their correct threshold behavior in the n → ∞ limit,

although such a prescription is not unique. Steffens and Melnitchouk [23] extended this

approach by proposing threshold-dependent distributions which exactly satisfy threshold

kinematics at all Q2, at the expense of sacrificing the universality of PDFs in the presence

of TMCs.

Other approaches based on collinear factorization, starting with the seminal work of

Ellis, Furmanski and Petronzio [24], avoid the inversion of moments by implementing TMCs

directly in momentum space within the parton model [25–28]. These, too, however, suffer

from prescription dependence [25–28], or do not extend to all orders in 1/Q2 [24]. In addition,

3



even though they do not invoke distributions at x > 1, all these formulations nevertheless

retain the problem of nonvanishing structure functions at x = 1.

Given the desire to maximally utilize the recent precision structure function measure-

ments at large x [1, 7–11, 29], as well as those planned for the near future [30, 31], there is a

pressing need to address the question of TMCs and the consistency of parton distributions

with mass corrections at finite Q2. A more reliable treatment of the high-x region at mod-

erate Q2 is important not only in providing a better understanding of the quark structure of

the nucleon in the deep valence region [32, 33], it is also vital for constraining cross sections

at collider energies through the evolution to lower x at higher Q2 values [34, 35].

In this paper we revisit the problem of kinematic thresholds and PDF definitions in the

OPE approach to TMCs, elucidating its shortcomings, and proposing an alternative method

that addresses some of the problems inherent in the standard TMC formulation. In Sec. II we

review the standard TMC approach, outlining the OPE derivation of target mass corrected

moments and their inversion to x-space. We demonstrate explicitly the conflict of the usual

inversion procedure with energy-momentum conservation, and illustrate its consequences for

the x dependence of the structure functions as well as their moments. We propose a new

method to compute TMCs in Sec. III, based on inversion of the moments order by order

in M2/Q2, without having to introduce the Nachtmann scaling variable ξ, and study the

convergence of the series numerically. The advantages and limitations of this method are

summarized in Sec. IV. Further technical details of the TMC derivations of moments and

structure functions are provided in Appendices A and B, respectively.

II. TARGET MASS CORRECTIONS IN THE OPE

In this section we begin by summarizing the basic formulas for inclusive cross sections

and structure functions, before outlining the main steps in the derivation of TMCs from

the operator product expansion. We present results for the complete set of leading twist

moments of unpolarized structure functions, and discuss their inversion to obtain the x

dependence at nonzero M2/Q2.

In the one-boson exchange approximation, the differential cross section for a lepton scat-
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tering from a nucleon target is given (in the target rest frame) by

d2σ

dΩ dE ′
=

α2

Q4

E ′

ME
η LµνW

µν , (2)

where Ω is the scattered lepton solid angle, and E and E ′ are the initial and final electron

energies, respectively. The lepton tensors Lµν and the coefficients η depend on the type of

boson exchanged (γ, γZ, Z, or W±) [36]. Denoting the initial and final lepton momenta by

k and k′, respectively, and the momentum transferred to the nucleon by q = k − k′, the

hadronic tensor is given by the commutator of electroweak current operators Jµ,

W µν =
1

2π

∫

d4z eiq·z〈N |[Jµ(z), Jν(0)]|N〉 (3)

= −gµνF1 +
pµpν

p · q F2 − iǫµνλσ
pλpσ
2p · qF3 +

2qµqν

Q2
F4 +

pµqν + pνqµ

p · q F5, (4)

where Fi (i = 1 − 5) are the structure functions of the nucleon, usually expressed in terms

of the variables x and Q2 = −q2, and we adopt the convention ǫ0123 = 1 [36]. The structure

functions F1 and F2 are accessible in charged lepton or neutrino scattering through a product

of vector currents, while F3 requires the interference of vector and axial vector currents. The

vector structure functions F4 and F5 are accessible in neutrino scattering but are suppressed

by lepton masses, m2
l /M

2; for completeness, however, we include them in this analysis. The

hadronic tensor Wµν is also related to the imaginary part of the virtual forward Compton

scattering amplitude,

T µν = i

∫

d4z eiq·z 〈N |T (Jµ(z)Jν(0))|N〉, (5)

with

W µν =
1

π
disc T µν . (6)

In the following we derive expressions for the amplitude T µν and use Eq. (6) to extract the

results for the structure functions.
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A. Moments of structure functions

The standard derivation of TMCs in the OPE in the twist-2 approximation begins with

the Compton scattering amplitude Tµν , which can in general be written as [2]

T µν =

∞
∑

k=1

(

− gµνqµ1
qµ2
C2k

1 + gµµ1
gνµ2

Q2C2k
2 − iǫµναβgαµ1

qβqµ2
C2k

3 +
qµqν

Q2
qµ1
qµ2
C2k

4

+
(

gµµ1
qνqµ2

+ gνµ1
qµqµ2

)

C2k
5

)

qµ3
· · · qµ2k

22k

Q4k
A2k Π

µ1···µ2k , (7)

where

Πµ1···µ2k =

k
∑

j=0

(−1)j
(2k − j)!

2j(2k)!
{g · · · gp · · ·p}k,j (p2)j (8)

and {g · · · gp · · ·p}k,j represents the (symmetric) sum of (2k)!/[2jj!(2k− 2j)!] distinct prod-

ucts of the form gµi1
µi2 · · · gµi2j−1

µi2j pµ2j+1 · · · pµ2k resulting from permutations of the indices

µ1, · · · , µ2k. The Wilson coefficients C2k
i are calculated perturbatively, while the factors A2k

are matrix elements of local twist-2 operators Oµ1···µ2k [37],

〈N | Oµ1···µ2k |N〉 = A2k p
µ1 · · · pµ2k − traces, (9)

which parametrize the nonperturbative structure of the nucleon. In the case of the flavor

singlet operator, for example, one has

Oµ1···µ2k

sing = ψ̄γ{µ1Dµ2 · · ·Dµ2k}ψ − traces, (10)

where the braces {· · · } denote symmetrization with respect to the indices µ1, · · · , µ2k.

The Cornwall-Norton moments M
(n)
i of the structure functions Fi are defined by

M
(n)
i (Q2) =



























∫ 1

0

dx xn−1Fi(x,Q
2) if i = 1, 3, 4, 5

∫ 1

0

dx xn−2Fi(x,Q
2) if i = 2, L,

(11)

where the longitudinal structure function FL is given by

FL = (1 + 4µx2)F2 − 2xF1, (12)
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with the corresponding coefficient function Cn
L = Cn

2 − Cn
1 . A straightforward but tedious

calculation gives for each of the moments [2, 38]

M
(n)
1 (Q2) =

∞
∑

j=0

µj

(

n+ j

j

)(

1

2
Cn+2j

1 +
j

(n+ 2j)(n+ 2j − 1)
Cn+2j

2

)

An+2j (13a)

M
(n)
2 (Q2) =

∞
∑

j=0

µj

(

n+ j

j

)

n(n− 1)

(n+ 2j)(n+ 2j − 1)
Cn+2j

2 An+2j (13b)

M
(n)
L (Q2) =

∞
∑

j=0

µj

(

n+ j

j

)(

Cn+2j
L +

4j

(n+ 2j)(n+ 2j − 1)
Cn+2j

2

)

An+2j (13c)

M
(n)
3 (Q2) =

∞
∑

j=0

µj

(

n+ j

j

)

n

n+ 2j
Cn+2j

3 An+2j (13d)

M
(n)
4 (Q2) =

∞
∑

j=0

µj

(

n+ j

j

)(

j(j − 1)

(n+ 2j)(n+ 2j − 1)
Cn+2j

2 +
1

4
Cn+2j

4

− j

(n + 2j)(n+ 2j − 1)
Cn+2j

5

)

An+2j (13e)

M
(n)
5 (Q2) =

∞
∑

j=0

µj

(

n+ j

j

)

n

n+ 2j

(

− j

n+ 2j − 1
Cn+2j

2 +
1

2
Cn+2j

5

)

An+2j (13f)

where the binomial symbol
(

a

b

)

= a!/[b!(a−b)!]. Further details of the derivation of Eqs. (13)

are given in Appendix A. Note that the expression for the M
(n)
1 moment is the same as that

in Ref. [38] once the differences between the corresponding operator definitions are taken

into account [39].

Up to this point the effects of the target mass on the structure function moments are rig-

orously derived within the OPE formalism. To proceed beyond Eqs. (13) and determine the

TMC effects on the x dependence of the structure functions themselves requires additional

assumptions, which inevitably introduces some model dependence in the calculation, as we

discuss next in the following section.

B. Parton distributions with TMCs

In the absence of color interactions, the matrix elements A2k in Eq. (9) should not depend

on any scale apart from the factorization scale. With this in mind, the products C2k
i A2k in

Eq. (7) can be written in terms of parton distribution functions fi as

C2k
i A2k =

∫ 1

0

dy y2k−1 fi(y), (14)
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where for ease of notation we suppress the dependence in C2k
i and fi on the scale Q2, which

arises from perturbative QCD corrections. The functions fi are defined such that in the

massless limit (µ→ 0) one has

{

F
(0)
1 , F

(0)
2 , F

(0)
L , F

(0)
3 , F

(0)
4 , F

(0)
5

}

=

{

1

2
f1, xf2, x(f2 − f1), f3,

1

4
f4,

1

2
f5

}

, (15)

where F
(0)
i ≡ limµ→0 Fi is the massless limit of the physical structure function Fi. Note that

our notation for the parton distribution functions fi differs from that in Refs. [2, 27], whose

distributions effectively correspond to fi(x)/x.

The functions fi can in principle be identified with the PDFs measured in deep-inelastic

or other high-energy scattering processes. (For simplicity we omit the flavor dependence

of the structure functions, including their electroweak couplings, which can be incorporated

straightforwardly with the distributions fi.) Following the derivation of GP [2], the structure

functions at finite Q2 can be inverted using the inverse Mellin transform,

Fi(x,Q
2) =



























1

2πi

∫ i∞

−i∞

dn x−nM
(n)
i (Q2) if i = 1, 3, 4, 5

1

2πi

∫ i∞

−i∞

dn x−n+1M
(n)
i (Q2) if i = 2, L.

(16)

Using Eqs. (13) and (14), the x dependence of the structure functions can then be determined

in terms of the functions fi, as outlined in Appendix B [2, 27],

F1(x,Q
2) =

1

2(1 + µξ2)
f1(ξ) − µx2

∂

∂x

(

g2(ξ)

1 + µξ2

)

, (17a)

F2(x,Q
2) = x2

∂2

∂x2

(

xg2(ξ)

ξ(1 + µξ2)

)

, (17b)

FL(x,Q
2) = − x

1 + µξ2
f1(ξ) + 2µx3

∂

∂x

(

g2(ξ)

1 + µξ2

)

+ (1 + 4µx2)x2
∂2

∂x2

(

xg2(ξ)

ξ(1 + µξ2)

)

, (17c)

F3(x,Q
2) = −x ∂

∂x

(

h3(ξ)

1 + µξ2

)

, (17d)

F4(x,Q
2) =

1

4(1 + µξ2)
f4(ξ) + µx2

∂

∂x

(

g5(ξ)

1 + µξ2

)

+ µ2x3
∂2

∂x2

(

ξ2g2(ξ)

1− µ2ξ4

)

, (17e)

F5(x,Q
2) = −x

2

∂

∂x

(

h5(ξ)

1 + µξ2

)

− µx2
∂2

∂x2

(

ξg2(ξ)

1− µ2ξ4

)

, (17f)
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where the functions hi and gi are given by

hi(ξ) =

∫ 1

ξ

du
fi(u)

u
, (18)

gi(ξ) =

∫ 1

ξ

du hi(u). (19)

Note that the expression for the F4 structure function in Ref. [27] contains “ξh5” instead of

“g5” in the second term of Eq. (17e). Equations (17) define the complete set of unpolarized

structure functions in the standard treatment of TMCs in the OPE. As was noted already

in Ref. [3], however, the standard results lead to problems in the limit as x → 1, which we

shall focus on in the remainder of this section.

C. Consistency of the standard TMCs?

When taking the moments of the calculated x-dependent structure functions in the

presence of TMCs, one should for consistency recover the expressions for the moments in

Eqs. (13). To be specific, we investigate this here for the F2 structure function, Eq. (17b),

but the same arguments can be applied to all the other structure functions. From the

definition of the moments in Eq. (11), the n-th moment of F2 can be written as

M
(n)
2 (Q2) =

∫ 1

0

dx xn
∂2

∂x2

(

xg2(ξ)

ξ(1 + µξ2)

)

(20a)

=

[

xn
∂

∂x

(

xg2(ξ)

ξ(1 + µξ2)

)]1

x=0

−
[

nxn−1 xg2(ξ)

ξ(1 + µξ2)

]1

x=0

+ n(n− 1)

∫ 1

0

dx xn−2 xg2(ξ)

ξ(1 + µξ2)
, (20b)

where integration by parts has been performed twice. Changing variables from x to ξ, and

using the fact that the kinematic maximum value of ξ is given by ξ0, the moment becomes

M
(n)
2 (Q2) =

4µ2ξ30
(1 + µξ20)

3
g2(ξ0) +

1− µξ20
(1 + µξ20)

2

∂g2(ξ)

∂ξ

∣

∣

∣

∣

ξ=ξ0

− n

(1− µ2ξ40)
g2(ξ0)

+ n(n− 1)

∞
∑

j=0

µj

(

n+ j

j

)
∫ ξ0

0

dξ ξn+2j−2 g2(ξ), (21)

where we have also used dx/dξ = (1 + µξ2)/(1− µξ2)2, together with the relation

1

(1− µξ2)n+1
=

∞
∑

j=0

µj

(

n+ j

j

)

ξ2j. (22)
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Now, consider the last term in Eq. (21) involving the integral of the function g2(ξ). From

the definition of the parton distributions in Eq. (14), one can write

1

(n+ 2j)(n+ 2j − 1)
Cn+2j

2 An+2j =

∫ ξ0

0

dξ ξn+2j−2 g2(ξ) +

∫ 1

ξ0

dξ ξn+2j−2 g2(ξ). (23)

However, because the function f2 (and hence its integrals as in Eqs. (18) and (19)) has no

reason to vanish in the region ξ0 < ξ < 1, the second term in Eq. (23) is in general nonzero.

The same is true for the first three terms in Eq. (21), and as a consequence one does not

recover exactly the original expression, Eq. (13b).

On the other hand, if the parton distributions were to vanish in the region ξ0 < ξ < 1,

the moments would have to depend on ξ0,

Cn
i An(ξ0) =

∫ 1

0

dξ ξn−1 fi(ξ; ξ0) =⇒ dAn(ξ0)

dξ0
=

∫ 1

0

dξ ξn
dfi(ξ; ξ0)

dξ0
6= 0, (24)

where we explicitly label the dependence of the functions fi on ξ and ξ0. This result suggests

two immediate problems: (i) universal (process-independent) parton distributions would no

longer exist at finite Q2; and (ii) the separation between short and long distances on the

light-cone, as embodied in the OPE, would no longer be possible.

If the condition that the structure functions vanish for ξ > ξ0 is not imposed, one is then

faced with the prospect of energy-momentum not being conserved. In fact, if the upper limit

of integration in Eq. (20a) were extended from x = 1 to x = 1/(1− µ), the first three terms

of Eq. (21) would be identically zero, and extending the integration in the fourth term to

ξ = 1, Eq. (13b) would be recovered. Consequently, the consistency of the GP prescription

[2], and in most subsequent TMC treatments, requires the violation of energy-momentum

conservation. It thus appears a general consequence of defining parton distributions at

finite Q2 in the presence of TMCs that one must choose between two less than ideal options:

either keeping a universal parton distribution and violating energy-momentum conservation,

or conserving energy and momentum but working with process-dependent distributions.

We can assess the numerical significance of the ξ > ξ0 region by evaluating the lowest

(n = 2) moment M
(2)
2 using a simple form for the parton distribution,

xf2(x) =
35

32

√
x (1− x)3, (25)

chosen to approximately reproduce a typical valence quark distribution, normalized such

that
∫ 1

0
dx f2(x) = 1. The moment shown in Fig. 1 is computed from Eq. (13b) for several
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1 2 3 4 5

Q
2
 (GeV

2
)

0.11

0.115

0.12

M
2(2

) (Q
2 )

j = 0
j < 2
j < 3
j < 4
GP,  ξ

 max
 = ξ0

GP,  ξ
 max

 = 1

FIG. 1: n = 2 moments of the F2 structure function, illustrating the convergence of the series in

Eq. (13b) for j = 0 (dotted), j < 2 (dot-dash-dashed), j < 3 (dot-dashed) and j < 4 (dashed),

compared with the standard TMC result from GP [2] using Eq. (17b) with the upper limit of

integration ξmax = ξ0 (21) (dot-dot-dashed) and ξmax = 1 (solid).

values of j (from the leading term only, j = 0, up to the inclusion of the first four terms,

j < 4), and is compared with directly integrating F2(x,Q
2) over x from 0 to 1 (or equivalently

up to ξ = ξmax = ξ0), using Eqs. (17b). As noted above, this procedure does not recover

the formal result for the moment, Eq. (13b), which is reflected in the nonconvergence of the

moments with increasing j to the standard TMC result from GP [2] in Eq. (17b) (dot-dot-

dashed curve in Fig. 1). On the other hand, if the missing integration range as expressed in

the second term of Eq. (23) is kept, the convergence of the moments is recovered (solid curve

in Fig. 1), although at the expense of effectively integrating beyond x = 1 (to ξmax = 1).

The problem encountered here is at the core of the parton interpretation of the matrix

elements An. The approach of GP attempts to maintain a partonic interpretation at finite

Q2 by introducing a new scaling variable ξ [14, 15]. However, as shown in Eq. (21), this

leads to inconsistencies in the extracted x dependence of the structure functions and their

moments.

A possible way to avoid the problematic ξ ∼ ξ0 region is, ironically, to not introduce

the Nachtmann scaling variable ξ in the first place. This can be realized by performing the
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inversion of the moments order by order in µ, rather than summing over all powers of µ during

the inversion. As we shall see in the next section, this allows us to work with universal twist-

2 distribution functions, while simultaneously preserving energy-momentum conservation.

The only drawback of this approach is that the region of x and Q2 where parton distributions

can be formulated consistently in the presence of TMCs will be somewhat restricted.

III. SERIES EXPANSION OF INVERTED MOMENTS

In the course of inverting the moments to obtain the structure functions, the binomial

theorem is used to perform the integration by absorbing combinatorial factors involving the

integration variable n (see Appendix B). Instead of this standard procedure, in this section

we describe how the moments can be inverted term by term by absorbing the combinatorial

factor into derivatives, which gives rise to novel series expansions for each of the structure

functions. We illustrate this procedure for the case of the F2 structure function, with the

derivation of the other structure functions following similarly.

For the j-th term in the series expansion for the F2 moment in Eq. (13a), M
(n)
2,j , the

contribution to the structure function is given by the inverse Mellin transform

F2,j(x,Q
2) =

1

2πi

∫ i∞

−i∞

dn x1−nM
(n)
2,j (Q

2). (26)

Using integration by parts to write

Cn+2j
2 An+2j = (n+ 2j)(n+ 2j − 1)

∫ 1

0

dy yn+2j−2 g2(y,Q
2), (27)

the contribution to F2,j can then be expressed in the form

F2,j(x,Q
2) = µj 1

2πi

∫ i∞

−i∞

dn

∫ 1

0

dy
(n + j)!

j!(n− 2)!
x1−n yn+2j−2 g2(y). (28)

Next, we can observe that

(n+ j)!

(n− 2)!
x−n+1 = (−x)2+j ∂2+j

∂x2+j
x−n+1 (29)

for all n on the imaginary axis except the origin, so that

F2,j(x,Q
2) = µj (−x)2+j

j!

∂2+j

∂x2+j

∫ 1

0

dy x y2j−2 g2(y)
1

2πi

∫ i∞

−i∞

dn
(y

x

)n

. (30)
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Finally, making use of the δ-function representation in Eq. (B3) we arrive at the desired

result,

F2,j(x,Q
2) =

(−x)2+j

j!
µj ∂2+j

∂x2+j

[

x2j g2(x)
]

. (31)

This result can also be obtained by noting that, instead of Eq. (29), we can write

(n+ j)!

(n− 2)!
yn+2j−2 = y2j

∂2+j

∂y2+j
yn+j. (32)

Substituting this into Eq. (28) then leads to

F2,j(x,Q
2) = µj 1

j!

1

2πi

∫ i∞

−i∞

dn

∫ 1

0

dy x−n+1y2j
∂2+j

∂y2+j

[

yn+jg2(y)
]

= µj x
2

j!

∫ 1

0

dy y2j g2(y)
∂2+j

∂y2+j

[

yjδ(y − x)
]

, (33)

using again the δ-function representation (B3). Now, because the δ-function is a distribution,

one defines its derivative (in analogy with integration by parts of regular functions) as
∫

dz δ(z)φ′(z) = −
∫

dz δ′(z)φ(z) (34)

for a given function φ. Applying this definition (2 + j) times to Eq. (33), we find

F2,j(x,Q
2) = µj (−1)2+j

j!
x2

∫ 1

0

dy
∂2+j

∂y2+j

[

y2jg2(y)
]

yj δ(y − x), (35)

which gives a result identical to that in Eq. (31).

Either of these two methods may be applied to the moments of the other structure

functions to obtain the complete expressions for the unpolarized TMC structure functions

in terms of power series in M2/Q2, summing over all values of j,

F1(x,Q
2) = x

∞
∑

j=0

µj (−x)j
j!

∂j

∂xj

[

x2j−2

(

1

2
xf1(x) + jg2(x)

)]

, (36a)

F2(x,Q
2) = x2

∞
∑

j=0

µj (−x)j
j!

∂2+j

∂x2+j

[

x2jg2(x)
]

, (36b)

FL(x,Q
2) = x2

∞
∑

j=0

µj (−x)j
j!

∂j

∂xj
[

x2j−2 (xf2(x)− xf1(x) + 4jg2(x))
]

, (36c)

F3(x,Q
2) =

∞
∑

j=0

µj (−x)1+j

j!

∂1+j

∂x1+j

[

x2jh3(x)
]

, (36d)

F4(x,Q
2) = x

∞
∑

j=0

µj (−x)j
j!

∂j

∂xj

[

x2j−2

(

j(j − 1)g2(x) +
1

4
xf4(x)− jg5(x)

)]

, (36e)

F5(x,Q
2) =

∞
∑

j=0

µj (−x)1+j

j!

∂1+j

∂x1+j

[

x2j−1

(

−jg2(x) +
1

2
xh5(x)

)]

. (36f)
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Note that the Nachtmann variable ξ does not enter in Eqs. (36), and all the functions fi, gi

and hi are expressed as functions of x only. As required, the j = 0 term in the expansion of

Fi is simply the massless limit structure function, F
(0)
i .

The advantage of this formulation is that it explicitly avoids the problems encountered

with the consistency of the inversion in the GP approach discussed in Sec. IIC. Indeed,

direct integration of the structure functions in (36) leads to the correct expressions for the

moments in Eqs. (13).

To examine the convergence of the series in Eqs. (36), we show in Fig. 2(a) the first few

terms in the expansion of F2, starting with the leading order, j = 0, term and up to the first

five terms in the series, j < 5. For illustration, we use the simple massless limit function

in Eq. (25), and compare the result with the standard TMC calculation from GP [2] in

Eq. (17b). The results show that the convergence at Q2 = 1 GeV2 is fairly rapid for x . 0.5,

with just the first two or three terms already giving a target mass corrected function that

does not change noticeably with inclusion of higher orders.

It is noteworthy that in this range one is already well within the nucleon resonance region,

traditionally taken to be W < 2 GeV, from which data are typically excluded in global PDF

analyses. This can be more clearly seen in Fig. 2(b), where the structure function is shown

as a function of W . The convergence of the TMCs is well under control down to values as

low as W ≈ 1.3 GeV, just above the peak of the first resonance region dominated by the

∆(1232) resonance. At smaller W , or higher x, the higher order terms display oscillatory

behavior as one approaches the nucleon elastic point, x = 1 (or W =M). For the particular

form of f2 chosen in Eq. (25), xf2 ∼ (1−x)3, the first three terms in the series (j < 3) vanish

as x → 1, while the contributions for j ≥ 3 diverge at x = 1. The target mass corrected

function from Eq. (17b) (labeled “GP” in Fig. 2) is finite at x = 1 and indeed extends into

the unphysical region W < M .

The large-x oscillatory behavior is significantly dampened by the time one reaches Q2 =

5 GeV2, with the first three terms (j < 3) converging well up to x ≈ 0.8, as shown in

Fig. 3(a) for the ratio of F2 to the GP target mass corrected function, Eq. (17b). At this

Q2 this corresponds to values of W & 1.4 GeV, illustrated in Fig. 3(b), which again is well

outside of the range where DIS data are typically used in global PDF analyses. Note that

the vanishing of ratio of the leading order term, j = 0, to the full GP result as x → 1 reflects

the nonzero value of the GP TMC function at x ≥ 1.
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FIG. 2: Target mass corrected F2 structure function at Q2 = 1 GeV2 from Eq. (36b), showing the

convergence with increasing j, and compared with the standard TMC result from GP [2] using

Eq. (17b), shown as a function of (a) Bjorken-x, and (b) the hadronic final state mass W . The

arrows in (a) indicate the locations of the resonance region (W = 2 GeV) and the ∆ resonance,

while the arrow in (b) denotes the elastic limit, W = M .
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FIG. 3: Ratio of target mass corrected F2 structure function at Q2 = 5 GeV2 from Eq. (36b) for

various j (j = 0 up to j < 5) to the standard TMC result from GP [2] using Eq. (17b), shown as

a function of (a) Bjorken-x, and (b) the hadronic final state mass W . The arrows in (a) indicate

the locations of the resonance region (W = 2 GeV) and the ∆ resonance.
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FIG. 4: Convergence of the series expansion for the target mass corrected F2 structure function

for large values of j (j < 101, 102, 201, 202, 301 and 302), at Q2 = 2 GeV2. The arrows indicate the

values of x at which the final state mass corresponds to the ∆ resonance and to W = 1.25 GeV.

Note the limited x range on the ordinate.

One may ask whether the series converges over the entire range of x at finite Q2 if a

sufficiently large number of terms is included in the sum over j. For the trial distribution

(25) used here, Fig. 4 shows the result of summing up to ≈ 100, 200 or 300 terms for

Q2 = 2 GeV2. For x . 0.73 (or W & 1.27 GeV) fairly good convergence is observed, while

for x & 0.74 (or W . 1.25 GeV) the addition of a large number of terms is needed to push

the convergence of the target mass corrected function to significantly higher x values. It is

interesting to observe that the inclusion of additional odd or even terms in j gives alternating

negative and positive divergent behaviors, respectively. The systematics of this convergence

with Q2 and W will be discussed in more detail in Ref. [40]. What is clear, however, is that

a severe limitation on the computation of TMC exists at very high x for small values of Q2,

although this occurs deep in the resonance region at low W .
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IV. CONCLUSION

The problem of target mass corrections to deep-inelastic structure functions is almost as

old as the theory of QCD itself. With the focus of most structure function analyses being on

the perturbative region where subleading 1/Q2 effects can be neglected, the study of TMCs

remained largely dormant for several decades. The advent of new, high-precision data in the

resonance–scaling transition region at high x and low Q2 has brought the problem of TMCs

back to the fore, giving rise to greater urgency to the need for resolution of the remaining

open issues with respect to their implementation.

In this paper we have sought to illustrate the inherent problem with the standard TMC

formulation, already evident in the pioneering work of Georgi and Politzer [2], in the treat-

ment of the x ≈ 1 region and the inversion of the structure functions from their moments. In

particular, we have critically analyzed the definition of PDFs in the presence of TMCs, and

discussed the consequences of the violation of energy and momentum conservation in the

standard TMC analysis. Historically it has been argued [3, 4] that the problem in the thresh-

old region exists because at low Q2 the higher twist contributions cannot be neglected. We

do not disagree that higher twists are essential for describing low energy structure function

data; we believe, however, that one ought to maintain consistency of leading twist functions

at any x, regardless of how large the higher twists may be at a given Q2.

We contend that the introduction of the Nachtmann variable ξ, which appears naturally

in the standard TMC implementation, does not lead to self-consistent parton distributions

that are valid at all x. In fact, our analysis suggests that strictly speaking PDFs cannot be

defined consistently at any finite Q2 when the mass of the target is incorporated. What is

feasible, however, is to compute the x dependence of the TMC structure functions in terms

of standard PDFs as a series whose convergence can be studied as a function of x and Q2.

To this end, we have derived formulas for the entire set of unpolarized structure functions,

as a series in M2/Q2, involving PDFs and their derivatives. The virtue of this approach is

that the resulting TMC functions can be consistently inverted from their moments, with-

out ever encountering unphysical regions of kinematics or violating energy and momentum

conservation. Moreover, it allows us to systematically study the regions of x and Q2 where

TMCs can be reliably applied. Using a simple trial function, we have illustrated the conver-

gence of our scheme numerically for the case of the F2 structure function. Rapid convergence
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is observed for most of the range of x, with the first two or three terms saturating the sum

well into the nucleon resonance region. For Q2 values as low as 1 GeV2, we find that the

convergence of the TMC series expansion is under control down to W ≈ 1.3 GeV, which is

almost in the vicinity of the ∆ resonance peak.

At smaller W , or higher x for fixed Q2, rapid oscillations ensue as one approaches the

elastic scattering limit, and beyond W ≈ 1.3 GeV it becomes prohibitively difficult to

tame these with a finite number of higher order terms. At Q2 = 2 GeV2, for example,

even summing over ∼ 300 terms allows for a smooth TMC function up to x ≈ 0.73 (or W ≈
1.27 GeV). Fortunately, such lowW values are well outside the range typically encountered in

perturbative QCD analyses of DIS data, and in practice will not pose any serious restrictions.

Our results therefore lend greater support to global PDF fits which incorporate low-W

data, currently down to W 2 = 3 GeV2 in some analyses [7–9], but with more ambitions

plans to extend the range further into the traditional resonance region. Provided higher

twist and other subleading corrections are tractable, our method for accounting for TMCs

will introduce only minimum theoretical uncertainty into global analyses. A more detailed

discussion of the utility of the present approach, as well as its application to spin-dependent

structure functions, will be presented in a forthcoming publication [40].
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Appendix A: Derivation of structure function moments

In this appendix we illustrate the derivation of moments of structure functions in the

presence of TMCs, using as an example the F1 structure function (the F1 case contains

some more general features that are not present in the F2 derivation discussed in Secs. II

and III). The results for the other structure functions follow in a similar manner.

We begin by finding T1, the coefficient of −gµν in Eq. (7), which has contributions from

both the C2k
1 and C2k

2 terms. For the C2k
1 term, for fixed k ∈ N, j ∈ {0, · · · , k}, and each

term of {g · · · gp · · ·p}k,j, a total of j qµi
factors will have their indices raised by j gµiµl

metric tensors. The result will then contract with j qµl
’s to give a factor of (q2)j. The

remaining (2k−2j) qµi
factors will contract with the (2k−2j) pµi factors to give (p · q)2k−2j.

Since there are (2k)!/[2jj!(2k − 2j)!] terms in {g · · · gp · · ·p}k,j, we find that

∞
∑

k=1

(

−gµνqµ1
qµ2
C2k

1

)

qµ3
· · · qµ2k

22k

Q4k
A2kΠ

µ1···µ2k

= −gµν
∞
∑

k=1

k
∑

j=0

(−1)j
(2k − j)!

2j(2k)!

(2k)!

2jj!(2k − 2j)!
(p2 q2)j (p · q)2k−2j 22k

(Q2)2k
C2k

1 A2k. (A1)

The gµµ1
gνµ2

Q2C2k
2 term of Eq. (7) contributes to the coefficient of −gµν due to the identity

gµµ1
gνµ2

gµ1µ2 = gµν. For fixed k ∈ N and j ∈ {0, · · · , k}, we seek the terms of {g · · · gp · · ·p}k,j
which include a factor of gµ1µ2 . The number of such terms is determined by the number of

ways to distribute the indices µ3, · · · , µ2k among (j−1) g’s and (2k−2j) p’s without creating

duplicate products. From the (2k)!/[2jj(2k−2j)!] ways to distribute the indices µ1, · · · , µ2k

over j g’s and (2k − 2j) p’s without creating duplicates, relabeling indices j → j − 1 and

k → k − 1 gives (2k − 2)!/[2j−1(j − 1)!(2k − 2j)!] terms of {g · · · gp · · ·p}k,j which contain

gµ1µ2 for k ∈ N, j ∈ {1, · · · , k}. (Note that there are no terms of {g · · · gp · · ·p}k,0 that

contain gµ1µ2 .) As for the C2k
1 terms, we then find

∞
∑

k=1

(

gµµ1
gνµ2

Q2C2k
2

)

qµ3
· · · qµ2k

22k

Q4k
A2k Π

µ1···µ2k

= gµν
∞
∑

k=1

k
∑

j=1

(−1)j
(2k − j)!

2j(2k)!

(2k − 2)!

2j−1(j − 1)!(2k − 2j)!
(p2)j(q2)j−1 (p · q)2k−2j 22k

(Q2)2k
Q2 C2k

2 A2k

+ terms not involving gµν . (A2)

Now, the term −iǫµναβgαµ1
qβqµ2

C2k
3 + (qµqν/Q2)qµ1

qµ2
C2k

4 +
(

gµµ1
qνqµ2

+ gνµ1
qµqµ2

)

C2k
5 in

Eq. (7) will not contribute to T1, as the indices µ and ν are “locked up” in such a way
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that they cannot result in a factor of gµν through contractions. We conclude, therefore, that

the coefficient T1 of −gµν in the expansion (7) is

T1 =
∞
∑

k=1

k
∑

j=0

(−1)j
(2k − j)!

2j(2k)!

(2k)!

2jj!(2k − 2j)!
(p2q2)j(p · q)2k−2j 22k

(Q2)2k
C2k

1 A2k

−
∞
∑

k=1

k
∑

j=1

(−1)j
(2k − j)!

2j(2k)!

(2k − 2)!

2j−1(j − 1)!(2k − 2j)!
(p2)j(q2)j−1(p · q)2k−2j 22k

(Q2)2k
Q2C2k

2 A2k.

(A3)

Substituting p2 =M2, q2 = −Q2, and p · q = Q2/2x into Eq. (A3), changing indices in each

term to l = k − j and j, and rearranging, gives the result

T1(x,Q
2) =

∞
∑

l=0

∞
∑

j=0

(

2l + j

j

)

µj 1

x2l
C2l+2j

1 A2l+2j

+
∞
∑

l=0

∞
∑

j=1

(

2l + j

j

)

j

(l + j)(2l + 2j − 1)
µj 1

x2l
C2l+2j

2 A2l+2j . (A4)

Finally, using the identity
∮

C
dω ωn−m−1 = 2πi δnm together with Eq. (6), we find that

M
(n)
1 (Q2) =

1

2

1

2πi

∮

C

dω
T1 (1/ω,Q

2)

ωn+1

=
1

2

∞
∑

l=0

∞
∑

j=0

µj

(

2l + j

j

)

C2l+2j
1 A2l+2j δ2l,n

+
1

2

∞
∑

l=0

∞
∑

j=1

µj

(

2l + j

j

)

j

(l + j)(2l + 2j − 1)
C2l+2j

2 A2l+2j δ2l,n (A5)

which leads to Eq. (13a). The results for the other moments (13) are derived in a similar

manner.

Appendix B: Structure function inversion

In this section we illustrate the standard moment inversion procedure by presenting a

detailed derivation for the case of the F1 structure function. The derivations for the other

structure functions can be deduced straightforwardly from this example.

We begin by denoting the series in Eq. (13a) involving Cn+2j
1 and Cn+2j

2 by m
(n)
1 (Q2) and

m
(n)
2 (Q2), respectively. Using Eq. (14), we find for the m

(1)
1 term,

1

2πi

∫ i∞

−i∞

dn x−nm
(n)
1 (Q2) =

1

4πi

∫ i∞

−i∞

dn

∫ 1

0

dy x−n yn−1 f1(y)
∞
∑

j=0

(

n + j

j

)

(µy2)j. (B1)

21



From the (generalized) binomial theorem, it follows then that

1

2πi

∫ i∞

−i∞

dn x−nm
(n)
1 (Q2) =

1

4πi

∫ i∞

−i∞

dn

∫ 1

0

dy x−n yn−1 f1(y)
1

(1− µy2)n+1

=
1

2

∫ 1

0

dy
f1(y)

y(1− µy2)
δ

(

log
y

x(1− µy2)

)

, (B2)

where we have used the δ-function representation

δ(log u) =
1

2π

∫ ∞

−∞

dn ein(log u) =
1

2πi

∫ i∞

−i∞

dn un. (B3)

Using the relation

δ(u(y)) =
∑

a = root of u

1

|u′(a)|δ(y − a) (B4)

with u(y) = log(y/[x(1 − µy2)]) and u′(y) = (1 + µy2)/[y(1 − µy2)], the only root of u on

[0, 1] corresponds to ξ = 2x/(1 + ρ), which leads to

1

2πi

∫ i∞

−i∞

dn x−nm
(n)
1 (Q2) =

1

2

∫ 1

0

dy
f1(y)

1 + µy2
δ(y − ξ). (B5)

For the m
(n)
2 term, using integration by parts with Eqs. (19) and (27), we can write

1

2πi

∫ i∞

−i∞

dn x−nm
(n)
2 (Q2) =

1

2πi

∫ i∞

−i∞

dn

∫ 1

0

dy x−n yn−2 g2(y)
∞
∑

j=1

j

(

n+ j

j

)

(µy2)j . (B6)

Next, from the relations

∞
∑

j=1

j

(

n+ j

j

)

(µy2)j =

∞
∑

j=1

(n+ 1)

(

n+ j

j − 1

)

(µy2)j

= (n + 1)
µ y2

(1− µy2)n+2
, (B7)

we obtain

1

2πi

∫ i∞

−i∞

dn x−nm
(n)
2 (Q2) =

1

2πi
µ

∫ i∞

−i∞

dn

∫ 1

0

dy (n+ 1) x−nyn
g2(y)

(1− µy2)n+2
. (B8)

Finally, since (n+ 1)x−n = −x2(∂/∂x) x−n−1, we arrive at the result for the m
(n)
2 moment,

1

2πi

∫ i∞

−i∞

dn x−nm
(n)
2 (Q2) = − 1

2πi
µx2

∂

∂x

∫ i∞

−i∞

dn

∫ 1

0

dy
x−n−1 yn g2(y)

(1− µy2)n+2

= −µx2 ∂
∂x

∫ 1

0

dy
g2(y)

x(1− µy2)2

[

1

2πi

∫ i∞

−i∞

dn

(

y

x(1 − µy2)

)n]

.

(B9)
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Combining Eqs. (B5) and (B9) then gives the final result for the inverted F1 structure

function,

F1(x,Q
2) =

1

2(1 + µξ2)
f1(ξ)− µx2

∂

∂x

(

g2(ξ)

1 + µξ2

)

. (B10)

The results for the other structure functions F2···5 in Eqs. (17) follow analogous derivations.
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