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Abstract

In a recent work [1], Anderson et al. used the renormalization group (RG) evolution of the

momentum distribution to show that, under appropriate conditions, operator expectation values

exhibit factorization in the two-nucleon system. Factorization is useful because it provides a clean

separation of long- and short-distance physics, and suggests a possible interpretation of the universal

high-momentum dependence and scaling behavior found in nuclear momentum distributions. In

the present work, we use simple decoupling and scale-separation arguments to extend the results

of Ref. [1] to arbitrary low-energy A-body states. Using methods that are reminiscent of the

operator product expansion (OPE) in quantum field theory, we find that the high-momentum tails

of momentum distributions and static structure factors factorize into the product of a universal

function of momentum that is fixed by two-body physics, and a state-dependent matrix element

that is the same for both and is sensitive only to low-momentum structure of the many-body state.

As a check, we apply our factorization relations to two well-studied systems, the unitary Fermi gas

and the electron gas, and reproduce known expressions for the high-momentum tails of each.
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I. INTRODUCTION

Renormalization group (RG) methods play an important role in ab initio nuclear theory

by extending the range of many computational methods and improving their convergence

patterns [2–4]. There are numerous RG methods that have been successfully applied to

nuclear few- and many-body systems in recent years [3]. While the details differ, all such

methods decouple low- and high-momentum degrees of freedom in a manner that leaves

low-energy observables invariant. In this paper, we will denote the momentum scale at

which this decoupling occurs by Λ. In methods such as the Lee-Suzuki-Okubo similarity

transformation method or the related Vlow k approach, Λ is a floating cutoff beyond which

high-momentum states have been integrated out [5–7]. For other methods, such as the

similarity renormalization group (SRG) approach, Λ gives a measure of how band-diagonal

the Hamiltonian is in momentum space [8]. In all cases, Λ serves as a “resolution scale” since

dynamics above and below this scale are effectively decoupled [3, 9].

We emphasize that while observable quantities (such as cross sections) do not change,

the physics interpretation can (and generally does) change with resolution. It is a com-

mon misconception that at low-resolution, one is unable to describe phenomena that, at

high-resolution, are associated with the high-momentum components of low-energy wave

functions. A prototypical example is the (e, e′p) process at large momentum transfers,

where theoretical analyses relate such experiments to nuclear momentum distributions if

the impulse approximation is assumed valid for a high-cutoff interaction [10]. Calculations

find nearly universal scaling of the high-momentum tails of one- and two-body momentum

distributions [11–16], which is interpreted in terms of short-range correlations in the nuclear

wave functions [13–18]. Naively it might be thought that this physics is beyond the reach of

low-momentum approaches, for which wave functions have drastically reduced short-range

correlations. However, this is not the case: the experimental cross section is unchanged if the

corresponding operator is consistently evolved under the RG, even if the evolved wave func-

tion has almost no high-momentum strength. The formal relationship between an operator

ÔΛ0 at an initial high-resolution scale Λ0, and the consistently-evolved effective operator ÔΛ

at the low-resolution scale Λ is defined by

〈ψΛ0

n |ÔΛ0|ψΛ0

n 〉 = 〈ψΛ
n |Ô

Λ|ψΛ
n 〉 . (1)

In the (e, e′p) example, one might worry that the consistent evolution embodied by Eq. 1
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is computationally intractable because the evolved momentum occupation operator might be

too complicated in practice (e.g., strong non-localities and sizable many-body components,

etc.). In Ref. [1], some of these questions were addressed by examining the consistent

SRG evolution of various operators, including momentum distributions and electromagnetic

form factors in the deuteron. There, all operators were found to evolve to smooth, low-

momentum forms, exhibiting many of the same simplifications as RG-evolved interactions.

More interestingly, under certain kinematic conditions it was found that operator expectation

values exhibit factorization, which provides a clean separation of long- and short-distance

physics and a complementary interpretation of the universal high-momentum dependence

and scaling behavior [1].

The proof of factorization presented here and in Ref. [1] follows straightforwardly from

decoupling and the separation of scales, and is reminiscent of the operator product expan-

sion (OPE) in quantum field theory. The OPE was developed for the evaluation of singular

products of local field operators at small separation [19, 20]. The utility of the OPE rests

on factorization; short-distance details decouple from long-distance dynamics. Factorization

enables one, for example, to separate the momentum and distance scales in hard-scattering

processes in terms of perturbative QCD and parton distribution functions. While the meth-

ods used in the present paper share several similarities with the OPE, a precise connection

has not yet been made. One key difference is that, in the framework of a local quantum

field theory, the OPE gives a controlled expansion since the dependence of the Wilson co-

efficients on the separation r is fixed by the scaling dimensions of the corresponding local

operators. In the present paper, however, we work in the general domain of non-relativistic

quantum mechanics (i.e., no assumption of a local QFT). Therefore, we cannot make precise

statements about the scaling behavior of terms when we expand Fock space operators at one

resolution scale Λ in terms of the corresponding operators at another scale Λ0 ≥ Λ. While

the factorization formulas in the present context are not as controlled as those derived in

a local quantum field theory using the OPE, they nevertheless provide tools that let us

parameterize the high-momentum components of operators which would normally require

degrees of freedom we do not retain. We can, for example, build effective few-body opera-

tors containing state-independent functions of high momenta that can be measured directly

in few-body experiments. These operators can then be employed to make predictions for

A-body systems.
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In this paper, we generalize previous developments [1] to derive scaling relations for the

high-momentum tails of momentum distributions and static structure factors in arbitrary

low-energy A-body states. In both instances, we find that the expectation value of the

corresponding operator factorizes into the product of a universal function associated with

high-momentum (short-distance) physics, and a state-dependent number associated with

low-momentum (long-distance) structure. The outline of the rest of this paper is as follows:

In Section II, we review the proof from Ref. [1] that expectation values of high-momentum

probes factorize in the A = 2 system. In Section III, we recast the discussion of factorization

in a second-quantized language and use it to derive universal scaling relations for momentum

distributions and static structure factors in general A-body systems. As a test of these

relations, in Section IV we apply them to two well-studied many-body systems - the unitary

Fermi gas and the electron gas - to reproduce known expressions for the asymptotic tails of

the momentum distributions and static structure factors of each system. Our conclusions

are summarized in Section V, and several technical details are relegated to the Appendices.

II. FACTORIZATION IN THE TWO-BODY SYSTEM

In Ref. [1], Anderson et al. applied renormalization group methods to the two-body prob-

lem to show that high-momentum components of low-energy wave functions factorize into

the product of a state-independent function of momentum, and a state-dependent number

that is sensitive only to low-momentum physics. Using this wave function factorization, it

is straightforward to show that expectation values of operators that probe high-momentum

modes similarly factorize into a state-independent piece that encodes the high-momentum

physics and depends on the particular operator, and a state-dependent number that depends

only on the low-momentum structure of the state and is identical for all high-momentum

operators [1]. As we will show in Section III, the factorization formulas of Ref. [1] generalize

to arbitrary low-energy A-body systems, allowing us to derive scaling relations for the high-

momentum tails of momentum distributions and static structure factors. Since the simple

factorization in the A = 2 system is the starting point to derive analogous relations for

general low-energy A-body states, we begin by reviewing the salient points from Ref. [1].
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A. Wave function factorization

Renormalization group transformations simplify nuclear few- and many-body calculations

by decoupling low- and high-momentum degrees of freedom leaving low-energy observables

unchanged [2–4]. In Ref. [1], the analysis was done in the context of similarity renormal-

ization group (SRG) transformations, where the resolution scale Λ provides a measure of

how band-diagonal the evolved interaction is in momentum space1. However, for our present

analysis we do not have to be very specific about the details of the particular RG imple-

mentation. All we require is that momentum modes above and below Λ are effectively

decoupled by the given transformation. In the center-of-mass frame of the two-body sys-

tem, this implies that the low energy states (|En| . Λ2) are localized in the low-momentum

subspace2

PΛ|ψ
Λ
n 〉 ≈ |ψΛ

n 〉 QΛ|ψ
Λ
n 〉 ≈ 0 , (2)

where the projection operators PΛ and QΛ are defined as

PΛ =

∫ Λ

0

d3p

(2π)3
|p〉〈p| and QΛ =

∫ ∞

Λ

d3q

(2π)3
|q〉〈q| . (3)

Starting from the unevolved Schrödinger equation written in block-matrix form

PΛH∞PΛ PΛH∞QΛ

QΛH∞PΛ QΛH∞QΛ





PΛψ

∞
α

QΛψ
∞
α


 = Eα


PΛψ

∞
α

QΛψ
∞
α


 , (4)

we can solve for the high-momentum projection of any eigenstate as

QΛ |ψ
∞
α 〉 = (Eα −QΛH∞QΛ)

−1QΛH∞PΛPΛ |ψ
∞
α 〉

= (Eα −QΛH∞QΛ)
−1QΛV∞PΛ |ψ

∞
α 〉 , (5)

where we have used (PΛ)
2 = PΛ, H∞ = T + V∞, and QΛTPΛ = 0. For low-energy states

ψ∞
α such that |Eα| ≪ Min[|EQHQ|] ∼ Λ2 (where EQHQ are the eigenvalues of QΛH∞QΛ),

we can neglect the Eα dependence in Eq. 5

ψ∞
α (q) ≈ −

∫ ∞

Λ

dq̃′
∫ Λ

0

dp̃ 〈q|
1

QΛH∞QΛ

|q′〉V∞(q′,p)ψ∞
α (p) , (6)

1 Using the SRG transformation of Ref. [1], the evolved potential goes as V Λ(k′,k)
V ∞(k′,k) ∼ exp

(
− (k′2−k2)2

Λ4

)
.

2 For SRG transformations, the high-momentum components of the evolved wave functions are exponentially

suppressed as exp(−q4/Λ4). The decoupling is exact for RG transformations employing a sharp cutoff Λ.
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where we’ve introduced the abbreviation dq̃ ≡ d3q
(2π)3

. Assuming for simplicity that ψ∞
α is an

S-wave state and that the potential V∞(q′,p) is slowly varying with respect to p compared

to ψ∞
α (p) in the region p < Λ and q′ ≫ Λ, we can factorize the low- and high-momentum

physics by expanding
∫ Λ

0

dp̃ V∞(q′,p)ψ∞
α (p) ≈ V∞(q′,p′)|p′=0 ×

∫ Λ

0

dp̃ ψ∞
α (p)

+
1

2

d2

dp′2
V∞(q′,p′)

∣∣∣∣
p′=0

×

∫ Λ

0

dp̃ p2 ψ∞
α (p) + · · · , (7)

which gives

ψ∞
α (q) ≈ γ(q; Λ)

∫ Λ

0

dp̃ ψ∞
α (p) + η(q; Λ)

∫ Λ

0

dp̃ p2 ψ∞
α (p) + . . . , (8)

where the state-independent functions that carry the q-dependence are defined as

γ(q; Λ) ≡ −

∫ ∞

Λ

dq̃′ 〈q|
1

QΛH∞QΛ

|q′〉V∞(q′, 0) , (9)

η(q; Λ) ≡ −
1

2

∫ ∞

Λ

dq̃′ 〈q|
1

QΛH∞QΛ

|q′〉
d2

dp′2
V∞(q′,p′)

∣∣∣∣
p′=0

. (10)

It is known empirically [3, 21] that the low-momentum projections of the low-energy

eigenstates of the bare and evolved Hamiltonians are related by a wave function renormal-

ization factor PΛ |ψ
∞
α 〉 ≈ ZΛ

∣∣ψΛ
α

〉
, which reflects the fact that RG evolution does not modify

long-distance physics. Using that
∫ Λ

0

dp̃ ψ∞
α (p) ≈ ZΛ

∫ Λ

0

dp̃ ψΛ
α (p) = ZΛ ψ

Λ
α (r)

∣∣
r=0

≡ ZΛ ψ
Λ
α (0) (11)

∫ Λ

0

dp̃ p2 ψ∞
α (p) ≈ ZΛ

∫ Λ

0

dp̃ p2 ψΛ
α (p) = − ZΛ∇

2ψΛ
α (r)

∣∣
r=0

≡ −ZΛ∇
2ψΛ

α (0) , (12)

we obtain the momentum space version of Lepage’s non-relativistic operator product expan-

sion [21] relating the short-distance structure of the unevolved or “bare” wave functions to

those of the low-energy effective theory

ψ∞
α (q) ≈ γ(q; Λ)ZΛψ

Λ
α (0)− η(q; Λ)ZΛ∇

2ψΛ
α (0) + · · · . (13)

If we keep only the leading term in the expansion

ψ∞
α (q) ≈ γ(q; Λ)ZΛψ

Λ
α (0) = γ(q; Λ)ZΛ

∫ Λ

0

dp̃ ψΛ
α (p) , (14)

we see that the high-momentum components of the low-energy eigenstates are factorized into

a state-independent function γ(q; Λ), which summarizes the short-distance behavior of the

wave function, and a state-dependent coefficient that probes the low-momentum structure

of the state.
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B. Effective operators and factorization

Given the wave function factorization in Eq. 14, we can now derive analogous factorization

formulas for expectation values of general operators in the A = 2 system. Consider the

expectation value of an operator Ô in a low-energy eigenstate of the unevolved Hamiltonian

〈ψ∞
α |Ô|ψ∞

α 〉 =

∫ Λ

0

dp̃

∫ Λ

0

dp̃′ ψ∞∗
α (p)O(p,p′)ψ∞

α (p′) +

∫ Λ

0

dp̃

∫ ∞

Λ

dq̃ ψ∞∗
α (p)O(p,q)ψ∞

α (q)

+

∫ ∞

Λ

dq̃

∫ Λ

0

dp̃ ψ∞∗
α (q)O(q,p)ψ∞

α (p) +

∫ ∞

Λ

dq̃

∫ ∞

Λ

dq̃′ ψ∞∗
α (q)O(q,q′)ψ∞

α (q′) ,

(15)

where we have explicitly separated the low- and high-momentum integrals in forming the

matrix element. Next, we insert Eq. 14 and ψ∞
α (p) ≈ ZΛψ

Λ
α (p) for the high- and low-

momentum components of ψ∞
α , respectively. Since the matrix elements O(p,q) and O(q,p)

involve well-separated momenta, we perform a Taylor expansion about p = 0 and keep only

the leading term giving

〈ψ∞
α |Ô|ψ∞

α 〉 ≈ Z2
Λ

∫ Λ

0

dp̃

∫ Λ

0

dp̃′ ψΛ∗
α (p)O(p,p′)ψΛ

α (p
′)

+ 2Z2
Λ|ψ

Λ
α (0)|

2

∫ ∞

Λ

dq̃ O(0,q)γ(q; Λ)

+ Z2
Λ|ψ

Λ
α (0)|

2

∫ ∞

Λ

dq̃

∫ ∞

Λ

dq̃′ γ∗(q; Λ)O(q,q′)γ(q′; Λ) .

(16)

Since the evolved wave functions ψΛ
α (k) have vanishing or exponentially suppressed support

for k > Λ, we can re-write this as

〈ψ∞
α |Ô|ψ∞

α 〉 ≈ Z2
Λ〈ψ

Λ
α |Ô|ψ

Λ
α 〉+ g(0)(Λ) 〈ψΛ

α |δ
(3)(r)|ψΛ

α〉 , (17)

where the coupling g(0)(Λ) is defined as

g(0)(Λ) ≡ 2Z2
Λ

∫ ∞

Λ

dq̃ O(0,q)γ(q; Λ)

+Z2
Λ

∫ ∞

Λ

dq̃

∫ ∞

Λ

dq̃′ γ∗(q; Λ)O(q,q′)γ(q′; Λ) . (18)

Recalling that the consistently evolved effective operator is defined by

〈ψ∞
α |Ô|ψ∞

α 〉 ≡ 〈ψΛ
α |ÔΛ|ψ

Λ
α 〉 , (19)
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we see from Eq. 17 that

ÔΛ ≈ Z2
Λ Ô + g(0)(Λ) δ(3)(r) + . . . , (20)

where the “ . . .” contains higher derivatives of delta functions that arise from the gradient

terms in Eq. 13 as well as higher-order terms in the expansion of O(q,p) about p = 0.

In this way, we see that the RG-evolved operators take on a universal form; the effects

of the integrated-out high-momentum modes are absorbed in a rescaling of the unevolved

operator at the initial resolution scale, plus a series of local, state-independent corrections

that take the form of a derivative expansion with Λ-dependent couplings [21, 22]. As stressed

by Lepage [21], the universal form of these local corrections is analogous to the multipole

expansion in classical electromagnetism; just as multipole moments may be calculated from

an underlying theory (e.g., the true charge and current densities) or extracted from a finite

number of experimental data, the same holds true for the couplings ZΛ, g
(0)(Λ), etc.

Let us now consider the implications of Eq. 17 for operators that predominantly probe

high-momentum components of low-energy states. Since such operators have negligible

strength at low-momentum PΛÔPΛ ≈ 0, the first term in Eq. 17 vanishes, leaving

〈ψ∞
α |Ô|ψ∞

α 〉 ≈ g(0)(Λ) 〈ψΛ
α |δ

(3)(r)|ψΛ
α〉 . (21)

Therefore, the expectation value of any operator that probes the high-momentum struc-

ture of low-energy states factorizes into a state-independent piece, g(0)(Λ), that depends

on the particular high-momentum operator via Eq. 18, times a state-dependent number,

〈ψΛ
α |δ

(3)(r)|ψΛ
α〉, that is the same for any high-momentum Ô, and is only sensitive to the

low-momentum structure of the state since PΛ|ψ
∞
α 〉 ≈ ZΛ|ψ

Λ
α 〉.

The momentum distribution n̂q = a†qaq for q ≫ Λ is a prototypical example of an operator

that is sensitive to the high-momentum structure of wave functions. Since n̂q = |q〉〈q| for

the A = 2 system in the center-of-mass frame, Eq. 21 becomes

〈ψ∞
α |n̂q|ψ

∞
α 〉 ≈ γ2(q; Λ)Z2

Λ |ψ
Λ
α (0)|

2 . (22)

We see that momentum distributions in all low-energy states (|Eα| . Λ2) in the A = 2

system share the same q-dependence for q & Λ. In fact, we will find in the following section

that the factorization formula, Eq. 22, generalizes to arbitrary A-body systems.
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III. FACTORIZATION IN THE A-BODY SYSTEM

A. Evolved creation and annihilation operators

In order to proceed beyond the A = 2 system, it is convenient to recast the results from the

previous section in a second-quantized language. As a first step, we examine how the Fock

space creation and annihilation operators evolve under RG transformations. Suppressing

non-essential spin and isospin indices, the transformed operators can be expanded on the

original operator basis as

a(Λ)†q = a†q +
∑

k1,k2

CΛ
q (k1,k2)a

†
k1
a†k2

ak1+k2−q + . . . ≡ a†q + δa(Λ)†q (23)

where the “ . . .” contains higher-rank terms that are generated (a†a†a†aa, etc.) when the

RG evolution is carried out beyond the two-body level, i.e., when induced 3- and higher-

body interactions in HΛ are not truncated during the evolution. Note that the form of the

coupling function CΛ
q (k1,k2) can be constrained further by boosting both sides of Eq. 23

and using Galilean invariance to write

a
(Λ)†
q−P = a†q−P +

∑

k1,k2

CΛ
q (k1,k2)a

†
k1−Pa

†
k2−Pak1+k2−q−P

= a†q−P +
∑

k1,k2

CΛ
q (k1 +P,k2 +P)a†k1

a†k2
ak1+k2−q+P

= a†q−P +
∑

k1,k2

CΛ
q−P(k1,k2)a

†
k1
a†k2

ak1+k2−q+P , (24)

which implies

CΛ
q (k1 +P,k2 +P) = CΛ

q−P(k1,k2) . (25)

In the following, we restrict our attention to the leading non-trivial term in Eq. 23.

This corresponds to neglecting induced three- and higher-body interactions in HΛ since the

coefficient function CΛ
q (k1,k2) is uniquely determined from the RG evolution in the two-

body system. This can be seen by considering the following matrix element between the

zero-particle vacuum (which does not evolve under the RG) and a two-body eigenstate in
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the bare and evolved theories

〈ψ∞
α |a†P

2
+p
a†P

2
−p

|0〉 = 〈ψΛ
α |a

(Λ)†
P

2
+p
a
(Λ)†
P

2
+p

|0〉

= 〈ψΛ
α |a

†
P

2
+p
a†P

2
−p

|0〉+ 〈ψΛ
α |δa

†
P

2
+p
a†P

2
−p

|0〉

= 〈ψΛ
α |a

†
P

2
+p
a†P

2
−p

|0〉 +
∑

k

CΛ
P/2+p(P/2 + k,P/2− k) 〈ψΛ

α |a
†
P

2
+k
a†P

2
−k

|0〉

= 〈ψΛ
α |a

†
P

2
+p
a†P

2
−p

|0〉 +
∑

k

CΛ
p (k,−k) 〈ψΛ

α |a
†
P

2
+k
a†P

2
−k

|0〉 , (26)

where δa†|0〉 = 0 was used in the second line and Eq. 25 was used in the last step. Since the

dependence on the COM momentum P cancels on both sides, we are left with

ψ∞∗
α (p) = ψΛ∗

α (p) +
∑

k

CΛ
p (k,−k)ψΛ∗

α (k) , (27)

which can be inverted using the completeness of the {ψΛ
α} to give3

CΛ
p (k,−k) =

∑

α

〈k|ψΛ
α 〉〈ψ

∞
α |p〉 − δk,p . (28)

One can use the results of Section II to evaluate two important limiting cases of Eq. 28 that

will prove useful below. First, consider CΛ
p (p

′,−p′) for p, p′ . Λ. Using PΛ|ψ
∞
α 〉 ≈ ZΛ|ψ

Λ
α 〉

for low-energy states and PΛ|ψ
Λ
α 〉 ≈ 0 for |Eα| & Λ2, Eq. 28 becomes

CΛ
p (p

′,−p′) ≈ ZΛ

∑

|Eα|.Λ2

〈p′|ψΛ
α 〉〈ψ

Λ
α |p〉 − δp′,p

≈
(
ZΛ − 1

)
δp′,p . (29)

In the last step, we used that the low-energy evolved eigenstates span the low-momentum

subspace due to decoupling

PΛ =
∑

p≤Λ

|p〉〈p| ≈
∑

|Eα|.Λ2

|ψΛ
α 〉〈ψ

Λ
α | . (30)

The other important limiting case is CΛ
q (p,−p) for p . Λ and q & Λ. Inserting Eq. 14 into

Eq. 28 then gives

CΛ
q (p,−p) ≈ ZΛγ(q; Λ)

∑

|Eα|.Λ2

〈p′|ψΛ
α 〉〈ψ

Λ
α |r = 0〉

≈ ZΛγ(q; Λ) , (31)

where Eq. 30 was used in the final step.

3 It is helpful to think of the SRG or the Lee-Suzuki-Okubo similarity transformation method, where the

decoupling of low- and high-momentum modes is accomplished by a unitary transformation. By unitarity,

one has
∑
α

|ψ∞
α 〉〈ψ∞

α | = 1 =
∑
α

|ψΛ
α〉〈ψ

Λ
α |, where the sum over α is unrestricted.
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B. Factorization for momentum distributions

In Eq. 22, we found that the expectation value of the momentum distribution in low-

energy two-body states factorizes for large q & Λ. Using the second-quantized formulation

of Section IIIA, we will now show that a similar factorization occurs for general low-energy

A-body states. We begin by considering the expectation value of the consistently evolved

momentum distribution operator for q ≫ Λ in an arbitrary low-energy A-body state

nq = 〈ψ∞
α,A

|a†qaq|ψ
∞
α,A

〉 = 〈ψΛ
α,A

|[a†qaq]
(Λ)|ψΛ

α,A
〉

= 〈ψΛ
α,A

|
{
a†qaq + δa(Λ)†q aq + a†qδa

(Λ)
q + δa(Λ)†q δa(Λ)q

}
|ψΛ

α,A
〉 . (32)

This is an exact equality provided that a) the evolved HamiltonianHΛ includes all induced

3 -, 4 -, . . . A-body interactions generated by the RG evolution, b) all higher-order terms for

δa(Λ)† and δa(Λ) in Eq. 23 are included, and c) all possible 1 -, 2 -, . . ., A-body operators

generated by the terms in the curly brackets are kept4. However, since we are only interested

in the high-momentum tail of Eq. 32, and since one expects induced 3-body and higher

operators contributing to HΛ and [a†qaq]
(Λ) to be subleading so long as one doesn’t evolve

too low in Λ [3], we will neglect them.

In what follows, we assume Λ is of the same order as the physical momentum scales

that characterize ψΛ
α,A

(e.g., the Fermi momentum, kF , for homogenous systems,
√
mω/~

for harmonically-trapped systems, etc.). Due to decoupling, the low-energy states ψΛ
α,A

have vanishingly small support at high momentum. Therefore, any term in [a†qaq]
(Λ) that

annihilates a high-momentum particle from |ψΛ
α,A

〉 or 〈ψΛ
α,A

| will be suppressed. In this limit,

we find that Eq. 32 becomes

nq ≈ 〈ψΛ
α,A

|δa(Λ)†q δa(Λ)q |ψΛ
α,A

〉

=
∑

k,k′,K,K′

CΛ
q

(
K

2
+ k,

K

2
− k

)
CΛ

q

(
K′

2
+ k′,

K′

2
− k′

)

×〈ψΛ
α,A

|a†K
2
+k
a†K

2
−k
aK−qa

†
K′−qaK′

2
+k′
aK′

2
−k′

|ψΛ
α,A

〉

=
∑

k,k′,K

CΛ
q

(
K

2
+ k

K

2
− k

)
CΛ

q

(
K

2
+ k′,

K

2
− k′

)
〈ψΛ

α,A
|a†K

2
+k
a†K

2
−k
aK

2
+k′aK

2
−k′|ψΛ

α,A
〉

=
∑

k,k′,K

CΛ
q−K

2

(k,−k)CΛ
q−K

2

(k′,−k′) 〈ψΛ
α,A

|a†K
2
+k
a†K

2
−k
aK

2
+k′aK

2
−k′|ψΛ

α,A
〉 , (33)

4 An A-body operator is defined as a normal-ordered string of A a†’s and A a’s.
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where we have anti-commuted aK−q to the right and dropped the normal-ordered three-body

term in going from the second to third line. The low-momentum nature of ψΛ
α,A

implies that

dominant terms in the sum are for |K/2± k| and |K/2± k′| . Λ. Consequently, we have a

mismatch of scales |q−K/2| ≫ |k|, |k′|, which together with Eq. 31 gives

nq ≈ Z2
Λ

∑

k,k′,K

γ2(q−K/2; Λ) 〈ψΛ
α,A

|a†K
2
+k
a†K

2
−k
aK

2
+k′aK

2
−k′|ψΛ

α,A
〉

≈ Z2
Λγ

2(q; Λ)
∑

k,k′,K

〈ψΛ
α,A

|a†K
2
+k
a†K

2
−k
aK

2
+k′aK

2
−k′ |ψΛ

α,A
〉 , (34)

where we’ve used q ≫ K/2 in the last step5. In this way, we see the large-q tails of

momentum distributions for arbitrary low-energy A-body states share the same universal

q-dependence. In nuclear physics, Eq. 34 provides an alternative to the usual explanations

based on short-range correlations [10, 23] as to why calculated momentum distributions in

various nuclei and nuclear matter scale with each other at large q. In Section IV, we will use

Eq. 34 and the analogous expression, Eq. 41, to reproduce known asymptotic expressions

for the momentum distributions and static structure factors for two well-studied many-body

systems, the unitary Fermi gas and the electron gas.

C. Factorization for static structure factors

The static structure factor is an important quantity that contains information about

density-density correlations in a many-body system. For a many-body system of fermions

with two spin states, the correlations between the densities of the two spin states are par-

ticularly important. The corresponding static structure factor S↑↓(q) for a homogeneous

system is the Fourier transform in the relative coordinate r1 − r2 of the density correlator

〈ψ∞
α,A

|ρ↑(r1)ρ↓(r2)|ψ
∞
α,A

〉. Using similar arguments as for the momentum distribution, we

now show that at large momentum S↑↓(q) factorizes into a universal function of q times a

matrix element of a delta function in the evolved low-momentum wave functions.

5 For systems where γ(q; Λ) exhibits a power-law decay, the corrections for non-zero K do not modify the

power-law tail of nq.
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Starting from the definition of S↑↓(q) in the unevolved theory

S↑↓(q) = 〈ψ∞
α,A

|ρ†↑(q)ρ↓(q)|ψ
∞
α,A

〉 =
∑

p,p′

〈ψ∞
α,A

|a†p,↑ap+q,↑a
†
p′+q,↓ap′,↓|ψ

∞
α,A

〉

=
∑

p,p′

〈ψ∞
α,A

|a†p′+q,↓a
†
p,↑ap+q,↑ap′,↓|ψ

∞
α,A

〉

≡ 〈ψ∞
α,A

|Ŝ↑↓(q)|ψ
∞
α,A

〉 , (35)

we consider the expectation value of the consistently evolved operator Ŝ↑↓(q; Λ) in the evolved

wave functions. Using Eq. 23 for the evolved creation/annihilation operators, we have

〈ψ∞
α,A

|Ŝ↑↓(q)|ψ
∞
α,A

〉 = 〈ψΛ
α,A

|Ŝ↑↓(q; Λ)|ψ
Λ
α,A

〉 ≡ 〈ψΛ
α,A

|
(
Ŝ↑↓(q) + δŜΛ

↑↓(q)
)
|ψΛ

α,A
〉 . (36)

This is an exact relation only if all induced many-body operators (up to rank-A for the

A-body system) are kept in HΛ and δŜΛ(q). As with our analysis of the momentum distri-

bution, we neglect these many-body contributions by a) restricting the expansion of a(Λ)† and

a(Λ) to the leading terms shown in Eq. 23 and, b) truncating δŜΛ(q) to two-body operators

δŜΛ
↑↓(q) ≈

∑

K,k,k′

CΛ
q+k′(k,−k) a†K

2
+k,↑

a†K
2
−k,↓

aK

2
+k′,↓aK

2
−k′,↑ + h.c.

+
∑

P,K,k,k′

CΛ
P+q−K

2

(k,−k)CΛ
P−K

2

(k′,−k′) a†K
2
+k,↑

a†K
2
−k,↓

aK

2
+k′,↓aK

2
−k′,↑

≡ δŜΛ
1 (q) + δŜΛ

2 (q) , (37)

where δŜΛ
1(2)(q) denotes the terms linear (quadratic) in the expansion coefficients CΛ.

With the approximate form of the evolved operator in hand, we can now evaluate Eq. 36

for q ≫ Λ, where once again Λ is assumed to be of the same order as the physical scales that

characterize the system. The expectation value of the bare operator, Ŝ↑↓(q), in the evolved

low-momentum wave functions is negligible since it involves the removal of a high-momentum

particle. Therefore, we have

〈ψ∞
α,A

|Ŝ↑↓(q)|ψ
∞
α,A

〉 ≈ 〈ψΛ
α,A

|
(
δŜΛ

1 (q) + δŜΛ
2 (q)

)
|ψΛ

α,A
〉

= 2
∑

K,k,k′

CΛ
q+k′(k,−k) 〈ψΛ

α,A
|a†K

2
+k,↑

a†K
2
−k,↓

aK

2
+k′,↓aK

2
−k′,↑|ψ

Λ
α,A

〉

+
∑

P,K,k,k′

CΛ
P+q−K

2

(k,−k)CΛ
P−K

2

(k′,−k′) 〈ψΛ
α,A

|a†K
2
+k,↑

a†K
2
−k,↓

aK

2
+k′,↓aK

2
−k′,↑ |ψ

Λ
α,A

〉 .

(38)

Due to the low-momentum structure of the evolved wave functions, it is clear that the sums

over momenta K,k,k′ are effectively cutoff at Λ, while the summation over P is unrestricted
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in the second term of Eq. 38. Performing a Taylor series expansion of the coefficient functions

in powers of the small momenta K,k,k′ and keeping just the leading term gives

〈ψ∞
α,A

|Ŝ↑↓(q)|ψ
∞
α,A

〉 ≈
{
2CΛ

q (0, 0) +
∑

P

CΛ
P+q(0, 0)C

Λ
P(0, 0)

}

×
∑

K,k,k′

〈ψΛ
α,A

|a†K
2
+k,↑

a†K
2
−k,↓

aK

2
+k′,↓aK

2
−k′,↑|ψ

Λ
α,A

〉 .

(39)

To proceed further, we consider the following three regions that arise in the sum over P:

• Region I): |P+ q| & Λ and |P| & Λ

• Region II): |P+ q| . Λ and |P| & Λ

• Region III): |P+ q| & Λ and |P| . Λ.

Regions II) and III) are trivial since the CΛ coefficients involving all soft momenta give

a delta function, Eq. 29, that allows the sums to be performed. Together with Eq. 31, we

have

∑

P,II

CΛ
P+q(0, 0)C

Λ
P(0, 0) ≈

∑

P,II

(ZΛ − 1)δP,q ZΛ γ(P; Λ) = ZΛ(ZΛ − 1)γ(q; Λ)

∑

P,III

CΛ
P+q(0, 0)C

Λ
P(0, 0) ≈

∑

P,III

(ZΛ − 1)δP,0 ZΛ γ(P+ q; Λ) = ZΛ(ZΛ − 1)γ(q; Λ) ,

(40)

which gives

〈ψ∞
α,A

|Ŝ↑↓(q)|ψ
∞
α,A

〉 ≈
{
2Z2

Λγ(q; Λ) +
∑

P,I

Z2
Λ γ(P+ q; Λ)γ(P; Λ)

}

×
∑

K,k,k′

〈ψΛ
α,A

|a†K
2
+k,↑

a†K
2
−k,↓

aK

2
+k′,↓aK

2
−k′,↑|ψ

Λ
α,A

〉 .

(41)

As with the momentum distribution, we see that the high-momentum tail of the static

structure factor in a general low-energy A-body state factorizes into a universal function

of q, multiplied by a state-dependent matrix element that is controlled entirely by low-

momentum physics.
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D. Factorization for general high-momentum operators

While our explicit proofs of factorization have thus far been limited to the momentum

distribution and the static structure factor, the phenomena is very general and can be

qualitatively understood from Eq. 1. Consider an operator at the initial high-resolution scale

Λ0 that probes high-momentum modes, ÔΛ0

q , where the subscript q indicates that the second-

quantized expression involves creation (annihilation) operators that add (remove) a high-

momentum particle. We assume q is much larger than any physical scale that characterizes

the low-energy state ψΛ0

n , and we also assume |q| ≪ Λ0 so that the expectation value of

ÔΛ0

q is non-vanishing. Now consider the consistently evolved ÔΛ
q , where Λ ≪ |q| ≪ Λ0, and

expand it as a polynomial in creation/annihilation operators defined at Λ0. Schematically,

we have

ÔΛ
q =

∑

α

gαqÂα (42)

where Âα denotes a normal-ordered string of creation/annihilation operators at Λ0, α is

a collective index for the different momentum modes being added/removed, and gαq is a

c-number coefficient. Inserting this into Eq. 1, we have

〈ψΛ0

n |ÔΛ0

q |ψΛ0

n 〉 =
∑

α

gαq 〈ψ
Λ
n |Âα|ψ

Λ
n 〉 . (43)

Due to the low-momentum nature of the evolved wave functions, we find that only the

Âα involving the addition/removal of low-momentum (. Λ) modes contributes to Eq. 43.

Since all momentum modes contained in α obey kα/q ≪ 1, the c-number coefficients can be

Taylor-expanded in the soft-momenta. Note that this expansion should be well-defined since

the gαq encode contributions from loop integrals that have both ultraviolet (Λ0) and infrared

(Λ) cutoffs in place, thus preventing any singular behavior from arising. In this way, we see

that the universal q-dependence factorizes, and the remaining state-dependence is given by

matrix elements of low-momentum operators.

IV. EXAMPLES

As a check of our factorization formulas Eq. 34 and Eq. 41, we use them to reproduce

known expressions for the high-momentum tails of nq and S↑↓(q) for two well-studied sys-

tems, the unitary Fermi gas (UFG) and the electron gas.
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A. Unitary Fermi gas

1. Momentum distribution

In the case of a unitary Fermi gas described by a contact interaction, the coefficient

γ(q; Λ), and hence the large momentum tails of nq and S(q), can be calculated analytically.

Consider the two-body Hamiltonian with a spin-independent contact interaction

Ĥ∞ = T̂ + V̂δ =
p̂2

2m
+
g(Λ0)

2m
δ(3)(r) , (44)

where Λ0 is the ultraviolet cutoff on all momenta of the theory. Here, we assume that Λ0 is

much larger than any relevant low-energy scales in the problem such as the inverse scattering

length or the Fermi momentum. The coupling constant g(Λ0) is determined by matching

the scattering amplitude at threshold to the S-wave scattering length a and is given by [24]

g(Λ0) =

[
1

4πa
−

Λ0

2π2

]−1

. (45)

To obtain an explicit expression for γ(q; Λ) in Eq. 9, the operator (QΛH∞QΛ)
−1 can be

constructed with the aid of the operator identity

1

A+B
= (1− A−1B + A−1BA−1B − . . .)A−1 , (46)

where A→ QΛTQΛ and B → QΛVδQΛ giving

γ(q; Λ) = −
g(Λ0)

2m

∫ Λ0

Λ

d3q′

(2π)3
〈q|(QΛH∞QΛ)

−1|q′〉

= −
g(Λ0)

q2

(
1−

g(Λ0)

q2

∫ Λ0

Λ

dq′

2π2

q′2

q′2
+ . . .

)
= −

g(Λ0)

q2

∞∑

n=0

(
−
g(Λ0) · (Λ0 − Λ)

2π2

)n

=
−g(Λ0)

q2
2π2

2π2 + g(Λ0) · (Λ0 − Λ)
.

(47)

This can be simplified further since Eq. 45 implies

2π2g(Λ0)

2π2 + g(Λ0) · (Λ0 − Λ)
=

[
Λ0 − Λ

2π2
+

1

g(Λ0)

]−1

=

[
1

4πa
−

Λ

2π2

]−1

= g(Λ) , (48)

which gives

γ(q; Λ) = −
g(Λ)

q2
. (49)
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Inserting into Eq. 34, we find

nq ≈
Z2

Λg
2(Λ)

q4

∑

k,k′,K

〈ψΛ
α,A

|a†K
2
+k
a†K

2
−k
aK

2
+k′aK

2
−k′|ψΛ

α,A
〉 , (50)

where Λ is of the same order of magnitude as the relevant low-energy scales of the system

and Λ ≪ q ≪ Λ0.

In Ref. [24], Braaten and Platter used the operator product expansion to show that the

tail of the UFG momentum distribution behaves like6

nq =
g2(Λ0)

q4

∑

k,k′,K

〈ψΛ0

α,A
|a†K

2
+k
a†K

2
−k
aK

2
+k′aK

2
−k′ |ψ

Λ0

α,A
〉 ≡

C(Λ0)

q4
(51)

where C(Λ0) is often known as Tan’s contact parameter. In the Appendix, we will show that,

at the level of approximating the evolved creation/annihilation operators by the leading-

order expression in Eq. 23 and truncating induced three- and higher-body operators, the

following relationship holds

Z2
ΛC(Λ) = C(Λ0) . (52)

Therefore, Eqs. 50 and 51 are equivalent at the level of approximations made thus far.

Heuristically, we can understand this equivalence since we expect that ZΛ → 1 as Λ → Λ0.

2. Static structure factor

Turning next to the asymptotic expression for the static structure factor, Eq. 41, our task

is to evaluate the following term

∑

P,I

Z2
Λ γ(P+ q; Λ)γ(P; Λ) → Z2

Λg
2(Λ)

∫
d3P

(2π)3
θ(|P| − Λ)θ(|P+ q| − Λ)

|P+ q|2|P|2
, (53)

where we’ve taken the infinite volume limit to convert the sum to an integral and substituted

Eq. 49 for γ. Note that the integral in Eq. 53 has an implicit ultra-violet cutoff Λ0 ≫ Λ.

To evaluate the integral, we use that there are two regions for which the theta function

θ(|P+ q| − Λ) = 1 independent of P · q, and one region where it depends on angle to write

I =

∫
d3P

(2π)3
θ(|P| − Λ)θ(|P+ q| − Λ)

|P+ q|2|P|2
≡ Ihigh + Imedium + Ilow . (54)

6 Shina Tan provided the first derivation of Eq. 51 using generalized functions [25]. Many different deriva-

tions can be found in the literature, see Ref. [26] for details.
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For |P| > |q|, we have |P + q| ≥ |P| − |q|, which implies that for |P| ≥ Λ + |q|, then

θ(|P+ q| − Λ) = 1 independent of P · q. In this case, the limits of the angular integration

are unrestricted

Ihigh =
1

4π2

∫ Λ0

Λ+q

dP

∫ 1

−1

dx
1

P 2 + q2 + 2Pqx

Λ0→∞
=

1

4π2q

[
Li2

(
q

q + λ

)
− Li2

(
−

q

q + λ

)]
,

(55)

where Li2(x) is the polylogarithm function. Using that Λ/q ≪ 1 and keeping just the leading

term gives

Ihigh ≈
1

4π2q

[
π2

4
+

Λ

q
log

(
Λ

2q

)
−

Λ

q

]
. (56)

Similarly, for |P| < |q| the limits of the angular integration are unrestricted if |P| < |q| −Λ

giving

Ilow =
1

4π2

∫ q−Λ

Λ

dP

∫ 1

−1

dx
1

P 2 + q2 + 2Pqx

=
1

4π2q

[
Li2

(
−
Λ

q

)
− Li2

(
Λ

q

)
+ Li2

(
1−

Λ

q

)
− Li2

(
−1 +

Λ

q

)]
,

≈
1

4π2q

[
π2

4
+

Λ

q
log

(
Λ

2q

)
−

3Λ

q

]
, (57)

where we’ve used Λ/q ≪ 1 in the last step. Finally, we consider the intermediate region

q − Λ < P < q + Λ where θ(|P + q| − Λ) = 1 places restrictions on the the limits of the

angular integration. In this case, the theta function requires x > xmin = Λ2−P 2−q2

2Pq

Imedium =
1

4π2

∫ q+Λ

q−Λ

dP

∫ 1

xmin

dx
1

P 2 + q2 + 2Pqx

=
1

4π2q

[
log

( q
Λ

)
log

(
1 + Λ/q

1− Λ/q

)
+ Li2

(
−1−

Λ

q

)
− Li2

(
−1 +

Λ

q

)]

≈
1

4π2q

[
2Λ

q
log

(
2q

Λ

)]
. (58)

Inserting Eqs. 56-58 in Eq. 54 gives

I ≈
1

4π2q

[
π2

2
−

4Λ

q

]
, (59)

which together with Eq. 41 and Eq. 49 yields

S↑↓(q) ≈

(
−

2

q2g(Λ)
+

1

8q
−

Λ

π2q2

)
Z2

Λ C(Λ)

=

(
−

2

q2g(Λ)
+

1

8q
−

Λ

π2q2

)
C(Λ0)

=

(
1

8q
−

1

2πaq2

)
C(Λ0) , (60)
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where we used Eq. 52 and the explicit form of the coupling g(Λ), Eq. 45, in the second and

third lines, respectively. As with the momentum distribution, Eq. 60 agrees with the known

result that has been previously derived by a number of different methods [26].

B. Electron gas

1. Momentum distribution

As our second check of Eq. 34 and Eq. 41, we derive the large-momentum limit of the

momentum distribution and static structure factor for Coulombic systems. Unlike the uni-

tary Fermi gas, we were unable to evaluate γ(q; Λ) in closed form. Therefore, we turn to a

perturbative calculation and expand the Q-space propagator

1

QΛHQΛ

=
1

QΛTQΛ

−
1

QΛTQΛ

V
1

QΛTQΛ

+
1

QΛTQΛ

V
1

QΛTQΛ

V
1

QΛTQΛ

+ . . . ,

(61)

which together with Eq. 9 gives the first- and second-order contributions to γ

γ(1)(q; Λ) = −

∫ ∞

Λ

d3q′

(2π)3
(2π)3

q2
δ3(q− q′)

4πe2

q′2

= −
4π

a0q4
, (62)

and

γ(2)(q; Λ) = −

∫ ∞

Λ

d3q′

(2π)3
1

q2q′2
4πe2

|q− q′|2
4πe2

q′2

≈
8

a20q
4Λ

(63)

where we’ve kept the leading term in 1/q for the second-order contribution and a0 =
~
2

e2m
is

the Bohr radius. We assume that perturbation theory is justified provided

γ(2)

γ(1)
=

2

π

1

a0Λ
≪ 1 ⇒ Λ ≫

2

π

1

a0
, (64)

and restrict our attention to the leading term, Eq. 62. Inserting this into Eq. 34 gives

nq ≈
16π2

q8a20
Z2

Λ

∑

k,k′,K

〈ψΛ
α,A

|a†K
2
+k,↑

a†K
2
−k,↓

aK

2
+k′,↑aK

2
−k′,↓|ψ

Λ
α,A

〉 . (65)
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Apart from the ZΛ factors and the evolved wave functions ψΛ
α,A

, this is very similar to the

known result first derived by Kimball [27]

nq ≈
16π2

q8a20

∑

k,k′,K

〈ψ∞
α,A

|a†K
2
+k,↑

a†K
2
−k,↓

aK

2
+k′,↑aK

2
−k′,↓|ψ

∞
α,A

〉 . (66)

As with the unitary Fermi gas, one can make a heuristic argument that Eq. 65 and Eq. 66

are equivalent since ZΛ → 1 and ψΛ
α,A

→ ψ∞
α,A

as Λ → ∞. More precisely, we will show in

the Appendix that

∑

k,k′,K

〈ψ∞
α,A

|a†K
2
+k,↑

a†K
2
−k,↓

aK

2
+k′,↑aK

2
−k′,↓|ψ

∞
α,A

〉 ≈

Z2
Λ

{
1 +O

(
1

Λa0

)} ∑

k,k′,K

〈ψΛ
α,A

|a†K
2
+k,↑

a†K
2
−k,↓

aK

2
+k′,↑aK

2
−k′,↓|ψ

Λ
α,A

〉 , (67)

so that Eqs. 65 and 66 are equivalent up to terms of order O( 1
Λa0

), which are presumed to

be small by virtue of Eq. 64.

2. Static structure factor

Turning next to the application of Eq. 41 to Coulomb systems, our task is to evaluate

the following term

∑

P,I

Z2
Λ γ(P+ q; Λ)γ(P; Λ) →

(
4πZΛ

a0

)2 ∫
d3P

(2π)3
θ(|P| − Λ)θ(|P+ q| − Λ)

|P+ q|4|P|4
. (68)

As before, we split the integral into a sum of three terms

I =

∫
d3P

(2π)3
θ(|P| − Λ)θ(|P+ q| − Λ)

|P+ q|4|P|4
= Ihigh + Imedium + Ilow (69)

where Ihigh corresponds to |P| ≥ Λ + |q|, Imedium corresponds to |q| − Λ ≤ |P| ≤ |q| + Λ,

and Ilow corresponds |P| ≤ |q| − Λ. For Ihigh and Ilow, the angular integrals are trivial

Ihigh =
1

4π2

∫ ∞

Λ+q

P 2dP

∫ 1

−1

1

P 4

1

(P 2 + q2 + 2Pqx)2

≈
1

4π2

1

2Λq4
+ O

(
1

q5

)
, (70)

Ilow =
1

4π2

∫ q−Λ

Λ

P 2dP

∫ 1

−1

1

P 4

1

(P 2 + q2 + 2Pqx)2

≈
1

4π2

5

2Λq4
+ O

(
1

q5

)
. (71)
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For Imedium, the Heaviside theta functions restrict the angular integral

Imedium =
1

4π2

∫ q+Λ

q−Λ

P 2dP

∫ 1

xmin

1

P 4

1

(P 2 + q2 + 2Pqx)2

≈
1

4π2

1

Λq4
+ O

(
1

q5

)
, (72)

where xmin = Λ2−P 2−q2

2Pq
. Combining Eqs. 68-72 with Eq. 41, we find

S↑↓(q) ≈ −
8π

a0

Z2
Λ

q4

(
1−

2

π

1

Λa0

) ∑

K,k,k′

〈ψΛ
α,A

|a†K
2
+k,↑

a†K
2
−k,↓

aK

2
+k′,↓aK

2
−k′,↑|ψ

Λ
α,A

〉

≈ −
8π

a0

1

q4

∑

K,k,k′

〈ψ∞
α,A

|a†K
2
+k,↑

a†K
2
−k,↓

aK

2
+k′,↓aK

2
−k′,↑|ψ

∞
α,A

〉 , (73)

where we’ve used Eq. 64 and Eq. 67 to obtain the second line. This is in agreement, modulo

an overall minus sign, with the previously known result of Kimball [27].

V. SUMMARY

In this paper, we have used elementary RG arguments to show that, for general low-

energy many-body states, the high-momentum tails of momentum distributions and static

structure factors factorize into the product of a universal function of momentum that is

fixed (in leading-order) by two-body physics, and a state-dependent matrix element that is

sensitive only to low-momentum structure of the many-body state, and is the same for both.

As a check of our formalism, we have successfully applied our factorization relations to two

well-studied systems, the unitary Fermi gas and the electron gas, reproducing known results

for the high-momentum tails of each.

The present work generalizes the results of Anderson et al., who derived analogous re-

lations in the two-body system [1], and suggests a complementary interpretation of the

universal high-momentum dependence and scaling behavior found in nuclear momentum

distributions in the analysis of (e, e′p) reactions. In the standard interpretation, the idea of

factorization between long- and short-distance physics follows from the presence of short-

range correlations between nucleon pairs, and has been applied to describe high-momentum

tails of nuclear momentum distributions and spectral functions [11–16]. It will be inter-

esting to connect the approach of the present work, in which factorization is ascribed to

the RG decoupling of high- and low-momentum degrees of freedom and A-dependent scale

factors are given by the low-momentum matrix element of a zero-range contact operator,
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to conventional approaches where factorization follows from short-range correlations and

A-dependence is tied to the center-of-mass motion of the correlated pairs [11, 13, 14].

Our proof of factorization follows from decoupling and the separation of scales, and

resembles aspects of the OPE in quantum field theory. Unfortunately, we have not been

able to establish a precise connection. The main difference appears to be that, in a local

quantum field theoretical framework, the OPE offers a controlled expansion since the scaling

dimension of a given local operator uniquely fixes the r-dependence of the corresponding

Wilson coefficient, making the truncation of the expansion controllable. In contrast, in the

present paper we work in the domain of general non-relativistic quantum mechanics and do

not require that the system is described by a local QFT. This relaxation of assumptions

allows us to extend the notion of factorization and OPE-like methods to a wider class of

problems, albeit in a less controlled fashion since we cannot make precise statements about

the scaling properties of the operators kept/omitted in our expansions. Nevertheless, the

methods presented in this paper may still be useful in low-energy nuclear physics, as they

provide tools that allow us to parameterize the high-momentum components of operators

that would normally require degrees of freedom that we do not retain. We can, for example,

build effective operators containing state-independent functions of high momenta that can

in principle be extracted from few-body data, and subsequently used to make predictions

for high-momentum processes in A-body systems.
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Appendix A: Tan’s contact at different resolutions

In this appendix, we derive the following relation (Eq. 52 in the text)

Z2
ΛC(Λ) = C(Λ0) , (A1)
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where Tan’s contact parameter is defined as

C(Λ0) = g2(Λ0)

Λ0∑

K,k,k′

〈ψΛ0

α,A
|a†K

2
+k
a†K

2
−k
aK

2
+k′aK

2
−k′ |ψΛ0

α,A
〉 , (A2)

and g(Λ0) is given by Eq. 45. Let us begin with the following relation

Λ0∑

K,k,k′

〈ψΛ0

α,A
|a†K

2
+k
a†K

2
−k
aK

2
+k′aK

2
−k′|ψ

Λ0

α,A
〉 =

Λ0∑

K,k,k′

〈ψΛ
α,A

|
[
a†K

2
+k
a†K

2
−k

]Λ [
aK

2
+k′aK

2
−k′

]Λ
|ψΛ

α,A
〉 ,

(A3)

where the evolved pair creation operators are given (within the same approximations made

in the text) by

[
a†K

2
+k
a†K

2
−k

]Λ
= a†K

2
+k
a†K

2
−k

+
∑

p

CΛ
k (p,−p) a†K

2
+p
a†K

2
−p

≡ a†K
2
+k
a†K

2
−k

+ δa†K
2
+k
a†K

2
−k
, (A4)

and similarly for the pair annihilation operators. Note that the form of Eq. A4 is dictated by

the two approximations made in the text, namely i) the neglect of higher-order corrections

in Eq. 23 for the evolved creation/annihilation operators and ii) the neglect of induced three-

and higher-body operators in the evolution. At this level of approximation, the right-hand

side of Eq. A3 becomes

RHS of Eq. A3 =
Λ0∑

K,k,k′

[
〈ψΛ

α,A
|a†K

2
+k
a†K

2
−k
aK

2
+k′aK

2
−k′ |ψ

Λ
α,A

〉

+ 〈ψΛ
α,A

|δa†K
2
+k
a†K

2
−k
aK

2
+k′aK

2
−k′|ψΛ

α,A
〉

+ 〈ψΛ
α,A

|a†K
2
+k
a†K

2
−k
aK

2
+k′δaK

2
−k′|ψ

Λ
α,A

〉

+ 〈ψΛ
α,A

|δa†K
2
+k
a†K

2
−k
aK

2
+k′δaK

2
−k′|ψΛ

α,A
〉

]
.

(A5)

Next, we split each summation into low- and high-momentum regions and use decoupling

together with the asymptotic forms in Eqs. 29 and 31 to simplify the resulting expressions.

As a consequence of decoupling, the first term in Eq. A5 stays the same but with the
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summations effectively cutoff at Λ ≪ Λ0. The second term is given by

Λ∑

K,p,k′

Λ0∑

k

CΛ
k (p,−p) 〈ψΛ

α,A
|a†K

2
+p
a†K

2
−p
aK

2
+k′aK

2
−k′|ψΛ

α,A
〉 , (A6)

where the sums over K,p, and k′ are cutoff at Λ due to decoupling. Splitting the sum over

k into low- and high-momentum regions and using Eqs. 29 and 31 for CΛ
k (p,−p) gives

Λ0∑

K,k,k′

〈ψΛ
α,A

|δa†K
2
+k
a†K

2
−k
aK

2
+k′aK

2
−k′|ψΛ

α,A
〉 ≈

(
ZΛ − 1 + ZΛγ̄(Λ)

) Λ∑

K,k,k′

〈ψΛ
α,A

|a†K
2
+k
a†K

2
−k
aK

2
+k′aK

2
−k′|ψΛ

α,A
〉 ,

(A7)

where we’ve defined

γ̄(Λ) ≡

Λ0∑

q=Λ

γ(q; Λ) . (A8)

One easily finds that the third term in Eq. A5 gives the same contribution as the second.

The fourth and final term in Eq. A5 is given by

Λ∑

K,p,p′

Λ0∑

k,k′

CΛ
k (p,−p)CΛ

k′(p′,−p′) 〈ψΛ
α,A

|a†K
2
+p
a†K

2
−p
aK

2
+p′aK

2
−p′|ψΛ

α,A
〉 . (A9)

As before, decoupling implies the sums over K,p, and p′ are cutoff at Λ. Splitting the

unrestricted sums over k and k′ into low- and high-momentum regions then gives

Λ0∑

K,k,k′

〈ψΛ
α,A

|δa†K
2
+k
a†K

2
−k
aK

2
+k′δaK

2
−k′ |ψΛ

α,A
〉 ≈

(
(ZΛ − 1)2 + 2ZΛ(ZΛ − 1)γ̄(Λ) + Z2

Λγ̄
2(Λ)

)

×
Λ∑

K,k,k′

〈ψΛ
α,A

|a†K
2
+k
a†K

2
−k
aK

2
+k′aK

2
−k′|ψΛ

α,A
〉 .

(A10)

Collecting terms and simplifying, Eq. A3 becomes

Λ0∑

K,k,k′

〈ψΛ0

α,A
|a†K

2
+k
a†K

2
−k
aK

2
+k′aK

2
−k′ |ψ

Λ0

α,A
〉 ≈ Z2

Λ (γ̄(Λ) + 1)2

×
Λ∑

K,k,k′

〈ψΛ
α,A

|a†K
2
+k
a†K

2
−k
aK

2
+k′aK

2
−k′|ψ

Λ
α,A

〉 .

(A11)

For the unitary Fermi gas, we can evaluate γ̄ analytically using Eq. 49

γ̄(Λ) =

Λ0∑

q=Λ

γ(q; Λ) →

∫ Λ0

Λ

d3q

(2π)3
−g(Λ)

q2
= −

g(Λ)

2π2
(Λ0 − Λ) . (A12)
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Inserting this into Eq. A11 and using the identity

g(Λ)

g(Λ0)
= 1−

g(Λ)

2π2
(Λ0 − Λ) , (A13)

one finds the desired relation

C(Λ0) = g2(Λ0)

Λ0∑

K,k,k′

〈ψΛ0

α,A
|a†K

2
+k
a†K

2
−k
aK

2
+k′aK

2
−k′|ψΛ0

α,A
〉

≈ Z2
Λg

2(Λ)

Λ∑

K,k,k′

〈ψΛ
α,A

|a†K
2
+k
a†K

2
−k
aK

2
+k′aK

2
−k′|ψ

Λ
α,A

〉

= Z2
ΛC(Λ) .

(A14)

Appendix B: Coulomb pair-distribution function at different resolutions

In this appendix, we derive the following relation (Eq. 67 in the text) for the Coulomb

gas,

∑

k,k′,K

〈ψ∞
α,A

|a†K
2
+k
a†K

2
−k
aK

2
+k′aK

2
−k′ |ψ∞

α,A
〉 ≈

Z2
Λ

{
1 +O

(
1

Λa0

)} ∑

k,k′,K

〈ψΛ
α,A

|a†K
2
+k
a†K

2
−k
aK

2
+k′aK

2
−k′ |ψ

Λ
α,A

〉 .

(B1)

Since the proof closely mirrors what was done for the unitary Fermi gas, we begin from

Eq. A11 with Λ0 → ∞

∞∑

K,k,k′

〈ψ∞
α,A

|a†K
2
+k
a†K

2
−k
aK

2
+k′aK

2
−k′ |ψ∞

α,A
〉 ≈ Z2

Λ (γ̄(Λ) + 1)2

×
Λ∑

K,k,k′

〈ψΛ
α,A

|a†K
2
+k
a†K

2
−k
aK

2
+k′aK

2
−k′|ψΛ

α,A
〉 .

(B2)

Using the leading perturbative expression for γ(q; Λ) in Eq. 62, we have

γ̄(Λ) =
∞∑

q=Λ

γ(q; Λ) →

∫ ∞

Λ

d3q

(2π)3
−4π

a0

1

q4
= −

2

π

1

Λa0
. (B3)

Inserting this into Eq. B2 then gives

∞∑

K,k,k′

〈ψ∞
α,A

|a†K
2
+k
a†K

2
−k
aK

2
+k′aK

2
−k′ |ψ

∞
α,A

〉 ≈ Z2
Λ

(
1−

2

π

1

Λa0

)2

×
Λ∑

K,k,k′

〈ψΛ
α,A

|a†K
2
+k
a†K

2
−k
aK

2
+k′aK

2
−k′|ψ

Λ
α,A

〉 ,

(B4)
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which is equivalent to Eq. B1 since Λa0 ≫ 1 by assumption.
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