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I investigate the effects of plasma interactions on resonance-enhanced fusion rates in stars. Start-
ing from basic principles we derive an expression for the fusion rate that can serve as a basis for
discussion of approximation schemes The present state-of-the-art correction algorithms, based on
the classical correlation function for the fusing particles and the classical energy shift for the reso-
nant state, do not follow from this result, even as an approximation. The results of expanding in a
perturbation solution for the case of a weakly coupled plasma are somewhat enlightening. But at
this point we are at a loss as to how to do meaningful calculations in systems with even moderate
plasma coupling strength. Examples where this can matter are: the effect of a possible low energy
12 C +12 C resonance on X-ray bursts from accreting neutron stars or on supernova 1A simulations;
and the calculation of the triple α rate in some of the more strongly coupled regions in which the
process enters, such as accretion onto a neutron star.

PACS numbers: 97.10.Cv, 26.50.+x

I. 1. INTRODUCTION

Nuclear fusion rates play a central role in stellar evolu-
tion theory. Their calculation depends primarily on lab-
oratory data, and the open questions that persist have
mostly to do with these measurements and their extrap-
olations to very low energies. Another issue that presents
itself is that of the influence of the surrounding plasma
on the fusion rates. This is a mature subject, to say
the least, for the case of non-resonant fusion, but there
are some questions that still are not settled, and some of
these pertain to the special case of resonance-enhanced
fusion, which is the subject of the body of this paper.
To set the context, I begin with a review of the way

the plasma corrections work for the ordinary case in
which the energy variation of the vacuum value of [cross-
section× velocity] is mainly from the Coulomb wave-
functions, rather than from a resonant peak. A lore
has developed, the “basically classical” approach [1]- [6],
which follows the following path 1:
1.) calculation of an effective two particle correlation

function (down to a small distance) in a classical simula-
tion;
2.) defining an effective two body potential propor-

tional to the logarithm of this function, written in the
form Veff = Z2e2/r + Vsc(r) where Vsc is referred to as
the “screening potential”;
3.) in the potential Veff calculating the tunneling

through the barrier to determine the correlation func-
tion at zero separation K(r = 0). This correlator then
is assumed to embody all of the effects of the plasma on
the fusion rate.
Implementing the above, I consider fusing particles A

and B, with respective number densities, na and nb. I
write the rate, w, at which one specified nucleus of type

1 Everything in the present paper pertains to cases in the thermo-
nuclear regime, rather than in the pychnonuclear regime.

B undergoes fusion as,

w = na〈σv〉
K(0)

K0(0)
. (1)

and I consider all of the energy dependence of the vac-
uum cross-section σ to come from the Coulomb potential.
The factor K0(0) is the correlator in the absence of the
plasma, and serves to cancel the Coulomb factor that
comes in σ.
Both in this usual case, where the input from experi-

ment is the low energy Coulomb-corrected cross-section,
and in the resonance case, where the input is the reso-
nance energy and partial width, I use the word “exper-
imental”, slightly inaccurately, to mean what the data
would be when the effects of the atomic electrons in the
real experiment have been removed. This is not a trivial
matter and in some cases there are considerable uncer-
tainties as to the results. However these uncertainties are
small on the scale of corrections that I shall discuss.
Turning to the resonant case, in the absence of plasma

the contribution of a narrow resonance to the fusion rate
is,

w0 = naζe
−Er/T exp

(

− πe2Z2

√

µ

Er

)

, (2)

where Er is the resonance energy and ζ is given by the

product of Γ
(0)
r , defined as what the the partial width

in the elastic channel would be in the absence of the
Coulomb force between these nuclei, and irrelevant kine-
matic factors. The final factor in (2) is the square of the
exponential factor in the Coulomb wave-function; and µ
is the reduced mass of the fusing particles.
This paper discusses approaches to incorporating

plasma effects into the rates for the resonant case. These
plasma effects can be important in applications. Refs.
[7] and [8] suggest that the existence a resonant state in
the 12C+12C system in the vicinity of Er =1.5 MeV in
energy might explain features of X ray bursts from accret-
ing neutron stars. Refs. [7] and [9] discuss the screening
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corrections to resonant rates, motivated by this possibil-
ity. Following these references, I choose as an example a
density of ρ = 5× 109gc−3 for a pure 12C plasma, and a
temperature region 4 < T8 < 9.
For purposes of exposition I assume that the screening

potential Vsc is nearly constant in the classically inac-
cessible region for the two particle system with resonant
energy, and make the replacement Vsc(r) ≈ Vsc(0) in this
region. In the above application this is a good approxi-
mation2. I write Vsc(0) = −γT and take the dimension-
less parameter γ from ref. [9],

γ = 2.293Γ0.25 + 1.053Γ− 0.5551 ln(Γ)− 2.35 , (3)

where Γ is the usual plasma coupling. Under the sample
conditions of composition and density it is given by, Γ =
6.2/T9. A first guess as to the form for the screened rate
formula could be,

wscr = naζe
−Er/T exp

(−πe2Z2√µ√
Er + γT

)

,

(4)

where the penetration factor has been altered by sub-
tracting the screening potential at the origin, −γT , from
the energy in the incoming state. In normal fusion, where
there is an integral over energy and the other energy de-
pendent factors are the phase space and the statistical
factor exp[−E/T ], a simple shift of integration variable
by −γT gives the usual enhancement factor exp(βγ) in
rate, but this does not apply to the resonance case, it
appears.
In refs. [7] and [9], the result (4) is extended by includ-

ing a plasma-induced resonance-energy shift ∆Er
given

by making the replacement, Er → Er+∆Er
, and leading

to,

wscr+shft = naζe
−(Er+∆Er )/T exp

( −πe2Z2√µ
√

Er + γ T +∆Er

)

.

(5)

The question now is, “what is ∆Er
?”. Both ref. [7] and

ref. [9] choose it to be given by E12−2E6, where EZ is the
free energy shift of an ion with charge eZ due to interac-
tion with the plasma. In this case, in the “basically classi-
cal ” approach it is a theorem that ∆Er

= Vsc(0) [5]. But
in the next section I shall argue that the energies of the
incoming 12C ions probably should not have been sub-
tracted, in which case we would have had ∆Er

≈ 2Vsc(0).
What do I mean by “probably” ? Actually, only that if
one were to start from the correct ab initio approach,
and ask how, making reasonable assumptions, anything
like the above structure can result, then one would come

2 It is easy to go beyond this simplification, using the mechanics
presented in ref. [9].

to the conclusion that these energies should not be sub-
tracted. When one looks more deeply into the problem,
however, it looks more and more as though nothing about
this whole general approach can be trusted. This conclu-
sion will be explained below.
For now, just in order to show the importance of the

issues, I compare the two suggestions made above for
the parameter range specified above. Fig.1 shows the
ratios of screened to unscreened rates for my two different
assumptions as to the value of ∆Er

, plotted over a range
of temperatures.
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FIG. 1: The logarithms of the ratios of the screened rates,
w1 and w2 to unscreened rates w0 from (5). The rate w2

has been calculated taking ∆Er as just the resonance energy
shift, while the rate w1 is the result if, in calculating ∆Er , the
energy shifts of the incoming nuclei are subtracted.

Looking at fig. 1, it can be stipulated that the subject
of this paper can be important, even in a region of mod-
erate values of the plasma coupling. But I am not here
addressing data, nor the likelihood of existence of the
possible resonance. I am only examining the underlying
theory, and I must characterize (5) as an ansatz, rather
than as a derived result. This is in contrast to what I
would argue vis-a-vis the case of most applications of (1)
to non-resonant fusion, but even the latter is subject to
the following caveat: eq. (1), giving the rate correction
in terms of K, is true only in the case that the energy
release Q in the fusion is much greater than the Gamow
energy, EG [10] [11]. For the case of resonant fusion the
analogue to the value of Q is, in effect, not only not large
compared to EG, it is negative. It is my opinion that one
can only begin serious consideration of plasma effects in
the resonant case only after developing a correct formal
framework for the discussion. This is taken up in the
next section.

II. 2. FORMAL FRAMEWORK

I quote some general relations that are derived in the
appendix. In these derivations for the fusion reaction,
A+B→R, I take the resonance, R, as a particle, with a
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point coupling to the fusing nuclei. Described in terms
of field operators ψa(r) and ψb(r) for the fusing particles,
and ψr(r) for the resonance, a zero-range fusion interac-
tion is,

Hfus = g

∫

drψ†
r ψa ψb +H.C. , (6)

where calculation of the decay rate for R→A+B gives g2

in terms of Γ
(0)
r ,

g2 = 2−1/2π µ−3/2 Γ(0)
r E1/2

r . (7)

Since the above model gives back exactly the Breit-
Wigner formula when one sums the chain of repeated
interactions to find the scattering amplitude, I judge it
to be adequate for my purposes, as long as the resonance
width in the fusion channel is small. The total width will
not enter the explicit results, but for the whole applica-
tion I assume that the decay is mostly into other chan-
nels. This simulation of the resonance should be good as
long as the barrier penetration calculation doesn’t care
about the difference between r = 0 and the nuclear ra-
dius.
For purposes of exposition I think of singled-out re-

acting particles, A and B. The “plasma” is composed of
all other particles. The rate will then have a factor V −2

where V is the volume; when translational invariance is
restored and there are finite densities of the species A and
B then V −2 is to be replaced by the product of number
densities nanb to get rate per volume, or just by na to
get rate per nucleus B as in the convention stated above.
I make this replacement ab initio in what follows. It will
also eliminate superfluous complication in what follows
to take both the nucleus B (described by ψb) and the res-
onance R to have infinite mass, and to position them at
the origin. The corrections, expressed as a multiplicative
factor, will be very nearly the same as in the equal mass
case.
With this simplification, in the appendix I derive ex-

pressions (A.8) and(A.11), which together give the reso-
nant fusion rate,

w = g2Z−1
P na

∫∞

−∞
dt

×
∑

Pl,Pl′

[〈

ra = 0,B,Pl
∣

∣

∣
e−(β−it)H

∣

∣

∣
ra = 0,B, Pl′

〉

×
〈

R, Pl′
∣

∣

∣
e−itH

∣

∣

∣
R,Pl

〉]

, (8)

where β = 1/T and ZP is the partition function for the
plasma. The notation, Pl, stands for all of the coordi-
nates of the plasma particles collectively. The symbol B
within the first bracket indicates that nucleus B is present
(at r = 0) in the space of states in which this calculation
is to be carried out. In the second bracket there is only
the plasma and the single nuclear state R, the latter fixed
at the origin.

Now I ask: “What is the relation between (8) and the
ansatz (5) ?” I begin by ignoring the coupling of the res-
onance state R to the plasma. The the final bracket in
(8) is simply,

〈

R, Pl′
∣

∣

∣
e−itH

∣

∣

∣
R,Pl

〉

= e−iErtδ(Pl− Pl′) , (9)

where the delta function is the product of delta functions
for the individual plasma particles. Then the sum over
plasma states in (8) gives the dependence exp(−iErt)
times K(0, t), where K is the correlator as used in (1),
but now extended to finite time by the replacement
β → β − it and in the form of a trace over the plasma
coordinates Pl. In the “basically classical” approach it is
just,

K(0, t) =

∫

d3p

(2π)3
e−Ep(β−it)|Ψp(0)|2 , (10)

where the Ψp is the wave-function at the origin in the
screened potential. For the case considered in the intro-
duction in which the screening part changes little within
the classically inaccessible region I obtain,

|Ψp(0)|2 ≈ 2πe2Z2|p|−1 exp
(

− πe2Z2

√

2µ

Ep − Vsc(0)

)

.

(11)

Putting (10), (9) into (8) and using (11) one obtains
(4), later to be modified by the plasma induced en-
ergy shift. Next I ask, “Does the governing formula (8)
tell us how to do this modification”? Note that once I
put in interactions with the plasma the final factor in
(8), 〈R,P l′|...|R,P l〉 will not be a delta function in the
plasma coordinates, nor diagonal in these coordinates.
Thus I cannot eliminate the sum over states Pl′. More-
over the first bracket is no longer a trace and is then no
longer given in terms of the correlation function.
However, in the spirit of “basically classical”, I can say

“I determined the effective potential between ions A and
B as the logarithm of the classical correlation function, in
a calculation that traced over the plasma states. So I now
imagine that when A and B are close to each other the
plasma is in a single configuration, Pl0, a configuration
that produces an electrical potential φsc at the origin.
The sum of the interaction energies of these two particles
with this potential, less the plasma-induced energy shifts
of the individual ions when widely separated, gives the
screening potential energy Vsc(0). This is the energy shift
that is to be used in calculating the first bracket, 〈...〉, in
(8). Turning to the calculation of the plasma corrections
to the second bracket, one sees that with the state Pl0
replacing both Pl and Pl′ in (8), thus eliminating the sum
over Pl′, it becomes,

〈

R, Pl0

∣

∣

∣
e−itH

∣

∣

∣
R,Pl0

〉

= e−i(Er+∆Er )t , (12)



4

which leads back to (5) with the second interpretation of
∆Er

as given in the discussion following (5).

With this pseudo-derivation in hand, I feel more con-
fident in declaring my belief that if any approach that
leads to the form (5) makes sense, for strongly coupled
systems, then ∆Er

must be simply the energy shift of the
resonance R in the plasma, as given by e2(Z1 + Z2)φsc,
with no subtractions for the energy shifts of the isolated
A and B states in the same plasma. Indeed, the object
estimated in (12) has no way of knowing how the total
charge Z1 + Z2 was split between the incoming nuclei.
The above conclusion is at variance with the assump-
tions of refs. [7] and [9], and I have already illustrated
in fig. 1 the very big difference that the choice makes in
the rate formula.

That said, I believe that it is much more likely that
the basically classical approach, which appears to have
served well in ordinary fusion reactions, when the energy
releaseQ is much greater than the Gamow energy, simply
cannot be used to get meaningful results in this resonance
fusion problem, with any choice of ∆Er

.

I best can explain the essential difference between the
resonance case and the normal fusion case by recalling
some of the features of the latter. Again, strictly for
economy of exposition, in the reaction A + B → C +D,
I take the two ions B and D to have infinite mass. As in
the resonance case I take a zero range fusion interaction.
Instead of a resonance energy parameter one now has an
ordinary energy release parameter, Q. The analogue to
(8) is now, as given in ref. [11],

w = g2Z−1
P na

∫∞

−∞
dt eiQt

×∑

Pl,Pl′

[〈

ra = 0,B,Pl
∣

∣

∣
e−(β−it)H

∣

∣

∣
ra = 0,B, Pl′

〉

×
〈

rc = 0,D, Pl′
∣

∣

∣
e−itH

∣

∣

∣
rc = 0,D,Pl

〉]

. (13)

Now one can see how in the ordinary fusion case, when
Q >> EG the “basically classical” approach may suffice.
In the A+B →C+D fusion process of (13) when the en-
ergy release Q is large compared with the Gamow energy,
it is a reasonable approximation to set t = 0 in the expo-
nent within the first bracket 〈〉 (pertaining to the initial
A + B system). If one further omits all plasma coupling
of the fusion products to the plasma in calculation of
the second bracket (pertaining to the C+D system), and
keeps just the kinetic energy term, H0, then the time in-
tegral just sets the energy of the fusion products to the
value Q. Since I have taken the operator in the second
bracket to be independent of the plasma coordinates, one
can integrate δ(Pl− Pl′) over the intermediate plasma
configurations Pl′, and the first 〈〉, integrated over the
space Pl, becomes the trace defining the static correla-
tor, bringing one back to the standard result (1).

But for the resonance case I find no similar argument
that can defend (12) or to lead back to (5).

III. 3. PERTURBATIVE RESULTS

As an alternative to the machinations of the last sec-
tion, one can, beginning from (8), turn the perturba-
tion crank to generate results for the weak coupling case.
Though the results would of course not be applicable to
the strongly coupled systems discussed earlier, one could
hope that they would cleanly resolve the question of what
to use for the resonance energy shift in (5), assuming
for the moment that the calculation leads to the gen-
eral structure of (5). But it will not, as will be shown.
Nonetheless, in the appendix I work out these corrections
in detail. For one thing, they comprise the only certain
result as to the plasma corrections in the resonant case.
For another, they highlight problems that were swept un-
der the rug in the discussion that led to (12), and that
raise doubts about any efforts to make a connection to
the “basically classical” lore, as used in the speculations
above.
First we give the result. The expansion is in powers

of the couplings of the plasma particles to each other
and to the fusing particles. The e’s in the Coulomb
wave-functions of the fusing particles are not part of the
expansion, of course. Because of the long range of the
Coulomb potential, the leading corrections are of order
e2κD, where κD is the Debye momentum.
After a long calculation, given in the appendix, involv-

ing the cancellation of many terms of this order, I find
simply,

w = [1 + e2Z1Z2κDβ]w0 , (14)

which is just the original Salpeter correction, as used in
standard weak-coupling applications, most particularly
in the sun since that is the only venue in which rela-
tively small corrections are of much interest. Is this what
required so much work to learn, that the effect of the
plasma is still just in the initial state equilibrium con-
tact probability? That is, whether the final system is
resonant or not, one has the same modification factor?
Indeed if one looks back at the ansatz , (4) and chooses
∆Er

= −γT , as in the case in which the screening poten-
tial does not change appreciably within the classically
inaccessible region, one recovers the equivalent result,
namely just the same screening factor exp(γ) that would
modify a non-resonant fusion rate. 3.
However, in the perturbative calculation in the ap-

pendix one sees that the simple result depends completely
on including the terms which, in the notation of (8), the
intermediate plasma states Pl′ are different from the ini-
tial plasma states in the trace, Pl. Described in terms
of fundamental processes one can say that the incom-
ing nuclei scatter a plasma particle and then this plasma
particle is put back into its initial state through an in-
teraction with the final resonance; or in an equivalent

3 This was pointed out in ref. [7].
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description in terms of scattering amplitudes rather than
correlation functions, that one must calculate interfer-
ence terms between amplitudes in which a plasma par-
ticle scatters from a fusing nucleus and amplitudes in
which it scatters from the resonance.
If one left out terms like this and calculated only the

separate contributions from the interaction of the plasma
with the initial state and from the interaction with the
resonance, then the sum of these terms would not be
given by (14). Depending on the parameters, it can be
an order of magnitude greater than shown in (14). Yet
going back to the strong coupling case, combining the
two effects, classical screening and energy shift, is exactly
what was prescribed. So it appears to me that it is not
meaningful to calculate this way, and that, for example,
neither of the “energy shift” models that were used in
the comparison of fig. 1 are viable.
For comparison, if one did the same kind of pertur-

bation calculation for the normal fusion case one would
again obtain the Salpeter result with additional terms
that cancel when one adds them up. In contrast to the
resonance case, however, these individual terms are all re-
duced by at least one order of the factors (Z1Z2e

2κD)/Q
or EGamow/Q, as long as these ratios are small. Thus in
this case the perturbation analysis gives no cause to ques-
tion the qualitative argument for the “basically classical”
approach given at the end of the last section. In ref. [11]
I argued the need for rethinking the plasma corrections
for cases in which Q is so small that the condition is not
fulfilled.

IV. 4. DISCUSSION

The strongest conclusion in this paper, which lacks
definitive computational results for the systems of most
interest, is that one should begin with a complete and
correct formulation. It appears to me that the literature
on this topic has depended on using physical intuition to
graft together some pieces of lore that have served well in
other contexts (but with some limitations that are usu-
ally unacknowledged). I do not believe that this provides
a coherent approach starting from basic physics.
I list the two new results of this paper that have been

proven, then turn to speculation:
1). The formula for reaction rate, (8). This was stated

for the case in which one of the fusing particles and the
final resonance both have very large mass, so that they
each would stay at the origin. But it provides an ade-
quate testing ground for the general questions that were
raised in the present paper in relation, e.g., to 12C+12C
fusion. 4

4 The corresponding formula for the case of general masses is easy
to derive, but more complex. In the bracket for the fusing par-
ticles, the two particles that meet at 0 in the left hand state,〈 |,

2). The summation of the leading correction terms
in the perturbative development. The outcome argued
against my favorite guess as to how to do the energy
shift calculation, but the details did show the necessity
of following the plasma in a way in which one does not
in the “basically classical” approach. I characterize the
procedure of the latter as, “Do one big classical simula-
tion, for the effective potential, and thereafter do your
fusion calculation with the individual plasma states out
of the picture.” There is evidence [12] that this proce-
dure is adequate for determining the contact probability
in the initial state, for an ordinary fusion reaction, as
long as EGamow << Q. But when Q is small, or one is
dealing instead with resonance fusion, I believe that it is
insupportable.
If we had to choose between the two alternatives of-

fered in the first section, we would follow the discussion
just before and after (12) and use the energy shift of the
resonance particle itself for ∆Er

, with no subtractions for
the energy shifts of the incoming particles. This gives the
large relative suppressions seen in the log[w2/w0] curve
in fig. 1.
Although in the above opinion I have reverted to the

kind of guesswork that was deplored in the introduction, I
add that the perturbative results do not argue as strongly
as may have appeared for using the other option for ∆Er

,
as adopted by refs.[7] and [9]. First, suppose that one sep-
arates out the the normal Salpeter factor, (1+e2Z2κDβ),
from all other terms. Now the sum of these other terms
is convergent even if one calculates them with unscreened
Coulomb interactions, i e., the infrared divergences in the
individual terms have cancelled against each other.
This behavior is similar in form to the cancellation

of (photon) infrared divergences in the inclusive cross-
sections for charged particle scattering, where individ-
ual contributions, like photon bremsstrahlung, are diver-
gent in an order by order expansion. The point is that
these cancellations do not carry forward in any fashion
to the non-infrared-divergent parts. Returning back to
the perturbative calculation, I believe that the cancel-
lations of the infrared terms that restored the Salpeter
form do not extend in any sense to the non-infrared di-
vergent terms (which begin with terms of order e4 but
also include higher corrections of order Γ3). Therefore,
for applications in which the coupling is even of moderate
strength, the only thing that really is learned from the
elaborate calculations in the appendix is that it is wrong

meet again in the right hand state, | 〉, but now at position r.
Correspondingly, in the bracket for the fusion product R one
goes from position r to position 0. The whole expression has
an additional integral over r; all of this serves to transfer total
momentum from the initial to the final state. Center of mass mo-
tion is no longer totally trivial when we one is in a plasma and Q

is insufficiently large. The derivation of the above follows easily
from the methods used in the appendix. For the ordinary fusion
case the analogue is shown in detail in ref. [10], with a somewhat
different representation of the operators involved, however.
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to disregard the changes in the plasma, i. e. the sum
over the states |Pl′〉 in (8).
How one might imagine doing a real calculation, as-

suming unlimited computing resources? The guiding
example could be the calculations of Militzer and Pol-
lack [12] or Ogata [13], who do real quantum path in-
tegral evaluations for the static correlator at small dis-
tances, without the assumptions of the “mostly classi-
cal” approach. In ref [12] the authors write e−βH =
[e−βH/N ]N and choose N sufficiently large so that each
factor 〈Pl′|e−βH/N |Pl′′|〉, effectively at high temperature,
can be expanded in perturbation theory. The product
of the N factors, involving N integrals over intermedi-
ate plasma configurations, is very expensive to compute,
needless to say, but because of the negative real expo-
nentials the calculation is feasible. In contrast, the result
(13), with its factor e−(β−it)H and extra time integral,
cannot be calculated directly by such a procedure, be-
cause of the oscillations. Clearly some technical progress
is greatly needed.

An important fusion chain that requires resonance en-
hancement is the triple α process. There are suggestions
for treating the associated plasma effects in ref. [14]. In
red giant cores where the process makes its first appear-
ance, the plasma coupling is too weak to make very much
difference. But when, e.g., it takes place in surface lay-
ers of accreting neutron stars, all of the caveats of the
present paper apply.

I also note recent considerations of the role of a possible
12C+12C resonance on the ignition of a type 1a supernova
[15] [16]. Though screening issues were not addressed
in either of these works, the plasma coupling is strong
enough in this application that they need to be.

V. ACKNOWLEDGMENT

This work was supported in part by NSF grant PHY-
0455918.

Appendix: Appendix

For completeness I begin by recapitulating some development from ref [10]. I calculate the time rate of change
of the species A induced by the fusion interaction (6). Since the system is translationally invariant I can choose to
evaluate this time derivative at at point r = 0 and choose time to be zero as well. Directly from the Heisenberg
equations and the commutation rules, writing the transform of (6) as,

Hfus(t) =

∫

dr [h(r, t) + h(r, t)†] , (A.1)

where h = gψaψbψ
†
r I obtain the rate of change of na, the density of species A,

〈

·
na (0,0)

〉

β
= −i〈[na(0, 0), Hfus(0)]

〉

β
= i

〈

[h(0, 0)− h†(0, 0)]
〉

β
. (A.2)

The notation 〈...〉β indicates the thermal average in the medium, such that for an operator, O, one has,

〈O〉β ≡ Z−1
P Tr

[

O exp(−β[H +Hfus − µaNa − µbNb])
]

, (A.3)

where ZP is the partition function, and where H is the Hamitonian in the absence of the fusion term. I wish to
calculate the rate to lowest non-vanishing order; i.e. to second order in h. Thus I now must consider the linear
response of the average of the operator [h(0, 0)− h†(0, 0)], as it appears in (A.2), to the perturbation Hfus, giving an
expression for the rate,

w = −i
∫ 0

−∞

dt

∫

(dr)
〈

[
·
ne (0, 0), Hfus(t)]

〉

β
=

∫ 0

−∞

dt

∫

dr
〈[

[h(0, 0)− h†(0, 0)], [h(r, t) + h†(r, t)]
]〉

β

, (A.4)

where now the thermal average in the medium is to be calculated under the action of H alone. Note that,
〈

[h(0, 0), h(r, t)]
〉

β
=
〈

[h†(0, 0), h†(r, t)]
〉

β
= 0 . (A.5)

Using in addition the space-time translational invariance of the medium and the antisymmetry of the commutator,
〈

[h†(0, 0), h(r, t)]
〉

β
= −

〈

[h(0, 0), h†(−r,−t)]
〉

β
, (A.6)
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I write the rate as

w = −
∫ ∞

−∞

dt

∫

dr
〈

[h(0, 0), h†(r, t)]
〉

β
. (A.7)

When one takes take the medium to contain no nuclei of type R, so that there is no reverse reaction, one can omit
the first term in the commutator in (A.7). Then inserting (6) one obtains,

w = g2
∫ ∞

−∞

dt

∫

dr e−iErt
〈

ψ†
a(r, t)ψ

†
b (r, t)ψr(r, t)ψ

†
r(0, 0)ψa(0, 0)ψb(0, 0)

〉

β
≡ g2

∫ ∞

−∞

dt y(t), (A.8)

where,

y(t) = Z−1
P

∫

drTr
[

Λe−(β−it)Hψ†
a(r, 0)ψ

†
b(r, 0)ψr(r, 0)e

−itHψ†
r(0, 0)ψa(0, 0)ψb(0, 0)] , (A.9)

and where Λ = exp[β
∑

µiNi].
The relation (A.8) is the fundamental formal result required to determine the fusion rate. I have taken the

Schrodinger and Heisenberg representations to coincide at t = 0, and at this time the ψ operators can be expanded in
annihilation operators for single particle states. The calculation that follows will be much simpler if we specialize to
the case in which one of the fusing particles, say B, and the resonance, R, are much heavier than ion A; furthermore
the plasma corrections to the order that I calculate, as a multiplicative factor, do not depend at all on the mass
configuration. Therefore I simplify, ab initio , by taking the masses of B and R to be infinite, and situating a single
B at r = 0. I replace operators ψb(r, t), ψr(r, t) by operators b(t), and r(t) that respectively annihilate the indicated
particles situated at the origin. Note that even though ions B and R no longer carry kinetic energy, these Heisenberg
operators are still time dependent by virtue of the Coulomb interactions of the ions to which they refer. The result
(A.9) is now replaced by ,

y(t) = Z−1
P V −1Tr

[

Λe−(β−it)Hψ†
a(0, 0)b

†(0)r(0)e−itHr†(0)ψa(0, 0)b(0)
]

. (A.10)

The rate that I calculate is now the rate of production of the resonance from the single ion B situated at r = 0.
When we recast the expression in a form in which we consider only one A particle, the factor V −1 in (A.10) gets
replaced by a factor of na. Written a bit more explicitly to exhibit the plasma coordinates in an intermediate state
(A.10) reads,

y(t) = Z−1
P na ×

∑

Pl,Pl′

[〈

ra = 0,B,Pl
∣

∣

∣
e−(β−it)H

∣

∣

∣
ra = 0,B, Pl′

〉〈

R, Pl′
∣

∣

∣
e−itH

∣

∣

∣
R,Pl

〉]

, (A.11)

which leads directly to (8).
To calculate the leading terms in a perturbation expansion I write the total Hamiltonian (not including Hfus) as

H = H0 + HI , where H0 includes all kinetic energies as well as the mutual Coulomb interactions of the plasma
particles with each other and the Coulomb interaction between the distinguished nuclei A and B. Then HI simply
contains the Coulomb couplings between the nuclei, A , B, C and the plasma particles. Designating the total electrical
potential of the plasma particles at position r as φ(r) I have,

HI =

∫

dr eana(r)φ(r) + [ eb b
† b+ er r

† r ]φ(0) . (A.12)

Of course, if one were attempting to go beyond the weak coupling regime, one would have to face the fact that the
potentials φ in (A.12) involve all of the coordinates of the individual plasma particles and that a numerical simulation,
as will be required for a definitive answer in the strongly coupled case, will involve the explicit taking into account of
the paths of all of these particles. In the discussion section I describe the difficulties in principle of carrying out such
calculations. But in the present paper I calculate to second order in HI , and in addition single out only the terms of
order e3 in which the superficial perturbative order e4 has been lowered through the long range of the Coulomb force.
For this purpose all I need to know about the plasma is the part of the field-field correlation function in momentum
space that is singular for small k as κD goes to zero, namely [10],

〈

φ(k, t′)φ(−k′, t′′)
〉

IR
≈ 4πδ(k− k′)β−1κ2D

1

(k2 + κ2D)k2
. (A.13)

I introduce the interaction picture through the identities,
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e−Ha(β−it) = e−H0(β−it)Ω+(−iβ, t) ; e−iHbt = Ω−(0, t)e
−iH0t , (A.14)

where,

Ω(+)(−iβ, t) = exp
[

i

∫ t

−iβ

dt′ĤI(t
′)
]

+
; Ω(−)(0, t) = exp

[

− i

∫ t

0

dt′Ĥ ′
I(t

′)
]

−
, (A.15)

time-ordered and anti-time ordered, respectively, where,

ĤI(t) = eiH0(t+iβ)HIe
−iH0(t+iβ) ; Ĥ ′

I(t) = e−iH0tHIe
iH0t . (A.16)

Substituting in (A.9) I obtain,

y(t) = Z−1
P V −1Tr

[

Λψa(0, 0)b(0)e
−(β−it)H0Ω(+)(−iβ, t)ψ†

a(0, 0)b
†(0)r(0)Ω(−)(0, t)e−itH0r†(0, 0)

]

. (A.17)

In (A.17) I have also used the cyclic property of the trace to move the operators ψa(0, 0)b(0) to the front; in this
form the needed diagonal matrix elements in the trace are between states with no B or R present. I now expand
the Ω factors in powers of the coupling, retaining only terms of order e2, (or e2a, eaeb, etc.). Schematically, each will
have powers of e coming from the thermal expectation of a product of two ion-electric-potential φ(r) operators; these
are determined by the Hamiltonian H0. If this potential-potential correlator is itself expanded in powers of e, the
expansion begins with terms of order e2, so that the rate corrections superficially would be of order e4 but the small
k singularity of (A.13) reduces the order to e3. In the present paper I pursue only these e3 terms; the neglected terms
will go as power e4 and higher.
Expanding, I obtain,

Ω(+)(−iβ, t) = 1− i

∫ t

−iβ

dt1ĤI(t1)−
∫ t

−iβ

dt1ĤI(t1)

∫ t1

−iβ

dt2ĤI(t2) , (A.18)

and

Ω(−)(0, t) = 1 + i

∫ t

0

dt1ĤI(t1)−
∫ t

0

dt1ĤI(t1)

∫ t1

0

dt2ĤI(t2) . (A.19)

The task is to put (A.18) and (A.19) into the rate equation (A.17) and select out the terms that are of order e2κD.
We define y(t) = y1(t)+y2(t)+y3(t) where y1, y2, y3 come respectively from the second order piece of Ω(+)(−iβ, t); the
product of the first order parts of Ω(+)(−iβ, t) and Ω

(−)
b (0, t); and the second order part of Ω

(−)
b (0, t). The operator

under the trace now factors into a part with a φ(k, t′)φ(−k′, t′′) and a part that depends only on the operators in the
space of the nuclei A,B,R. To the order that I need to calculate, the partition function also factorizes into a product in
each space. Therfore one can directly use (A.13) to evaluate the plasma part of the trace. Since the electric potential
of the plasma, φ occurs in HI in the term

∫

dkna(k)φ(k) the k’s in the in (A.13) in the plasma factor still link to
the k’s in the fusing-particle factor. However since the leading (order e3) behavior comes from very small k, I can
evaluate at k = 0 in the fusing particle sector and use,

∫

dk dk′
〈

φ(k, t′)φ(−k′, t′′)
〉

IR
= (2π)3β−1κD . (A.20)

Furthermore one can make the replacement, for example,

ĤI = eae
iH0t

∫

dp dk

(2π)6
a†pap+kφ(k)e

−iH0t → ea

∫

dp

(2π)6
a†pap+k

∫

dkφ(k, t) ,

(A.21)

since in the limit of small k, H0 commutes with
∫

dp a†pap+k. Then one sees that in the infrared limit there is
effectively no t1, t2 dependence of the integrands in A.18) and (A.19); performing these integrals gives the respective
factors,

f1(t) =
β2

2
− t2

2
− iβt ,

f2(t) = (t+ iβ)t , (A.22)
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and

f3(t) = − t
2

2
. (A.23)

With the t dependent factors separated from the matrix elements of operator products that I still have to evaluate I
now write,

y1(t) = βκDf1(t)Z
−1
a V −1

〈

0b, 0r

∣

∣

∣
TraΛa

{[

∑

p apΨp(0)e
−(β−it)Ep

]

b

×
[

ea
∑

q a
†
qaq + ebb

†b
][

ea
∑

q′ a
†
q′aq′ + ebb

†b
][

∑

p′ a
†
p′Ψp′(0)∗

]

b†rr†
}∣

∣

∣
0b, 0r

〉

= (ea + eb)
2f1(t)W (t) ,

(A.24)

where
∣

∣

∣
0b, 0r

〉

stands for the state in the B,R part of the space that contains nothing; Λa = exp(βµaNa); the trace

acts in the A+plasma space; and,

W (t) = 2−3/2π−2M3/2
a βκDV

−1eµaβ

∫

dE
√
E e−(β−it)E

∣

∣

∣
ΨE(0)

∣

∣

∣

2

. (A.25)

In similar fashion one obtains,

y2(t) = βκDf2(t)V
−1Z−1

a

〈

0b, 0r

∣

∣

∣
TraΛa

{[

∑

p apΨp(0)e
−(β−it)Ep

]

b
[

ea
∑

q a
†
qaq + ebb

†b
]

×r er r†c
[

∑

p′ a
†
p′Ψp′(0)∗

]

b†r†
}∣

∣

∣
0b, 0r

〉

= (ea + eb)ecf2(t)W (t) ,

(A.26)

and,

y3(t) = βκDf2(t)V
−1Z−1

a

〈

0b, 0r

∣

∣

∣
TraΛa

{[

∑

p apΨp(0)e
−(β−it)Ep

]

b

×r e2c [r†r]2
[

∑

p′ a
†
p′Ψp′(0)∗

]

b†r†
}∣

∣

∣
0b, 0r

〉

= e2rf3(t)W (t) . (A.27)

In the above I did not impose charge conservation er = ea + eb, in order to best exhibit which interactions
were contributing to which terms in the answer. Now eliminating er and summing the above three pieces, using
f1(t) + f2(t) + f3(t) = β2/2, one obtains simply,

y(t) = 2−5/2π−1M3/2
a βκDV

−1(ea + eb)
2eµ1β

∫

dE
√
E e−(β−it)E a†EaE

∣

∣

∣
ΨE(0)

∣

∣

∣

2

.

(A.28)

Substituting in (A.8), w = g2
∫

dt y(t) exp(−iErt), performing the time integration, then using,

g2 = 2−1/2π−1M−3/2ΓrE
1/2
r , (A.29)

and,

eβµa = na(2π)
3/2(MaT )

−3/2 , (A.30)

and replacing the factor V −1 by nb, I obtain for the change of the fusion rate due to the plasma interactions,

δw =
1

2
(ea + eb)

2βκDw0 , (A.31)
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where

w0 = nanb

( 2π

MaT

)3/2

Γre
−Er/T exp

(

− πe2Z2

√

Ma

Er

)

. (A.32)

This gives, after the zero’th order term is added,

w = w0[1 +
1

2
βκD(ea + eb)

2] . (A.33)

Before drawing conclusions from (A.33) I note that the factor na in the zero’th order term emerged computationally
from,

na = (V Z)−1
∑

p

〈e−β(H−µaNa)a†pap〉 = eβµa

∫

d3p

(2π)3
e−βp2/2M , (A.34)

But if one set out to calculate na in our basic formalism one would have had begun instead with,

na = (V Z)−1
∑

p

〈e−β(H−µaNa)a†pap〉 =
∑

p

〈e−βH0a†papΩ
(+)(−iβ, 0)〉

= (1 +
e2a
2
βκD)eβµa)

∫

d3p

(2π)3
e−βp2/2M , (A.35)

and similarly for nb. That is to say, the plasma interactions have changed the relation between number density and
chemical potential in just such a way that when the relation (A.33) is rewritten in terms of the actual density, the
terms of order e2a (and e2b) are removed [10], leaving us with the final answer 5,

w = w0[1 + eaebβκD] , (A.36)

the result (14) quoted in text.
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