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Spectroscopic observables such as electromagnetic transitions strengths can be related to the
properties of the intrinsic mean-field wave function when the latter are strongly deformed, but
the standard rotational formulas break down when the deformation decreases. Nevertheless there
is a well-defined, non-zero, spherical limit that can be evaluated in terms of overlaps of mean-
field intrinsic deformed wave functions. We examine the transition between the spherical limit
and strongly deformed one for a range of nuclei comparing the two limiting formulas with exact
projection results. We find a simple criterion for the validity of the rotational formula depending
on 〈∆ ~J2〉, the mean square fluctuation in the angular momentum of the intrinsic state. We also
propose an interpolation formula which describes the transition strengths over the entire range of
deformations, reducing to the two simple expressions in the appropriate limits.

I. INTRODUCTION

In mean-field theories, electromagnetic transition rates
are often evaluated using the rotational formula [1] to re-
late them to the multipole moments of the mean-field
wave functions. The formula is justified by factorizing
the wave function as a product of a wave function for
the orientation angles times an intrinsic wave function
and assuming that the matrix elements between intrin-
sic states at different orientations vanish. From a more
microscopic point of view, the formula can be obtained
as the strong deformation limit of the transition proba-
bility computed with angular momentum projected wave
functions [2, 3]. There are several studies in the litera-
ture investigating the validity of the rotational formula in
well deformed nuclei [2, 4, 5]. However, as far as we know
there has never been a systematic study of the validity
and eventual breakdown of the rotational formula as the
wave function approaches the spherical limit. A motiva-
tion for this study is the wide-spread use of this formula
even outside of its domain of validity. For example, the
increasing popularity of the Bohr Hamiltonian [6] as a
tool to handle low energy vibrational and rotational prop-
erties in a mean-field framework calls for a careful analy-
sis of the limitations of the rotational formula for B(E2)
transition strengths [7]. Often near-spherical configura-
tions have a non-negligible amplitude in the wave func-
tions and their contribution to the transition strengths
needs to be handled with care. The purpose of this paper
is to establish criteria for the use of rotational formulas,
as well as to find useful approximations simpler than the
full angular momentum projection to deal with moderate
and soft deformations.

∗Electronic address: luis.robledo@uam.es; URL: http://gamma.
ft.uam.es/robledo
†Electronic address: bertsch@uw.edu

This paper is organized as follows. Sect. II below dis-
cusses the representation of the wave function at small
deformations. Our main result, derived in Sect.III, is
an expression for the transition strengths valid for small
deformations Eq. (19) below. This expression gives a
non-zero value in the limit of vanishing deformation, in
contrast with the rotational formula, Eq. (3) below. In
Sect. IV we examine the validity of the formulas by
comparing with full projections from the intrinsic states,
taking a number of representative examples including
quadrupole and octupole transitions. The dividing line
separating the small and large deformation limits is seen
to be closely connected to the the angular momentum
content of the intrinsic wave function. This gives a sim-
ple criterion to identify the regions of validity of the rota-
tional formula. We also find that the B(E2) values can be
simply parameterized as a function of the the quadrupole
deformation parameter, Eq. (26) below. Other transition
strengths like the B(E3, 3− → 0+) will be discussed and
we will see that similar considerations apply to them as
well.

To set the notation, the multipole operators are defined
as 1

Q̂λµ =

√

4π

2λ+ 1
rλYλµ (1)

and the corresponding electric operators as

Q̂e
λµ = e

(1− 2τz)

2
Q̂λµ. (2)

The rotational formula for an axially symmetric intrinsic
state is given by

B(EJ ; J → 0)ROT =
1

4π
|〈φ|Q̂e

J0|φ〉|2. (3)

1 Note that this differs by a factor of
√

2λ+1
4π

from the definition

in [1].
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II. MEAN FIELD WAVE FUNCTIONS NEAR

SPHERICITY

The first step is the characterization of the intrin-
sic wave functions near sphericity. We will focus on
quadrupole deformation because the generalization to
other multipolarities is straightforward. We assume that
the intrinsic wave functions are of the Hartree-Fock-
Bogoliubov (HFB) mean-field type. The wave function
|φ(q)〉 is labeled by the components of the quadrupole

moment q2µ = 〈φ|Q̂2µ|φ〉 (µ = −2, . . . , 2). The wave
function can be expressed in terms of a suitable spher-
ical reference state |φ(0)〉 by means of the generalized
Thouless theorem

|φ(q)〉 = Nq exp(iẐ(q))|φ(0)〉. (4)

Here Ẑ(q) is a sum of 2-quasiparticle creation operators
and Nq is a normalization constant. Given the Bogoli-
ubov amplitudes U(q), V (q) and U(0), V (0) defining
|φ(q)〉 and |φ(0)〉 (see [3] for notation) the explicit form

of Ẑ(q) can be obtained [3, App. E.3]. However, we only

need to assume for the formal development below that Ẑ
can be expanded as a power series in q,

Ẑ(q) =
∑

µ

q2µ(−1)µẐ2,−µ + (5)

1

2

∑

µ,µ′

q2µq2µ′(−1)µ+µ′

Ẑ ′
2,−µ,−µ′ + · · ·

The phases are introduced for consistency with the fol-
lowing properties of the deformation parameters q2µ =

〈Q̂2µ〉 = 〈Q̂2µ〉∗ = (−1)µ〈Q̂2−µ〉 = (−1)µq2−µ. It

also implies that Ẑ
(1)+
2,µ = (−1)µẐ2,−µ and Ẑ

(2)+
2,µ,µ′ =

(−1)µ+µ′

Ẑ ′
2,−µ,−µ′ . The tensor character of the multi-

pole operators implies that the deformation parameters
of the rotated wave function |φ(q′2µ)〉 = R̂(Ω)|φ(q2µ)〉
also behave as the components of a spherical tensor
q′2µ =

∑

µ′ D2 ∗
µµ′(Ω)q2µ′ . To be consistent with this prop-

erty, the operator Ẑ2,µ must transform under rotations
as

R̂Ẑ2µR̂
+ =

∑

µ′

D2
µ′µ(Ω)Ẑ2µ′ . (6)

The corresponding transformation properties of the op-
erators Ẑ ′

2,−µ,−µ′ are given by

R̂Ẑ ′
2,µ,µ′R̂+ =

∑

νν′

D2
νµ(Ω)D2

ν′µ′(Ω)Ẑ ′
2,ν,ν′ (7)

This property makes it possible to decompose the oper-
ator as the direct sum of spherical tensors

Ẑ ′
2,µ,µ′ =

∑

JM

〈2µ2µ′|JM〉Ẑ ′
JM (8)

In the present example the range of the spherical tensors
Ẑ ′
JM is J = 0, . . . , 4. Using the same kind of arguments

it is easy to show that the Ẑand Ẑ ′ operators must be
even under parity. The generalization to an arbitrary
multipolarity λ is straightforward; we consider the case
λ = 3 in more detail below.

III. TRANSITION STRENGTHS IN THE

SPHERICAL LIMIT

Close to the spherical limit, the deformation parame-
ters of the intrinsic wave function are small and we can
expand |φ(q)〉 to second order in q2µ. The wave function
is then projected on good angular momentum using the
projection operator

P̂ J
MK =

2J + 1

8π2

∫

dΩDJ
MK(Ω)R̂Ω (9)

and the transformation properties of the Z operators.
The ground state |0+〉 is obtained by projecting with P̂ 0

00.
It is given up to second order in q2µ by

|0+〉 = N0

{

|φ(0)〉+ q22

(

[Ẑ ⊗ Ẑ]00 +
1

2
Ẑ ′
00

)

|φ(0)〉 + . . .

}

(10)
Here we have introduced the notation

q22 =
1√
5

∑

µ

q2µq2−µ(−1)2−µ (11)

and

[Ẑ ⊗ Ẑ]JM =
∑

µ,µ′

〈2µ2µ′|JM〉Ẑ2,µẐ2,µ′ (12)

Only the first term in Eq. (10), zeroth order in q2µ, will
be required in the derivations below. The projection on
J = 2 with the operator P̂ 2

MM gives the excited |2+M〉
state as

|2+M〉 = N2M

{

(−1)Mq2−M Ẑ2M |φ(0)〉+O(q22M )
}

(13)
with a normalization factor N2M given by

1 = |N2M |2
(

q22−M 〈φ(0)|Ẑ+
2M Ẑ2M |φ(0)〉 +O(q32M )

)

.

(14)
Since |φ(0)〉 is a spherical wave function, the state

Ẑ2M |φ(0)〉 has angular momentum 2 and the mean value
on the right hand side of the above equation is indepen-
dent of M . It will be written as 〈||Ẑ+

2 Ẑ2||〉 which is a
notation reminiscent of the reduced matrix elements of
the Wigner-Eckart theorem. With this definition we fi-
nally obtain the expression for the normalized excited
state wave function

|2+M〉 = Ẑ2M

〈||Ẑ+
2 Ẑ2||〉1/2

|φ(0)〉 +O(q2M ) (15)

The wave function |2+M〉 is well defined in the q2µ → 0
limit and is a linear combination of 2-quasiparticle ex-
citations of the spherical state. The expressions in Eqs.
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(10) and (15) can be now used in the defining formula
for the B(E2) transition strength

B(E2, 0+ → 2+) =
5

4π

∑

Mµ

|〈2+M |Q̂e
2µ|0+〉|2 (16)

where Q̂e
λµ is the standard electric multipole operator of

rank λ. Taking the expressions for the wave functions in
the small deformation limit, the matrix element becomes

〈φ(0)|(Ẑ2M )+Q̂e
2µ|φ(0)〉 = δµM 〈||Ẑ+

2 Q̂e
2||〉 (17)

The final expression for the B(E2) is

B(E2, 0+ → 2+)|Sph = 5
5

4π

|〈||Ẑ+
2 Q̂e

2||〉|2
〈||Ẑ+

2 Ẑ2||〉
(18)

The generalization to arbitrary multipolarity λ is

B(Eλ, 0+ → λπλ)|Sph = (2λ+ 1)
2λ+ 1

4π

|〈||Ẑ+
λ Q̂e

λ||〉|2
〈||Ẑ+

λ Ẑλ||〉
.

(19)
In contrast to the rotational formula, Eq. (18) is nonzero
in the spherical limit. This is a clear indication of the
inadequacy of the rotational formula for the evaluation
of transition strengths near sphericity.

The quantities entering Eqs. (18) and (19) can be cal-
culated in linear response theory, but it is rather easy
to calculate them using the intrinsic states of the HFB
theory. The only additional computational capability
needed is the evaluation of matrix elements between dif-
ferent intrinsic states. In particular, we make use of the
matrix element of quadrupole operator between deformed
and spherical states given by

〈φ(q2µ)|Q̂e
2ν |φ(0)〉 = −iq2ν〈||Ẑ+

2 Q̂e
2||〉+O(q22ν). (20)

To get the normalization in Eq. (18), we make use of the
derivatives of the overlap function. The second deriva-
tive of the overlap between two intrinsic wave functions
satisfies

γ =
∂2

∂q2ν∂q′2ν′

〈φ(q2ν)|φ(q′2ν′ )〉|q2q′2→0 = 〈||Ẑ+
2 Ẑ2||〉δνν′ .

(21)
The second derivative can be approximated by a finite
difference formula in the limit q2ν → 0

γ = lim
q2ν→0

(〈φ(q2ν )| − 〈φ(−q2ν)|) (|φ(q2ν)〉 − |φ(−q2ν)〉)
4q22ν

.

(22)
Using this result and Eq. (20) we obtain the following
result for the B(E2) in the spherical limit,

B(E2, 0+ → 2+)|Sph = (23)

5
5

4π
lim

q2ν→0

|〈φ(q2µ)|Q̂e
2ν |φ(0)〉|2

1
4 (2− 〈φ(q2ν )|φ(−q2ν)〉 − 〈φ(−q2ν)|φ(q2ν )〉)

.

It is worth remarking that this derivation is valid for any
value of ν and therefore the axial case corresponding to
ν = 0 can be used as well. This formula could be eas-
ily implemented in Wood-Saxon codes to obtain a quick
estimate of the spherical transition strength.

If this reasoning is applied to the octupole case, the
|3−M〉 wave function is given by the expression

|3−M〉 = Ẑ3M

〈||Ẑ+
3 Ẑ3||〉1/2

|φ(0)〉 +O(q3M ). (24)

This coincides with the negative parity projected wave
function |Ψ−(q3µ)〉 = N−(1− Π̂)|φ(q3µ)〉 up to order q3µ.
On the other hand, the |0+〉 wave function is given by
the positive parity projected wave function |Ψ+(q3µ)〉 =
N+(1+Π̂)|φ(q3µ)〉 = |φ(0)〉+O(q23µ). Taking into account
these quantities in the general definition of Eq. (19) we
arrive at the formula

B(E3, 0+ → 3−)|Sph ≈ 7
7

4π
|〈Ψ−(q30)|Q̂e

30|Ψ+(0)〉|2

(25)
Use of this formula of course requires that the q30 in the
negative parity wave function is small enough so that this
wave function is well approximated by Eq. (24). We used
this formula recently in a global study of octupole corre-
lations [8] to understand some discrepancies observed in
the comparison with experimental data.

We finish this section by mentioning that the previous
methodology can also be used with scalar operators like
the Hamiltonian. It is possible to obtain in this way
formulas for the energies of J 6= 0 states in the spherical
limit. This is briefly discussed in the appendix.

IV. COMPARISON WITH EXACT PROJECTED

TRANSITION STRENGTHS

A. Validity of rotational formula

In this section we compare the transition strengths
computed with exact angular momentum projection with
the rotational formula and our spherical limit. The mean-
field wave functions were calculated in the Hartree-Fock-
Bogoliubov approximation assuming axial symmetry and
obtaining a range of deformations by including an exter-
nal quadrupole field in the Hamiltonian. The range of
deformations β2 spans the interval −0.3 to 0.4 in steps of
0.02 and a finer mesh with a step size of 0.01 is used in
the -0.1 to 0.1 interval 2. For those intrinsic wave func-
tions the B(E2, 2+ → 0) transition strength has been
computed with the rotational formula and exact angular

2 We use the standard practical definition of β2, related to the

mass quadrupole moment Q2 by Q2 =

√

4π
5

3
4π

AR2
0β2 with R0 =

1.2A1/3 fm.
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momentum projection with |φ(β2)〉 as the intrinsic states
(see [9] for the relevant formulas). In Fig. 1 the ratio
B(E2)ROT/B(E2)PROJ is plotted as a function of β2 for
a sample of nuclei spanning a wide range of masses. As
expected, the ratio increases toward one as β2 becomes
large. However, the limit is only reached in medium and
heavy nuclei within our range of β2 values. For small
values of β2 the ratio is smaller than one and approaches
zero as β2 → 0. One can see that the β2 value by itself
does not provide a good indicator of the region of validity
of the rotational formula. To get a more robust criterion,
we go back to the basic assumption in deriving the ro-
tational formula, that the intrinsic states have vanishing
overlaps under finite rotations of the orientations. This
requires a large angular momentum content of the intrin-
sic states. The mean square angular momentum of the

intrinsic state 〈∆ ~J2〉 can be easily computed from the
HFB wave function, so we may consider that quantity
as a practical indicator. We note that overlap between
rotated wave functions approaches a Gaussian of width

1/〈∆ ~J2〉 [3]. This result suggests that the validity of the
rotational formula could be linked to specific values of

〈∆ ~J2〉. To explore this possibility we have determined

the value of 〈∆ ~J2〉 for the intrinsic configuration that
satisfies B(E2)PROJ/B(E2)ROT ≈ 3/4 (a value we have
chosen to establish the limits of validity of the rotational
formula) in each of the nuclei of our calculation. The val-
ues are shown as a histogram in Fig. 2. We see that the

values are strongly peaked around 〈∆ ~J2〉 ≈ 10~2. This
remarkable fact gives us an easily computed estimator of
the validity of the rotational formula for the B(E2) tran-
sition strength for any nucleus in the Chart of Nuclides.

B. Selected isotope and isotone chains

The behavior of the spherical B(E2) transition
strengths as a function of proton and neutron numbers
is analyzed next. In panel (a) of Fig. 3 the spherical
transition strengths of Eq. (18) are plotted as a func-
tion of neutron number for several isotopic chains. They
have been computed using the exact angular momentum
projected transition strengths for a deformation of the in-
trinsic state of β2 = 0.005. The values of those spherical
transition strengths are smaller than the typical values
of well deformed nuclei that can reach a few hundreds of
W.u. for heavy nuclei. The decrease with neutron num-
ber is rather weak except around magic neutron numbers
where a marked peak is observed. This is probably a con-
sequence of the lowering of the level density near magic
numbers. Surprisingly, a peak at the non-magic number
N = 40 is also seen. This behavior is not observed when
the quantity is plotted as a function of proton number
(see panel (b)). First the spherical transition strength in-
creases with increasing Z values and a reduction at those
values of Z corresponding to magic numbers is observed,
specially at Z=82. The values of B(E2)Sph expressed in

W.u. follow a trend with Z that is consistent with the
expected linear behavior in Z based on the scaling of the
mean value of proton’s quadrupole moment (remember
that W.u. scale like nuclear radius squared). A least
square fit to the computed values for over two hundred
nuclei yields the rule B(E2, 2 → 0)Sph = 0.85Z (W.u.).

C. An interpolating formula

Even better than a criterion for the validity of Eq. (3)
would be an interpolating formula that would also cap-
ture the transition region between spherical and strongly
deformed nuclei. To this end we consider parameterizing
the B(E2) by the function

B(E2, 2+ → 0)Int =
C0

1− exp[−(β2/β
(0)
2 )2]

β2
2 (26)

The parameter C0 is set to C0 = (9e2)/(80π2)Z2R4
0 to

recover the rotational formula at large deformation. The

parameter β
(0)
2 is set to a value that reproduces the spher-

ical limit,

β
(0) 2
2 =

1

C0
B(E2, 2+ → 0+)|Sph. (27)

The results obtained with Eq. (26) are plotted as dashed
lines in Fig. 1. Remarkably, for most of the cases and for
almost the whole range of β2 values both the exact and
the approximate results are indistinguishable. It seems
that our model can be used with confidence to compute

B(E2) values provided that the parameter β
(0)
2 can be

obtained.

D. Computing the spherical limit

An alternative formula for the evaluation of B(E2)Sph

was obtained in Eq. (23) in terms of simple overlaps with
the wave functions |φ(q2ν)〉. To test its applicability we
have performed calculations with our axially symmetric
wave functions as a function of β2 and some representa-
tive results are given and compared to the exact results
in Fig. 4. From the comparison we conclude that the for-
mula is accurate enough for β2 values up to 0.05 for light
nuclei and up to 0.01 for heavy ones and therefore can
be used for a computationally inexpensive estimation of
B(E2)Sph to be used in the model of Eq. (26) to compute

the β
(0)
2 parameter as β

(0)
2 = (B(E2)Sph/C0)

1/2
.

E. Octupole transitions

Another interesting case to study is the one of the
B(E3, 3− → 0) transition strengths. They are associ-
ated to the octupole degree of freedom, parameterized in
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Figure 1: The ratio B(E2)ROT/B(E2)PROJ is plotted as a function of the deformation parameter β2 for a range of nuclei. The
solid line connects calculated values. The dashed line is calculated from the interpolating formula, Eq. (26) and (27).

terms of the octupole moments q3µ. The rotational for-
mula, valid in the strong quadrupole deformation limit,
reads in this case B(E3, 3− → 0) = 1

4π |〈Qe
3〉|2. Con-

trary to the quadrupole deformation case, there is no
spontaneous parity symmetry breaking in most of the
nuclei of the Nuclide chart with the exception of a few
light Ra and Th isotopes and some rare earth nuclei like
neutron poor Ba isotopes. Therefore the mean value of
the octupole operator in the intrinsic state is zero. As
a consequence, theories dealing with dynamical correla-
tions are required in order to describe octupole correla-
tions and the associated B(E3). In those theories the
intrinsic octupole deformed state for the 0+ is different
from the one of the 3−. A typical example is that of

parity projection with restricted variation of the intrin-
sic state [8], that assigns the intrinsic states of the 0+

and 3− states to the ones producing the lowest parity
projected energies E±(q3) computed for axially symmet-
ric octupole constrained intrinsic states with octupole
deformation q30. In this theory, the rotational formula
restricted to axially symmetric configurations becomes

B(E3, 3− → 0+)|ROT = 1
4π |〈Ψ−(q

(−)
30 )|Q̂e

30|Ψ+(q
(+)
30 )〉|2

where now |Ψ±(q30)〉 are parity projected wave functions
obtained from an intrinsic state with octupole deforma-
tion q30. In order to study the validity of this formula
in the spherical limit, calculations as a function of the
quadrupole moment should be carried out. The difficulty
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Figure 2: Lowest 〈∆ ~J2〉 values of intrinsic wave functions that
meet our criterion for using the rotational formula (see text).

here is that there are two intrinsic states that potentially
have different quadrupole deformations and therefore a
study in terms of four variables (the quadrupole and oc-
tupole moment of the positive and negative parity in-
trinsic states) should be carried out for a series of iso-
topes. Instead of this long calculation we have just taken
the intrinsic states for positive and negative parity from
the results of [8] and computed the corresponding tran-
sition strengths with angular momentum projected wave
functions. The ratio B(E3, 3− → 0+)|PROJ/B(E3, 3− →
0+)|ROT is plotted in Fig. 5 as a function of the β2(+) de-
formation parameter of the positive parity intrinsic state.
Values corresponding to nuclei where the negative parity
quadrupole deformation parameter β2(−) differs signifi-
cantly from β2(+) (by ±0.1) have not been included in
the plot. This includes nuclei with strong shape coex-
istence where the ground state is, for instance, prolate
and the negative parity state is oblate. As a consequence
of the mismatch in quadrupole deformations the overlap
between the wave functions is very small and the corre-
sponding B(E3) are much smaller (and therefore more
dependent on little details) than for intrinsic states with
similar quadrupole deformation parameters.

The first noteworthy observation is that the transition
strengths computed with the projected angular momen-
tum wave functions are always greater or equal the values
obtained with the rotational formula. The results show
that for β2(+) values greater than 0.15 the rotational for-
mula works reasonably well within a factor of 2. Around
β2(+) = 0 the ratio lies in between 3 and 8 in good agree-
ment with the results of Eq. (25) that predict a factor
7 difference with the rotational formula in the spherical
limit. The main conclusion is that for quadrupole de-
formations smaller than β2 ≈ 0.15 the rotational formula
should not be trusted and its use avoided in relating tran-
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Figure 3: The spherical-limit transition strengths of Eq. (18)
are displayed for several isotopic chains as a function of neu-
tron number N in panel (a) and as a function of Z in panel
(b). The isotopic chains correspond to Z values between 12
and 94 in steps of 6 units. Strengths are given in Weisskopf
units, 1 W.u. = 5.94 × 10−6A4/3 e2b2.
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formation parameter of the positive parity intrinsic state.

sition strengths to intrinsic octupole deformation param-
eters. A typical example illustrating the general trend
is that of 208Pb where the rotational formula predicts a
B(E3) value of 7.1 W.u. whereas the transition strength
with the angular momentum projected wave functions is
23.1 W.u. which is in much better agreement with the
experimental value of 34 W.u.. Such enhancement of the
B(E3) transition probabilities for near spherical configu-
rations as compared to the rotational formula was already
noticed in [10, 11] for some spherical or near spherical nu-

clei.

V. CONCLUSIONS

The validity of the rotational formula for multipole
transition strengths is questioned for near spherical con-
figurations. A general formula to compute those transi-
tions in terms of intrinsic mean values and/or overlaps is
derived by exploiting the simple structure of angular mo-
mentum projected wave functions in the spherical limit.
An enhancement factor of 2λ + 1 for transitions of or-
der λ is obtained. Thorough numerical calculations of
B(E2) and B(E3) transition strengths show the validity
of the formulas obtained and establish criteria of validity
for the rotational approximation. For quadrupole transi-
tions, we proposed a simple model to compute the B(E2)
and found that it is quite accurate over the entire range
of deformation. The model contains two parameters that
are fixed from the calculated transition strengths at the
two limits, Eqs. (3) and (18). We have also established
a criteria to determine the validity of the rotational for-
mula that only requires the evaluation of a mean field

quantity: the fluctuation 〈∆ ~J2〉 should be larger than
∼ 10 for the rotational formula to be useful; it becomes

quite accurate above 〈∆ ~J2〉 > 15. For octupole transi-
tion strengths B(E3), the quadrupole deformation pa-
rameter β2 of the ground state has to be larger than 0.15
for the rotational formula to be valid and precautions are
in order for those cases of shape coexistence where the
quadrupole deformation parameters of positive an nega-
tive parity states differ considerably. For spherical con-
figurations the B(E3) can be up to a factor of 8 larger
than the values provided by the rotational formula.

A table is provided, as supplementary material, with

the spherical B(E2) strengths and the β
(0)
2 parameters

for 818 even-even nuclei computed with the Gogny D1S
interaction [12].
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Appendix A: Projected energies in the spherical

limit

The same arguments used in the previous section can
be used to compute the energy of the |2+M〉 as given by
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Eq. (15) in the spherical limit

E(2+)|Sph =
〈||Ẑ+

2 ĤẐ2||〉
〈||Ẑ+

2 Ẑ2||〉
+O(q22µ). (A1)

Defining

hqq′ =
∂2

∂q2ν∂q′2ν′

〈φ(q2µ)|Ĥ |φ(q′2µ′ )〉|q2q′2→0 (A2)

= 〈||Ẑ+
2 ĤẐ2||〉δνν′

as using Eq. (21) the excitation energy can be written as

E(2+)|Sph =
hqq′

γ
(A3)

an expression that coincides with twice the zero point
energy correction obtained in the Generator Coordinate
Method (GCM) for the quadrupole coordinate in the
harmonic limit of the Gaussian Overlap Approximation
(GOA) (See Eq. (10.136) of [3]). The energy of the 2+

state in the spherical limit is not given in calculations
with angular momentum projection as its evaluation in-
volves the ratio of two very small quantities which are
difficult to compute with the required accuracy [9].

[1] A. Bohr and B. Mottelson, Nuclear structure (World Sci-
entific, N.Y. 1998).

[2] H.J. Mang, Phys. Rep. 18, 325 (1975).
[3] P. Ring and P. Schuck, The Nuclear Many Body Problem

(Springer, Berlin 1980).
[4] S. Islam, H.J. Mang, and P. Ring, Nucl. Phys. A326, 169

(1979).
[5] P. Ring, A. Hayashi, K. Hara, H. Emling, and E. Grosse,

Phys. Lett. B110, 423 (1982).
[6] L. Prochniak and S. G. Rohozinski, J. Phys. G36, 123101

(2009); T. Niksic, Z.P. Li, D. Vretenar, L. Prochniak, J.
Meng, and P. Ring, Phys. Rev. C79, 034303 (2009); J.P.
Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire,
S. Peru, N. Pillet, and G.F. Bertsch, Phys. Rev. C81,
014303 (2010).

[7] L. Wilets and M. Jean, Phys. Rev. 102, 788 (1956).
[8] L.M. Robledo and G.F. Bertsch, Phys. Rev. C84, 054302

(2011).
[9] R.R. Rodriguez-Guzman, J.L Egido, and L.M. Robledo,

Nucl. Phys. A 709, 201 (2002).
[10] J. L. Egido, L.M. Robledo, and Y. Sun, Nucl. Phys.

A560, 253 (1993).
[11] J.L. Egido, V. Martin, L.M. Robledo, and Y. Sun, Phys.

Rev. C53, 2855 (1996).
[12] See Supplemental Material at [URL will be inserted by

published] for a table of the spherical B(E2) strengths

and the β
(0)
2 parameters for 818 even-even nuclei com-

puted with the Gogny D1S interaction.


