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We study recently proposed ultraviolet and infrared momentum regulators of the model spaces
formed by construction of a variational trial wavefunction which uses a complete set of many-body
basis states based upon three-dimensional harmonic oscillator (HO) functions. These model spaces
are defined by a truncation of the expansion characterized by a counting number (N ) and by the
intrinsic scale (~ω) of the HO basis; in short by the ordered pair (N , ~ω). In this study we choose
for N the truncation parameter Nmax related to the maximum number of oscillator quanta, above
the minimum configuration, kept in the model space. The ultraviolet (uv) momentum cutoff of the
continuum is readily mapped onto a defined uv cutoff in this finite model space, but there are two
proposed definitions of the infrared (ir) momentum cutoff inherent in a finite-dimensional HO basis.
One definition is based upon the lowest momentum difference given by ~ω itself and the other upon
the infrared momentum which corresponds to the maximal radial extent used to encompass the
many-body system in coordinate space. Extending both the uv cutoff to infinity and the ir cutoff
to zero is prescribed for a converged calculation. We calculate the ground state energy of light
nuclei with “bare” and “soft” nucleon-nucleon (NN) interactions. By doing so, we investigate the
behaviors of the uv and ir regulators of model spaces used to describe 2H, 3H, 4He and 6He with NN
potentials Idaho N3LO and JISP16. We establish practical procedures which utilize these regulators
to obtain the extrapolated result from sequences of calculations with model spaces characterized by
(N , ~ω).

PACS numbers: 21.60.De, 21.45.-v, 13.75.Cs, 21.30.-x

I. INTRODUCTION

It has long been suggested that the three-dimensional
(3d) harmonic oscillator (HO) provides a suitable expan-
sion basis for a straightforward variational calculation of
the properties of light nuclei. In a traditional variational
calculation, a trial wavefunction is selected having a form
which aims to exploit all of the important features of the
Hamiltonian under investigation, and its parameters are
adjusted to minimize the energy of the few-body system
[1]. It is appealing to generate a trial wavefunction in a
completely systematic manner without regard for the de-
tails of the Hamiltonian under consideration other than
the implementation of exact symmetries. The goal, then,
is to define a complete set of states for a few-body sys-
tem and to construct and diagonalize the Hamiltonian
matrix in a truncated basis of these states. The result of
the diagonalization is an upper bound to the exact eigen-
value of the complete set. With this method, in contrast
to that of a pre-chosen trial wavefunction expected to
capture the physics, a reliable estimate of the accuracy
attained can be made with the variational upper bound
[2] provided that the trial function is constructed using
the terms of a systematic expansion set and convergence
of the diagonalization result (such as a ground-state en-
ergy) is observed as the basis is increased.

The algebra appropriate to generating and using trial
wavefunctions, based on 3d HO eigenfunctions, has been
given by Moshinsky [3] and others [4]. The trial functions
take the form of a finite linear expansion in a set of known

functions

ΨT =
∑
ν

a(N )
ν hν

where a
(N )
ν are the parameters to be varied and hν are

many-body states based on a summation over products
of HO functions. The advantage of a HO basis is that it
is relatively straightforward to construct a complete set
of few-body functions of appropriate angular momentum
and symmetry; examples are given in Refs. [4, 5]. The
trial function must have a definite symmetry reflecting
the composition of the bound state: fermions or bosons.
This trial function ΨT must be quadratically integrable
and the expectation value of the Hamiltonian must be
finite. The expansion coefficients (known as generalized
Fourier coefficients in the mathematical literature) de-
pend on the upper limit (such as an N defined in terms
of total oscillator quanta) and are obtained by minimiz-
ing the expectation value of the Hamiltonian in this basis.

Treating the coefficients a
(N )
ν as variational parameters

in the Rayleigh quotient [6], one performs the variation
by diagonalizing the many-body Hamiltonian in this ba-
sis. This is an eigenvalue problem so the minimum with
respect to the vector of expansion coefficients always ex-
ists and one obtains a bound on the lowest eigenvalue.
The basis functions can also depend upon a parameter
(such as the harmonic oscillator energy ~ω which sets a
scale) that then becomes a non-linear variational param-
eter additional to the linear expansion coefficients. Such
variational approaches were the standard for calculating
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properties of the trinucleon in the decades following the
1960s [5, 7] and have also been applied to three- and
four-body alpha particle models of light nuclei and hy-
pernuclei, see [8–10]). No-core shell model (NCSM) cal-
culations and no-core full configuration (NCFC) calcula-
tions with a “bare” potential are more recent examples
of a variational calculation with a linear trial wave func-
tion. Here the basis truncation parameter N and the HO
energy parameter ~ω are variational parameters [11–13].

In such a calculation one would like not only to ob-
tain rapid convergence of the eigenvalue and wavefunc-
tion but one would like this convergence to be to the
exact solution. The functional analysis theorems needed
for the discussion of the convergence properties of a lin-
ear trial function are displayed in Appendix A of the ar-
ticle “Variational Techniques in the Nuclear Three-Body
Problem” [2]. We quote from Section 2.3.5 of the ar-
ticle: “It is shown there [Appendix A] that, provided
the set of expansion functions is suitably complete [i.e.
complete in the energy norm], one will eventually ob-
tain convergence [of the lowest approximate eigenvalue]
to the exact value [by increasing the basis]. Moreover,
if the set is constructed systematically, then in general
one can expect the convergence to be smooth; indeed, we
can often predict the rate at which the convergence will
occur as we shall discuss... In these circumstances, the
numerical convergence of the upper bound can provide
a useful estimate of the accuracy of the calculation, and
one which is in practice very much more realistic than
that derived from the direct lower bound calculation.”
With a linear trial function, the expectation value W(N )
of any bounded operator W will converge provided that
the energy converges; and one may estimate the accu-
racy obtained by watching the numerical convergence of
W(N ) with increasing N [14]. Such examinations (albeit
for rather small basis size compared to those used in this
study) are displayed in Ref. [15].

The rate of convergence and the number of terms
needed for this eventual asymptotic rate to “start to be-
have” is of great practical importance for extrapolation
[16]. This question is discussed at great length by Delves
[2] with general theorems and numerical examples for
smooth (e.g. attractive Gaussian which is finite every-
where) and non-smooth (e.g. attractive Yukawa which
has a singularity at the origin) local two-body poten-
tials and a variety of trial functions. As an example,
Delves derives for the harmonic oscillator basis a conver-
gence rate according to the inverse squared power of N
for “nonsmooth” potentials such as a Yukawa; a conver-
gence rate expected to be independent of the number of
particles. He then demonstrates that the binding ener-
gies in the truncated expansions of Ref. [5] do follow this
power law for both the deuteron of the Reid soft-core
potential [17] (the archetype of a sum of Yukawas with
strong high-momentum components) and the deuteron
and triton of the (separable) Yamaguchi potential [18].
This is very slow convergence compared to other sets
of expansion functions popular in atomic and molecu-

lar physics and physical chemistry; see Table V of Ref.
[2]. Slow convergence hinders progress either because
the amount of computation needed to reach a desired
accuracy is prohibitive, or because too many arithmetic
operations cause excessive round off error [10, 15, 19]. In-
deed, the slow convergence of systematic expansions was
likely a contributing factor to the replacement of varia-
tional methods by finite difference methods (based upon
the Faddeev decomposition) in the 1970s to treat the
three-nucleon bound state problem.

In a parallel application of functional analysis to a vari-
ational calculation by expansion in a basis, specific the-
orems about the asymptotic rate of convergence for the
three-body bound state were developed by Schneider for
a general basis [20]. The conclusion was that “In any
particular problem the precise rate will depend on the
exact form of the Hamiltonian and the operators [which
determine the set of basis states] chosen”. The practi-
cal application of that paper was to the hyperspherical
harmonics (HH) basis using simple schematic two-body
potentials. The asymptotic rate of convergence of the
three-body binding energy was suggested to converge as
the inverse fourth power of the maximal grand angular
quantum number K for a Yukawa potential and expo-
nentially fast in K for a Gaussian potential [20]. These
theorems were illustrated by explicit HH calculations of
the 1970s [21]. The general expectations of these theo-
rems continue to backstop extrapolations in contempo-
rary few-body calculations with modern potentials us-
ing this HH method [22–24]. As suggested in Ref. [20],
the rate of convergence does not depend on the num-
ber of particles in the bound state. (This analysis was
for three- and four -body systems which have very high
first breakup thresholds-the rate of convergence is, how-
ever, expected to depend on the first breakup threshold of
heavier nuclei). Indeed, contemporary HH analyses of the
four-nucleon bound state bear out this general expecta-
tion, although additional criteria for selecting a reduced
basis have to be specified, and the authors of [25] demon-
strate that the inverse power law in K can be higher than
four for contemporary “nonsmooth” two- and three-body
potentials.

We are unaware of an application of the theorems
proved by Schneider [20] to the HO basis. However,
a very up-to-date discussion of the full configuration-
interaction (CI) method in a HO basis does analyze con-
vergence and gives practical convergence estimates for
many-electron systems trapped in a harmonic oscillator
(a typical model for a quantum dot) [26]. A correspond-
ing investigation of light nuclei with another CI method,
the NCFC approach [12], provides consistent and tested
uncertainty estimates for ground state energies. The
CI method consists of approximating eigenvalues of the
many-body Hamiltonian with those obtained by project-
ing the problem onto a finite dimensional subspace of the
full Hilbert space and diagonalizing the Hamiltonian in
this model space [27]. Mathematically, this is analogous
to a Ritz-Galerkin method on the model space spanned
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by the basis functions and the analysis of the energy er-
ror is equivalent to analysis of the corresponding Raleigh-
Ritz calculation sketched earlier. The projection can ei-
ther take the form of an N defined in terms of total oscil-
lator quanta (called “total-energy-cut space” ) or in the
single-particle quantum numbers (called “single-particle-
cut space”). The total-energy-cut space is used in this
study (see Section II) and the latter single-particle-cut
space lends itself more readily to approximating a full
CI calculation by a coupled cluster approach. The CI
approach becomes, in principle, exact as N → ∞ with
either choice of N . For this reason the CI approach with
HO basis functions is sometimes called called “exact di-
agonalization”. A succinct statement of the equivalence
of large-scale diagonalization and the Rayleigh-Ritz vari-
ational method can be found in the Introduction of [28]
and the full discussion in the monograph [29].

As in the nuclear examples [2, 20], the asymptotic con-
vergence of the lowest eigenfunction of a quantum dot in
the “total-energy-cut” model space is slow and it is slow
for the analogous reason: the singularity of the Coulomb
interaction at those points where two or more interpar-
ticle distances are zero (the Kato cusp condition on the
many-body wavefunction [30]). The convergence rate is
dominated by the singularities in the analytic structure
of the solution [31]: it takes many HO eigenfunctions
to approximate the singularities of the many-body wave-
function due to the two-body interaction. The asymp-
totic convergence of the nuclear structure problem is
not changed by including Jastrow type two-body corre-
lation functions in the trial wavefunction [15]. The onset
of asymptotic convergence occurs, however, at a much
smaller value of an N than for the case without correla-
tion functions and the convergence is to the same final
value of the lowest variational energy [7, 10, 15]. There-
fore much less computational resources are required to
get the answer.

With the HO basis in the nuclear structure problem,
convergence has been discussed, in practice, with an em-
phasis on obtaining those parameters which appear lin-
early in the trial function (i.e. convergence with N ).
Sometimes for each N the non-linear parameter ~ω is
varied to obtain the minimal energy [15] and then the
convergence with N is examined. Sometimes ~ω is sim-
ply fixed at a value which gives the fastest convergence
in N [5]. More recently, in the context of no-core shell
model (NCSM) calculations and no-core full configura-
tion (NCFC) calculations with smooth ‘bare’ potentials,
one sees figures or tables in which one of the variational
variables of (N , ~ω) is held fixed and the variational en-
ergy displayed with respect to the other. This practice
is helpful for the following reason. Optimum values for
the parameters that enter linearly can be obtained by
solving a matrix eigenvalue problem. But the optimum
value of the nonlinear parameter must in principle be
obtained by, for example, numerical minimization which
could be difficult as the algorithm could easily miss the
global minimum and get trapped in a local minima. The

plots one sees in the nuclear physics literature show that
1) for small bases a change in the non-linear parameter
~ω can make a dramatic change in the variational esti-
mate of the ground state energy and 2) the dependence
on the nonlinear parameter decreases as the basis size
increases. These observations seem to vitiate the need
for an extensive numerical minimization by varying ~ω
[32]. These observations have inspired definite (and dif-
fering) prescriptions for convergence and extrapolation.
It is the purpose of this study to suggest that effective
field theory (EFT) concepts of ultraviolet (uv) and in-
frared (ir) cutoffs provide an alternative useful way to
think about convergence and a physically motivated pre-
scription for extrapolation of (necessarily truncated) re-
sults in the model space (elucidated in Section 2) of the
trial wavefunction to the full Hilbert space.

The paper is organized as follows. In section 2 we
briefly describe expansion schemes in HO functions. This
expansion technique still retains the variational character
described above. We employ realistic smooth nucleon-
nucleon potentials (JISP16 [33] and Idaho N3LO [34])
which have also been used by other authors without
renormalization for A ≤ 6 (Ref. [12] and Ref. [11] re-
spectively). None of the discussion in section 2 is new,
but it paves the way for section 3 in which we suggest
a convergence analysis based upon the uv and ir cutoffs
introduced in Ref. [35] in the context of an EFT frame-
work. Section 4 is devoted to tests and examples of this
new convergence scheme and section 5 contains a sum-
mary and outlook.

II. EXPANSION IN A FINITE BASIS OF
HARMONIC OSCILLATOR FUNCTIONS

Here we indicate the workings of the finite HO basis
calculations performed and refer the reader to a very use-
ful review article [13] on the no-core shell model (NCSM)
for further details and references to the literature. In
these no-core approaches, all the nucleons are considered
active, so there is no inert core as in standard shell model
calculations; hence the “no-core” in the name. NN po-
tentials with strong short-range repulsions and the con-
comitant high-momentum components do not lend them-
selves well to a HO basis expansion, as was well appre-
ciated fifty years ago [5]. A “renormalization” of the
Hamiltonian is often made by constructing an effective
interaction (dependent upon the basis cutoff N and upon
~ω) by means of a unitary transformation due to Lee and
Suzuki [13]. This procedure generates effective many-
body interactions that are often neglected [36]. This
neglect destroys the variational nature of a NCSM cal-
culation. We instead choose “soft” potentials (JISP16
[33] and Idaho N3LO [34]) which have also been used by
other authors without renormalization for A ≤ 6 (Ref.
[12] and Ref. [11] respectively), so that we can study
convergence and extrapolation issues directly within a
variational framework. NCSM calculations with these
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potentials are variational with the HO energy parameter
~ω and the basis truncation parameter N as variational
parameters [13]. Nomenclature has diverged somewhat
since the advent of these smooth but still realistic po-
tentials into a framework (NCSM) which originally in-
cluded renormalization of the NN potential. Sometimes
one reads about “NCSM calculations with unmodified
or ‘bare’ potentials” [11, 13], or “the no-core full con-
figuration (NCFC) method” [12], or simply “we use the
basis of the no-core shell model (NCSM)” [37]. All these
phrases refer to retaining the original interaction (with-
out renormalization) within the model space. Nor do we
renormalize the interaction in our study.

To study these convergence issues we mostly employ
the Idaho N3LO NN potential which is inspired by chi-
ral perturbation theory and fits the two body data quite
well [34]. It is composed of contact terms and irreducible
pion-exchange expressions multiplied by a regulator func-
tion designed to smoothly cut off high-momentum com-
ponents in accordance with the low-momentum expan-
sion idea of chiral perturbation theory. The version we
use has the high-momentum cutoff of the regulator set
at 500 MeV/c. The Idaho N3LO potential is a rather
soft one, with heavily reduced high-momentum compo-
nents as compared to earlier realistic NN potentials with
a strongly repulsive core. Alternatively, in coordinate
space, the Yukawa singularity at the origin is regulated
away so that this potential would be considered “smooth”
by Delves and Schneider and the convergence in N would
be expected to be exponential [2, 20]. Even without the
construction of an effective interaction, convergence with
the Idaho N3LO NN potential is exponential, as numer-
ous studies have shown [11, 37]. Nevertheless, it has been
useful to simplify and reduce the high-momentum com-
ponents of this and other phenomenological potentials
further by means of the similarity renormalization group
evolution [37]. Such a softening transformation is imper-
ative for heaver nuclei (A > 6) and/or if three-nucleon
forces are included in the Hamiltonian [37–39].

The second NN interaction we employ is JISP16 [33],
a nonlocal separable potential whose form factors are
HO wavefunctions. It is constructed by means of the J-
matrix version of inverse scattering theory. The matrix
of the NN potential in the oscillator basis is obtained for
each partial wave independently, so theNN interaction is
a set of potential matrices for different partial waves [40].
These matrices reproduce the experimental NN scatter-
ing data and properties of the deuteron to high preci-
sion. Once the inherent ambiguity of this method is elim-
inated by a plausible phenomenological ansatz, the scat-
tering wavefunctions are very close to the ones provided
by meson exchange “second-generation” NN potentials
[41]. As for the name of this potential, JISP refers to J-
matrix Inverse Scattering Potential and version “16” has
had phase-equivalent unitary transformations applied to
selected partial waves so that the resulting interaction
continues to describe two-body data well. Selected par-
tial waves are tuned to provide good descriptions of 3H

binding, the low-lying spectra of 6Li and the binding en-
ergy of 16O [33]. The virtue of this potential is that it is
also “soft”. Although nonlocal and not really fitting into
Delves classification, it is not surprising that variational
calculations with this NN interaction also converge ex-
ponentially with N [12] since the HO form factors of this
separable potential are gaussians multiplied by polyno-
mials in the radial coordinate. (It is noteworthy that
JISP16 in the HH basis also converges exponentially in
K [42], as would be expected by Schneider [20]).

We use a HO basis that allows preservation of transla-
tional invariance of the nuclear self-bound system. Trans-
lational invariance is automatic if the radial HO wave-
function depends on relative, or Jacobi, coordinates as
was done in Refs. [5, 7–10]. Antisymmetrization (or
symmetrization for the alpha particle models of [7–10])
of the basis is necessary and described in Refs. [13] and
[43]. Antisymmetrization in a Jacobi basis becomes an-
alytically and computationally forbidding as the number
of nucleons increases beyond four or five. For this rea-
son these calculations are alternatively made with anti-
symmetrized wavefunctions constructed as Slater deter-
minants of single-nucleon wavefunctions depending on
single-nucleon coordinates. This choice loses transla-
tional invariance since, in effect, one has defined a point
in space from which all single-particle coordinates are
defined. Translational invariance is restored by using
the “Lawson method” [44] to be described shortly. The
gain of this choice is that one can use technology de-
veloped and/or adapted for NCSM, such as the shell
model code ANTOINE [45], the parallel-processor codes
“Many-Fermion Dynamics — nuclear” (MFDn) [46] and
the No-Core Shell Model Slater Determinant Code [47].
These codes set up the many-body basis space, evalu-
ate the many-body Hamiltonian matrix, obtain the low-
lying eigenvalues and eigenvectors using the Lanczos al-
gorithm, and evaluate a suite of expectation values using
the eigenvectors.

The Slater determinant basis is often defined in the
“m-scheme” where each HO single-particle state has its
orbital and spin angular momenta coupled to good total
angular momentum, j, and its magnetic projection, m.
The many-body basis states for a given total number of
nucleons A are Slater determinants in this HO basis and
are limited by the imposed symmetries — parity, charge
and total angular momentum projection (M), as well as
by N . In the natural parity cases for even nuclei M = 0,
enables the simultaneous calculation of the entire low-
lying spectrum for that parity and the chosen N .

The use of this specially constructed Slater determi-
nant basis results in eigenstates of a translationally in-
variant Hamiltonian (supplemented by a suitable con-
straint term) that factorize as products of a wavefunction
depending on relative coordinates and a wavefunction de-
pending on the CM coordinates. This is true for a par-
ticular truncation of the basis: a maximum of the sum of
all HO excitations, i.e.

∑A
i=1(2ni + li) ≤ Ntotmax, where

ni, li are the HO quantum numbers corresponding to the
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harmonic oscillators associated with the single-nucleon
coordinates and Ntotmax is an example of the generic N
of the Introduction. Note that this truncation is on the
level of total energy quanta (“total-energy-cut space”),
which is different from the CI calculations used in atomic
and molecular problems, which are often truncated on the
single-particle level (“single-particle-cut space”).

The precise method of achieving the factorization of
the CM and intrinsic components of the many-body
wavefunction follows a standard approach, sometimes re-
ferred to as the “Lawson method” [44]. In this method,
one selects the many-body basis space in the manner
described above with N = Ntotmax and adds a La-
grange multiplier term to the many-body Hamiltonian
β(HCM − 3

2~ω) where HCM is the HO Hamiltonian for
the CM motion. With β chosen positive (10 is a typ-
ical value), one separates the states of lowest CM mo-
tion (0S 1

2
) from the states with excited CM motion by a

scale of order β~ω. The resulting low-lying states have
wavefunctions that then have the desired factorized form.
We checked, for the two cases A = 3 and A = 4, that
the codes manyeff [43] which use Jacobi coordinates and
No-Core Shell Model Slater Determinant Code [47] based
upon single-nucleon coordinates gave the same eigenval-
ues for the same values of N = Ntotmax and ~ω, indicat-
ing that the Lawson method is satisfactory for the cal-
culations in single-particle coordinates. Some details of
this check will be given in Section IV which gives results.

Now we continue the discussion of the (total-energy-
cut space) truncation parameter N of the HO basis ex-
pansion of the many-body system. Usually, instead of
truncating the sum of all HO excitations N = Ntotmax ≥∑A
i=1(2ni + li), one introduces the truncation parame-

ter Nmax. Nmax is the maximum number of oscillator
quanta shared by all nucleons above the lowest HO con-
figuration allowed by the Pauli-exclusion principle for the
chosen nucleus. We label the HO shells by energy quanta
N = (2n + l), where n = 0, 1, 2, . . . and l = 0, 1, 2, . . ..
Thus, for example, in 6He a truncation at Nmax = 4
would allow one neutron to occupy the N = 5 HO
shell, the other “valence” neutron would remain in the
N = 1 shell, and the remaining 4 nucleons remain in
the (filled) first shell labeled by N = 0. Alternatively,
the two valence neutrons could occupy the N = 3 shell
and the remaining 4 nucleons stay in the N = 0 shell.
In both cases (and for all other combinatorics) in 6He
Nmax = Ntotmax − 2. Similarly for other p-shell nuclei
one can work out that Ntotmax and Nmax differ, e.g. for
12C, Nmax = Ntotmax − 8, etc. However, for the s-shell
nuclei 2H, 3H,3He, and 4He Nmax = Ntotmax.

Later on we will want to identify parameters of the
model space (with the dimensions of momenta) which re-
fer, not to the many-body system, but to the properties
of the HO single-particle states. If the highest HO single-
particle (SP) state of the lowest HO configuration allowed
by the Pauli-exclusion principle has N0 HO quanta, then
Nmax+N0 = N . Since Nmax is the maximum of the total
HO quanta above the minimal HO configuration, we can

have at most one nucleon in such a highest HO SP state
with N quanta. Note that Nmax characterizes the many-
body basis space, whereas N is a label of the correspond-
ing highest single-particle orbital. To find the value of the
single-particle label N , we need to determine the high-
est occupied SP state in a given Nmax truncation. One
gives all the available Nmax quanta to a single nucleon.
Consider again a 6He basis truncated at Nmax = 4; both
valence neutrons occupy the 0p (N0 = 1) shell in the low-
est energy many-body configuration. Assigning a single
neutron the entire Nmax = 4 quanta means that, as be-
fore, the highest occupied SP state is in the N = 5 shell.
On the other hand, the highest occupied orbital of the
closed s-shell nucleus 4He has N0 = 0 so that N = Nmax.

III. CONVERGENCE IN UV AND IR
VARIABLES

We begin by thinking of the finite single-particle
basis space defined by N and ~ω as a model space
characterized by two momenta associated with the ba-
sis functions themselves. In the HO basis, we define
Λ =

√
mN (N + 3/2)~ω as the momentum (in units of

MeV/c) associated with the energy of the highest HO
level. The nucleon mass is mN = 938.92 MeV. To ar-
rive at this definition one applies the virial theorem to
this highest HO level to establish kinetic energy as one
half the total energy (i.e., (N + 3/2)~ω ) and solves the
non-relativistic dispersion relation for Λ. This sets one
of the two cutoffs for the model space of a calculation.
Energy, momentum and length scales are related, accord-
ing to Heisenberg’s uncertainty principle. The higher the
energy or momentum scale we may reach, the lower the
length scale we may probe. Thus, the usual definition
of an ultraviolet cutoff Λ in the continuum has been ex-
tended to discrete HO states. It is then quite natural
to interpret the behavior of the variational energy of the
system with addition of more basis states as the behav-
ior of this observable with the variation of the ultraviolet
cutoff Λ. Above a certain value of Λ one expects this
running of the observable with Λ to “start to behave”
so that this behavior can be used to extrapolate to the
exact answer. However, the model space has another
scale which motivates a second cutoff; the energy scale
of ~ω itself. Because the energy levels of a particle in a
HO potential are quantized in units of ~ω, the minimum
allowed momentum difference between single-particle or-
bitals is λ =

√
mN~ω and that has been taken to be an

infrared cutoff [35]. That is, there is a low-momentum
cutoff λ = ~/b corresponding to the minimal accessible

non-zero momentum (here b =
√

~
mNω

plays the role of a

characteristic length of the HO potential and basis func-
tions). Note however that there is no external confining
HO potential in place. Instead the only ~ω dependence
is due to the scale parameter of the underlying HO basis.
In [35] the influence of the infrared cutoff is removed by
extrapolating to the continuum limit, where ~ω → 0 with
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N → ∞ so that Λ is fixed. Clearly, one cannot achieve
both the ultraviolet limit and the infrared limit by tak-
ing ~ω to zero in a fixed-N model space as this procedure
takes the ultraviolet cutoff to zero.

The calculated energies of a many-body system in the
truncated model space will differ from those calculated
as the basis size increases without limit (N →∞). This
is because the system is in effect confined within a fi-
nite (coordinate space) volume characterized by the fi-
nite value of b intrinsic to the HO basis. The “walls” of
the volume confining the interacting system spread apart
and the volume increases to the infinite limit as λ → 0
and b → ∞ with Λ held fixed. Thus it is as necessary
to extrapolate the low momentum results obtained with
a truncated basis with a given b or ~ω as it is to ensure
that the ultraviolet cutoff is high enough for a converged
result. These energy level shifts in a large enclosure have
long been studied [48]; most recently with the explicit
EFT calculation of a triton in a cubic box allowing the
edge lengths to become large (and the associated ir cutoff
due to momentum quantization in the box going towards
zero) [49]. There it was shown that as long as the infrared
cutoff was small compared to the ultraviolet momentum
cutoff appearing in the “pionless” EFT, the ultraviolet
behavior of the triton amplitudes was unaffected by the
finite volume. More importantly, from our point of view
of desiring extrapolation guidance, this result means that
calculations in a finite volume can confidently be applied
to the infinite volume (or complete model space) limit.
Similar conclusions can be drawn from the ongoing stud-
ies of systems of two and three nucleons trapped in a HO
potential with interactions from pionless EFT combined
with this definition of the infrared cutoff (λ =

√
mN~ω),

and this procedure for its removal: λ → 0 with N → ∞
so that Λ is fixed [50].

Other studies define the ir cutoff as the infrared mo-
mentum which corresponds to the maximal radial extent
needed to encompass the many-body system we are at-
tempting to describe by the finite basis space (or model
space). These studies find it natural to define the ir

cutoff by λsc =
√

(mN~ω)/(N + 3/2) [37, 51]. Note
that λsc is the inverse of the root-mean-square (rms)
radius of the highest single-particle state in the basis;
〈r2〉1/2 = b

√
N + 3/2. We distinguish the two defini-

tions by denoting the first (historically) definition by λ
and the second definition by λsc because of its scaling
properties demonstrated in the next Section. This latter
ir variable λsc clearly goes to zero either i) as ~ω goes to
zero at fixed N or ii) as N becomes large for fixed ~ω.
It is the second limit which corresponds to the conver-
gence theorems of the Introduction. In this latter limit
λsc → 0. The convergence theorems of the Introduction
are equally well satisfied by taking the ir cutoff defined
by λ to zero at constant Λ because fixing Λ demands that
N be simultaneously taken to infinity.

The extension of the continuum ultraviolet cutoff to
the discrete (and truncated) HO basis with the definition

Λ =
√
mN (N + 3/2)~ω seems unexceptional. An equally

plausible alternative uv cutoff differs from Λ by only a
scale change [52], in striking contrast to the alternate
definitions of the ir cutoff which have different functional
forms. It is a goal of this work to determine the usefulness
of the two rival definitions-λ and λsc-of the infrared reg-
ulator (let us call it λir) of the model space with parame-
ters (N , ~ω). From the beginning, it is clear that increas-
ing Λ by increasing ~ω in a fixed-N model space is not
sufficient; doing so increases both of the putative infrared
cutoffs as well because Λ = λ

√
N + 3/2 = λsc(N + 3/2)

and one continues to effectively calculate in an effective
confining volume which is getting smaller rather than
larger. This confining volume is certainly removed by
letting N →∞, at fixed ~ω, because HO functions form
a basis of the complete space. In addition, takingN →∞
simultaneously removes the uv cutoff defined by Λ and
the ir cutoff defined either by λ or λsc. But increasing N
without limit is computationally prohibitive. Thus there
is a practical issue to address: whether one must take the
ir cutoff to zero by taking ~ω → 0 at fixed Λ (λir ≡ λ
definition) or whether it is sufficient to allow ~ω be some
larger value, perhaps near that used in traditional shell-
model calculations, and let an increasing N take λir to
small values, as it does with the definition λir ≡ λsc.

We are interested in the limit of large Λ and small
λir (see Figure 1). If one can establish that the cutoff
dependences of the model space decrease with increasing
Λ and decreasing λir then one can i) remove the influence
of the ir cutoff by extrapolating to the infrared limit for
selected uv-cutoff values chosen to be above the uv nature
of the potential and ii) if needed, extrapolate to the uv
limit for selected ir cutoff values chosen by the size of the
system modeled. We will show that such a program is
possible.

IV. RESULTS AND DISCUSSION

We first display in a series of figures the running of
the ground-state eigenvalue of a single nucleus, 3H, on
the truncated HO basis by holding one cutoff of (Λ, λir)
fixed and letting the other vary. Then we show that the
trends noted hold for other light nuclei within the range
of our computer resources. Finally we discuss extrapola-
tion procedures.

These 3H calculations were made for N ≤ 36 and
values of ~ω as appropriate for the chosen cutoff value.
For N ≥ 16, we used the code manyeff [43] which uses
Jacobi coordinates and the No-Core Shell Model Slater
Determinant Code [47] which use single-particle coordi-
nates for smaller N . We checked that the codes gave the
same eigenvalues for overlapping values of N , indicat-
ing that the Lawson method satisfactorily restores trans-
lational invariance to ground-state energy calculations
in single-particle coordinates. For example, the ground
state energy of 3H with the Idaho N3LO NN potential at
Nmax = 16 and ~ω = 49.2968 MeV is (−7.3378,−7.3385)
MeV for the (Jacobi, single-particle) basis choice.



7

  

 Ultraviolet cutoff

 Infrared cutoff

M
o

m
en

tu
m

 s
ca

le
 in

 M
eV

/c

Content of the nucleus investigated by 
"ab-initio'' no-core shell model methods 

Excluded due to finite N  
(due to lack of computer 
power)

Excluded due to finite N 
(due to lack of computer 
power)

Low-energy 
physics content of 
the nucleus

FIG. 1: (Color online) Schematic view of a finite model space (limited by the basis truncation parameter N as described in the
text), in which the uv and ir momentum cutoffs are arbitrary. To reach the full many-body Hilbert space, symbolized by the
complete oval, one needs to let the uv cutoff →∞ and the ir cutoff → 0.

In Figure 2 and the following figures, |∆E/E| is de-
fined as |(E(Λ, λir)−E)/E| where E reflects a consensus
ground-state energy from benchmark calculations with
this NN potential, this nucleus, and different few-body
methods. The accepted value for the ground state of 3H
with this potential is −7.855 MeV from a 34 channel Fad-
deev calculation [34], −7.854 MeV from a hyperspherical
harmonics expansion [53], and −7.85(1) from a NCSM
calculation [11]. All |∆E/E|, starting with Figure 2, will
follow some trajectory (trajectory’s shape not predicted).
For the choice of Figure 2, λir ≡ λ =

√
mN~ω, |∆E/E|

decreases exponentially at fixed λ, as Λ increases for the
values of Λ achieved in this study. Fixed ~ω implies N
alone increases to drive Λ→∞, λsc → 0 simultaneously.

The linear fit on a semi-log plot is extracted from the
data. This fit implies |∆E/E| ∼ B exp(−Λ/Λref (λ)),
where B is approximately constant and cΛref (λ) ∼ 30~ω
for ~ω > 45 MeV. Note this is Λref (λ) and not Λref (λsc),
i.e. with fixed λ, Λref is a constant. On the other hand,
for fixed Λ, a smaller λ implies a smaller |∆E/E| since
more of the infrared region is included in the calculation.

In Figure 3 we hold fixed the uv cutoff of (Λ, λir) to

display the running of |∆E/E| upon the suggested ir cut-
off λ. For fixed λ, a larger Λ implies a smaller |∆E/E|
since more of the uv region is included in the calcula-
tion. But we immediately see a qualitative change in the
curves between the transition Λ = 700 MeV and Λ = 800
MeV; for smaller Λ, |∆E/E| does not go to zero as the
ir cutoff is lowered and more of the infrared region is
included in the calculation. This behavior suggests that
|∆E/E| does not go to zero unless Λ ≥ ΛNN , where ΛNN

is some uv regulator scale of the NN interaction itself.
From this figure one estimates ΛNN ∼ 800 MeV/c for
the Idaho N3LO interaction.

Yet the description of this interaction in the literature
says that the version we use has the high-momentum cut-
off of the regulator set at ΛN3LO = 500 MeV/c [34].
This does not mean that the interaction has a sharp cut-
off at exactly 500 MeV/c, since the terms in the Idaho
N3LO interaction are actually regulated by an exponen-
tially suppressed term of the form

exp

[
−
(

p

ΛN3LO

)2n

−
(

p′

ΛN3LO

)2n
]
.
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momentum cutoff Λ =
√
mN (N + 3/2)~ω for different fixed λ =

√
mN~ω. The curves are fit to the calculated points.

In this expression, p and p′ denote the magnitude of the
initial and final nucleon momenta of this non-local po-
tential in the center-of-mass frame and n ≥ 2. Because
the cutoff is not sharp, it should not be surprising that
one has not exhausted the uv physics of this interaction
for values of single-particle Λ somewhat greater than 500
MeV/c. Note that this form of the regulator allows mo-
mentum transfers (~p− ~p′) to achieve values in the range
up to 2ΛN3LO. Can one make an estimate of the uv
regulator scale of the Idaho N3LO interaction which is
more appropriate to the discrete HO basis of this study?
An emulation of this interaction in a harmonic oscilla-
tor basis uses ~ω = 30 MeV and Nmax = N = 20 [23].
Nucleon-nucleon interactions are defined in the relative
coordinates of the two-body system so one should cal-
culate ΛNN =

√
m(N + 3/2)~ω with the reduced mass

m rather than the nucleon mass mN appropriate for the
single-particle states of the model space. Taking this fac-
tor into account, the successful emulation of the Idaho
N3LO interaction in a HO basis suggests that ΛNN ∼
780 MeV/c, consistent with the figure.

For Λ < ΛNN there will be missing contributions of
size |(Λ − ΛNN )/ΛNN | so “plateaus” develop as λ → 0

revealing this missing contribution to |∆E/E|. We can-
not rule out the possibility of a plateau appearing at the
level of 0.0001 or less for Λ ≥ 800 MeV/c as λ→ 0. This
is because the smallest λ available to our calculations is
limited by λ = Λ/

√
N + 3/2 and the largest N = 36 with

our computer resources. That is, the leftmost calculated
points of Figure 3 move to higher values of λ as fixed Λ
increases above 800 MeV/c. At fractional differences of
0.001 or less, the development of possible plateaus could
be masked by round-off errors in the subtraction of two
nearby numbers, each of which may have its own error.
Nevertheless, the “plateaus” that we do see are not flat
as λ → 0 and, indeed, rise significantly with decreasing
Λ < ΛNN . This suggests that corrections are needed to
Λ and λ which are presently defined only to leading order
in λ/Λ. We hope to learn if higher-order corrections can
be determined by the data in a future study.

Now we turn to the second pair of cutoffs of (Λ, λir)
and display in Figure 4 the analogue of Figure 2 except
that this time λir ≡ λsc =

√
mN~ω/(N + 3/2). For

fixed λsc, |∆E/E| does not go to zero with increasing Λ,
and indeed even appears to rise for fixed λsc ≥ 35 MeV/c
and Λ ≥ 800 MeV/c. Such a plateau-like behavior was
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FIG. 3: (Color online) Dependence of the ground-state energy of 3H (compared to a converged value-see text) upon the ir

momentum cutoff λ =
√
mN~ω for fixed Λ =

√
mN (N + 3/2)~ω.

attributed in Figure 3 to a uv regulator scale character-
istic of the NN interaction. Can the behavior of Figure
4 also be explained by a “missing contributions” argu-
ment; i.e. an argument based upon λsc ≤ λNNsc where
λNNsc is a second characteristic ir regulator scale implicit
in the NN interaction itself? One can envisage such an ir
cutoff as related to the lowest energy configuration that
the NN potential could be expected to describe. For
example, the inverse of the np triplet scattering length
of 5.42 fm corresponds to a low-energy cutoff of about
36 MeV/c. Realistic NN potentials such as Idaho N3LO
and JISP16 do fit these low-energy scattering parameters
well. The previously mentioned emulation of the Idaho
N3LO interaction in a harmonic oscillator basis [23] has
λNNsc ∼ 36 MeV/c. As we shall see later, the fit to low-
energy NN data of JISP16 implies a λNNsc ∼ 63 MeV/c.
The factor of two difference may simply be a reflection of
the fitting procedures and appears to be within the range
of uncertainty of our argument. In any event, the behav-
ior of our results in Figure 4 is not inconsistent with this
concept of an inherent ir regulator scale implicit in the
NN interaction.

Before going on with the discussion of Figure 4, let us

return to the striking difference between Figure 4 and its
analogue Figure 2. They differ only by the by the choice
of infrared cutoff; λ or λsc. One may ask why no residual
discrepancy appears in Fig. 2 as λ is held fixed and Λ is
taken through a sequence of increasing values. That is,
why is there no ir region excluded that would lead to a
feature of a plateau in these curves indicative of missing ir
contributions. The expectation of such a plateau seems
reasonable for an increasing ir cutoff according to the
arguments just made for the ir cutoff λsc of Figure 4.
The lack of such plateaus suggests that this λ is not an
ir cutoff for calculations of free-space systems like we are
performing here.

Having introduced a scale λNNsc , we continue our dis-
cussion of Figure 4. As fixed λsc requires ~ω/N to be
constant and N ≤ 36, small values of fixed λsc are linked
with small values of Λ. Having said that, we see that that
|∆E/E| becomes exponentially small (consistent with
tending to zero at the level of precision depicted) with
increasing Λ for λsc = 20 MeV/c and perhaps λsc = 28
MeV/c for the values of Λ achieved in this study. At fixed
λsc ≥ λNNsc and increasing Λ, once Λ > ΛNN , a “plateau”
will develop since no new contributions to |∆E/E| exist



10

B
B

B

B B B B B B B B B B B B B B B

J
J

J

J

J

J J J J J J J J J J J J J

H
H H

H
H

H

H

H

H

H
H
H H H H H H H

FFFF
F
F

F

F

F

F

F

F

F

F
F
FF

ÑÑÑ
Ñ
Ñ
Ñ

Ñ

Ñ

Ñ

Ñ

Ñ

Ñ

Ñ

0.0001

0.001

0.01

0.1

1
2

0 500 1000 1500 2000 2500 3000

B

J

H

F

Ñ

Λ (MeV/c)

70
55
35
28
20

λsc (MeV/c)

3H
Idaho N3LO

|∆E/E|

FIG. 4: (Color online) Dependence of the ground-state energy of 3H (compared to a converged value-see text) upon the uv

momentum cutoff Λ =
√
mN (N + 3/2)~ω for different values of the ir momentum cutoff λsc =

√
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for Λ > ΛNN . In the figure, the plateau appears to
start at Λ ∼ 700 − 900 MeV/c, consistent with the es-
timate of ΛNN ∼ 780 MeV/c for this NN interaction.
The curve at the lowest λsc = 20 MeV/c cannot extend
past Λ ∼ 750 MeV/c because Λ = λsc(N + 3/2) and
the largest value of N we could use is 36 for the triton.
So our computer limitations prevented the observation of
a possible plateau emerging at such a low value of λsc.
The plateau in |∆E/E| for larger fixed λsc is higher than
the plateau for small fixed λsc since more contributions
to |∆E/E| are missing from the infrared region. Again
we observe the plateau rises with increasing Λ and this
behavior may be a sign that corrections are needed to Λ
and λsc which are presently defined only to leading order
in λsc/Λ. However, for λsc ≤ λNNsc and Λ < ΛNN the
results converge to a single curve at the left of this fig-
ure. It is remarkable that this curve persists to quite low
Λ values. This means that |∆E/E| becomes insensitive
to λsc for low Λ if λsc is low enough. Later on we will
demonstrate that this curve can be quite well described
by a Gaussian, a result which persists for other s-shell
nuclei. But we will see in the next figure that one has

not yet captured the uv region at these low values of Λ.
Figure 5 is the analogue to Figure 3: only the vari-

able on the x-axis changes from λ to λsc = λ2/Λ. For
Λ < ΛNN ∼ 780 MeV/c the missing contributions and
resulting “plateaus” are as evident as in Figure 3. (Please
see discussion of Figure 3 for an account of possible
“plateaus” for larger values of Λ.) The tendency of these
plateaus to rise as λsc → 0 again suggests a refinement is
needed to this first-order definition of the cutoffs. Around
Λ ∼ 600 MeV/c and above the plot of |∆E/E| versus λsc
in Figure 5 begins to suggest a universal pattern, espe-
cially at large λsc. For Λ ∼ 800 MeV/c and above the
pattern defines a universal curve for all values of λsc.
This is the region where Λ ≥ ΛNN indicating that nearly
all of the ultraviolet physics set by the potential has been
captured. Such a universal curve suggests that λsc could
be used for extrapolation to the ir limit, provided that
Λ is kept large enough to capture the uv region of the
calculation. Figure 5 is also the motivation for our ap-
pellation λsc, which we read as “lambda scaling”, since
this figure exhibits the attractive scaling properties of
this regulator.

For Figure 6, we take advantage of the “saturation” of
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the uv region by binning all results with Λ ≥ 800 MeV/c.
They do indeed fall on a universal curve for each nucleus
shown, indicating that one can use this universal behav-
ior for an extrapolation which is nearly independent of A
(consistent with the extrapolation theorems of the 1970s
[2, 20] that the asymptotic rate of convergence does not
depend upon the number of particles). The curves are off-
set for the three nuclei but otherwise appear similar (see
also the discussion of Figure 9). The points can be fit by
the function y = a exp(−c/λsc) with c ≈ 20− 40 MeV/c
at A=2,3,4. The increase in the value of c indicates a
higher rate of convergence in the ir momentum cutoff as
the number of particles is increased up to four. (This
trend is readily apparent in an alternate plot of |∆E/E|
versus 1/λsc where the straight line fits to the triton
and alpha particle points have a slightly greater slope
than that straight line which fits the deuteron points).
However, drawing an imaginary horizontal line on Fig-
ure 6 shows that the loosely bound deuteron requires a
smaller ir cutoff to capture the ir physics and therefore
achieve the same |∆E/E| as the more tightly bound tri-
ton and even more tightly bound alpha particle. The
lowest value of λsc available to our calculations is set by

λsc = Λ/(N + 3/2) where Λ = 800 MeV/c, the lowest
value which seems to capture the uv physics. These far-
thest lefthand points are then λsc ∼ 25 MeV/c for the
triton calculation (largest N=30) and λsc ∼ 41 MeV/c
for the alpha calculation (largest N=18). These values of
the ir cutoff can be lowered (thereby increasing the relia-
bility of the extrapolation to zero) only by increasing N ;
a computational challenge which gets harder the larger
the number of particles in the nucleus. For example, the
largest N achievable with our codes which employ the
Idaho N3LO NN interaction for the nuclei 6Li and 6He
is 15 (N = Nmax + 1 for these p-shell nuclei). As the
value of Λ must be 800 MeV/c or greater for this NN
interaction the smallest value of λsc ∼ 48 MeV/c. Nu-
merical investigation suggests that this is not low enough
for a reliable ir extrapolation and the reason lies entirely
in the inability to calculate with high enough N . For the
softer JISP16 NN potential which has a lower minimum
Λ the ir extrapolation is satisfactory, as demonstrated
later by Figure 11 and subsequent discussion.

Finally we utilize the scaling behavior displayed on Fig-
ures 5 and 6 to suggest an extrapolation procedure which
we demonstrate in Figure 7, again concentrating on 3H
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upon the ir momentum cutoff λsc =
√

(mN~ω)/(N + 3/2) for Λ =
√
mN (N + 3/2)~ω above the ΛNN ≈ 780 MeV/c set by the

NN potential. The solid curves are fits to the points as described in the text.

and the Idaho N3LO potential. The extrapolation is per-
formed by a fit of an exponential plus a constant to each
set of results at fixed Λ. That is, we fit the ground state
energy with three adjustable parameters using the rela-
tion Egs(λsc) = a exp(−b/λsc) +Egs(λsc = 0). It should
be noted that our five extrapolations in Figure 7 em-
ploy an exponential function whose argument 1/λsc =√

(N + 3/2)/(mN~ω) is proportional to
√
N/(~ω) and

is therefore distinct from the popular extrapolation with
an exponential in Nmax (= N for this s-shell case) [11–
13, 37, 38, 54, 55]. The mean and standard deviation
of the five values of Egs(λsc = 0) were −7.8511 MeV
and 0.0011 MeV, respectively, as suggested by Figure 7
in which the overlap of the five separate curves cannot
be discerned. For calibration of our scheme, we recall
that the accepted value for the ground state of 3H with
this potential is −7.855 MeV from a 34 channel Fad-
deev calculation [34], −7.854 MeV from a hyperspherical
harmonics expansion [53], and −7.85(1) from a NCSM
calculation [11].

This extrapolation procedure with a large and
fixed Λ =

√
mN (N + 3/2)~ω and taking λsc =

√
mN~ω/(N + 3/2) toward the smallest value allowed

by computational limitations treats both N and ~ω on
an equal basis. For example, the extrapolation at fixed
Λ = 1200 MeV/c employs values of ~ω from 41 to 65
MeV and N = 22−36. The one at fixed Λ = 800 MeV/c
employs values of ~ω from 18 to 44 MeV and N = 14−36.
The curves of Figure 7 encompass values of λsc between
20 and 52 MeV/c. We attempted to quantify the spread
in extrapolated values by fitting only segments of the
curves of this figure. Recall that the smallest value of λsc
requires the largest N . Fits to the segment from λsc = 20
MeV/c to λsc = 40 MeV/c (always for the five displayed
values of fixed Λ) resulted in a mean of −7.8523 MeV and
standard deviation of 0.0008 MeV. Cutting out the left
hand parts of the curves and fitting only from λsc = 30
MeV/c to λsc = 55 MeV/c gave a mean of −7.8498 MeV
and standard deviation of 0.0022 MeV. For both these
trials a rather large N was needed, ranging from 14 to 36
but the extrapolation is quite stable. In contrast, values
of λsc higher than those shown in Figure 7, namely from
λsc = 50 MeV/c to λsc = 85 MeV/c, require fewer com-
putational resources (N = 8 − 22). The extrapolations
have a mean and standard deviation of −7.792 MeV and
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0.042 MeV, still not so far away from the accepted value
of −7.85 MeV.

In Figure 8 we return to one of the curves of Fig-
ure 4 to examine the dependence of the binding energy
of three nuclei upon the uv regulator when the puta-
tive ir regulator is held fixed (λsc = 55 MeV/c). At
fixed λsc ≥ λNNsc ∼ 36 MeV/c, and increasing Λ, once
Λ > ΛNN , a “plateau” will develop since no new con-
tributions to |∆E/E| exist for Λ > ΛNN ∼ 780 MeV/c.
The new feature of this figure is that the “plateau” of
the nucleus 2H is above that of 3H (taken from figure
4) which is in turn above that of 4He. This suggests
that ΛNN is not the only regulator scale needed to ex-
plain the dependencies upon Λ and λsc. Figure 8 in-
troduces another scale - the role of binding momentum
(Q) of a nucleus. The scale Q has been used recently in
EFT treatments of pion-deuteron scattering at thresh-
old [56]. The idea is to take the small binding energy
of the deuteron explicitly into account as one attempts
to develop a consistent power counting for an EFT of
pion-nucleus scattering lengths. The extension of the
definition of Q to more massive nuclei can take alter-
nate forms: Q =

√
2mN (E/A) where E/A is the binding

energy per nucleon, or Q =
√

2µε where µ is the re-
duced mass of a single nucleon with respect to the rest of
the nucleons in the nucleus and ε is the binding energy
with respect to the first breakup channel [57]. Clearly
the two definitions coincide for the deuteron and for the
light nuclei considered here both definitions give similar
estimates. For definitiveness, we calculate Q according
to the formula Q =

√
2µε. This calculation gives Q(2H)

= 46 MeV/c, Q(3H)= 88 MeV/c, Q(3He)= 83 MeV/c
, Q(4He)= 167 MeV/c, and Q(6He) = 39 MeV/c. The
binding momentum of 6He is comparable to that of the
deuteron because the first breakup channel into 4He+2n
is only about 1 MeV above the ground state.

The fractional error plotted in Figure 8 appears to rise
slightly from a minimum at Λ > ΛNN ∼ 780 MeV/c as
the uv cutoff Λ increases for each of the three nuclei. For
example in the 2H calculation the λsc cutoff relative to
the deuteron binding momentum is λsc/Q = 1.2 and the
error is rather high, rising from a minimum of about 25%.
The triton is more bound so that the ratio is λsc/Q =
0.62 and the minimum error is 9%. The calculation of the
tightly bound 4He (λsc/Q = 0.33) has the smallest error
of less than 2%, but even that error appears to rise as Λ
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FIG. 8: (Color online) Dependence of the ground-state energy of three s-shell nuclei (compared to a converged value-see text)

upon the uv momentum cutoff Λ =
√
mN (N + 3/2)~ω for λsc =

√
(mN~ω)/(N + 3/2) above the λNN

sc ≈ 36 MeV/c set by the
NN potential. Curves are not fits but spline interpolations to guide the eye.

increases to the limits of the present calculation. That is,
as Q increases at fixed λsc (at high enough Λ) the error
due to the λsc cutoff is lower. It is natural to expect that
the many-body dynamics enters at some level and sets
additional scales beyond the NN -interaction scales.

A final comparison of three s-shell nuclei selects the low
end of the ir region where λsc is at or below the ir cutoff
suggested by the potential. In Figure 9 all momenta are
scaled by the binding momentum Q of the considered nu-
cleus in order to put them on the same plot. For such low
momenta λsc, |∆E/E| does go to zero with increasing Λ
because λsc ≤ λNNsc , where λNNsc is the second regulator
scale of the NN interaction itself. For 3H, λsc/Q ∼ 0.23
corresponds to λsc = 20 MeV/c; the curve can be di-
rectly compared with the analogous curve (black online)
in Figure 4. Therefore, this curve (and the others) could
have a plateau at the higher values of Λ that could not
be studied for fixed λsc below the λNNsc ≈ 36 MeV/c set
by the NN potential because Λ = λsc(N + 3/2), and the
largest values of N available were 36 for the triton and
18 for the alpha particle. For 2H λsc = 10 MeV/c and
for 4He λsc = 40 MeV/c, all values of λsc are near or
below the second (ir) regulator scale of the Idaho N3LO

potential suggested to be ∼ 36 MeV/c. The largest value
of Λ plotted is ∼ 861 MeV/c for 2H, ∼ 746 MeV/c for
3H, and ∼ 780 MeV/c for 4He, all values of Λ are near or
just above the uv regulator of the Idaho N3LO potential
suggested to be ∼ 780 MeV/c. So this is a plot of low Λ
for all the nuclei portrayed. The “high” Λ tails of these
curves can be fit by Gaussians (shifted from the origin)
in the variable Λ/Q. This figure would seem to nicely
illustrate the expectations of the theorems of the 1970s
[2, 20] that the asymptotic rate of convergence does not
depend upon the number of particles.

In Figures 4 through 9 we have displayed the features
of our results as functions of the pair of cutoffs of (Λ, λir)

where λir ≡ λsc =
√
mN~ω/(N + 3/2), and demon-

strated an extrapolation procedure to the uv and ir lim-
its. Yet Figure 3 suggests that an extrapolation to the
infrared limit could equally well be made by taking λ→ 0
for a fixed large Λ. In Figure 10, we demonstrate the fea-
tures of such an extrapolation by using published results
of the JISP16 interaction for the halo nucleus 6He [12].



15

B
B

B

B

B

B

B

B

B

B

B

J J
J
J

J

J

J

J

J

J

J

J

H
H
H

H

H

H

H

H

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10 12 14 16 18

B

J

H

Λ/Q

|∆E/E| λsc/Q ∼ 0.23

Idaho N3LO

2H
3H
4He
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√
(mN~ω)/(N + 3/2) below the λNN

sc ≈ 36 MeV/c set by the
NN potential. The data are fit to Gaussians.

1 Its binding momentum Q(6He) = 39 MeV/c is compa-
rable to that of the loosely bound deuteron and should
provide a severe test of any infrared extrapolation.

A second reason for considering 6He is that it has
been studied extensively with the JISP16 NN interac-
tion, both with HO expansion and HH expansion tech-
niques [58]. The same set of ground state energy eigen-
values as those plotted in Figure 10 yields an extrapo-
lated value of −28.76(9) MeV using “extrapolation A”
of Ref. [12]. In “extrapolation A” one lets the vari-
able N → ∞ with a selection procedure for values of
~ω as explained in Ref. [12]. If one refers to the pub-
lished results [12] where the largest N is 15 one finds an
“extrapolation B” method which lets N → ∞ at fixed
~ω to obtain −28.69(5) MeV in good agreement with
the value of −28.68(12)MeV from“extrapolation A”. A
hyperspherical harmonics expansion calculation of 6He

1 We used the original values of ~ω and extended the data base
in (N, ~ω) to N = 17, one step of N higher than the published
results in [12].

with the JISP16 potential finds an extrapolated value
of −28.70(13) MeV [42]. This is increased by about 200-
300 keV to −28.96(3) MeV by a “hyperspherical harmon-
ics effective interaction” technique which requires fewer
terms in K to reach asymptotic convergence but loses
variational character because the induced many-particle
interactions are dropped from the effective interaction
[23].

The results of Ref. [12] were obtained with an anti-
symmetrized many-body wavefunction constructed as as
sum of Slater determinants of single-nucleon wavefunc-
tions depending on single-nucleon coordinates (and the
Lawson method to isolate CM effects) on a mesh of inte-
ger (N, ~ω). The value of N is, by definition an integer
and values of the non-linear variational parameter ~ω
were chosen to be increments of 2.5 MeV between 10 and
40 MeV. To show that the familiar integer values of ~ω
from Ref. [12] could be directly used in the extrapolation
procedures suggested here we mapped the ground state
energy eigenvalues onto the variables (Λ, ~ω = λ2/mN )

rather than onto the variables (Λ,
√
~ω = λ/

√
mN ). The

largest value of N was 17 (Nmax = 16 for this p-shell nu-
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λ =
√
mN~ω = 0 with fixed Λ as in Figure 7.

cleus). The extrapolation of Figure 10 is performed by a
fit of an exponential plus a constant to the set of results
at fixed Λ. The resulting Λ’s are not then strictly fixed
but each point plotted corresponds to a value of Λ con-
stant to within 2 − 5% of the central value indicated on
the graph. The important S-wave parts of the JISP16
potential are fit to the data in a space of N = 8 and
~ω = 40 MeV. Therefore this potential has NN regula-
tor scales of λNNsc ∼ 63 MeV/c and ΛNN ∼ 600 MeV/c.
(The value of λNN associated with this potential is about
200 MeV/c, as can readily estimated from the legend of
Figure 2). But JISP16 seems to be so soft that the ultra-
violet region is already captured with Λ ≥ 500 MeV/c,
as shown by the top two curves of Figure 10.

We fit the ground state energy with three adjustable
parameters using the relation Egs(~ω) = a exp(−c/~ω)+
Egs(~ω = 0) five times, once for each “fixed” value of
Λ. It is readily seen that one can indeed make an ir
extrapolation by sending ~ω → 0 with fixed Λ as first
advocated in Ref. [35] and that the five ir extrapolations
are consistent. The spread in the five extrapolated values
is about 500 keV or about 2% about the mean of −28.78
MeV. The standard deviation is 200 keV.

A second (single) extrapolation of the 6He data with
λsc → 0 which uses all calculated energies where Λ ≥ 510
MeV/c is shown in Figure 11. As in Figure 7, we fit the
ground state energy with three adjustable parameters us-
ing the relation Egs(λsc) = a exp(−c/λsc)+Egs(λsc = 0).
The extrapolated value is −28.68 MeV, which agrees well
with Figure 10 and the other extrapolated results. The
extrapolation prescription used in Figure 11 employs val-
ues of ~ω from 15 to 40 MeV and a range of N from
7-17. That is, all of the information (at Λ ≥ 510 MeV/c)
available from these calculations is used in the λsc ex-
trapolation. How can one estimate an uncertainty from
such a single extrapolation? Looking at the scatter of
the points about the fitted curve is instructive but not
quantitative. If we bin the 48 points of Figure 11 into
the same bins of “constant” Λ as in Figure 10, we find
(not shown) five extrapolations with a mean of −28.58
MeV and standard deviation of 0.06 MeV. Another pos-
sible way of breaking up this single extrapolation is more
in the spirit of the earlier extrapolations of Delves and
successors. If we map from (N, ~ω) onto (Λ, λsc) hold-
ing N fixed we get another set of extrapolations, those
for N = 7, 9, 11, 13, 15, 17 with concomitant smallest
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FIG. 11: (Color online) The ground state energy of 6He calculated at all values of Λ ≥ 510 MeV/c (Λ =
√
mN (N + 3/2)~ω)

and variable λsc =
√

(mN~ω)/(N + 3/2). The curve is a fit to the points and the function fitted is used to extrapolate to the
ir limit λsc = 0.

λsc = 60, 50, 41, 36, 32, 28 MeV/c. Of these six extrap-
olations, only those with N ≥ 13 are consistent with the
extrapolation which uses the full 41 points. This is to be
expected, as one needs a large N before the convergence
“starts to behave”. The mean of the three extrapola-
tions with N ≥ 13 is −28.54 MeV and standard devia-
tion is 0.11 MeV. Concentrating only on large N in this
naive manner gives a worse extrapolation compared to
accepted extrapolated ground state energies. It would
appear that it is advantageous to take advantage of the
scaling properties of λsc for all values of the uv regulator
large enough to capture the uv limit. In that case, as seen
in Figure 11, even results with low N (and therefore large
λsc) can usefully stabilize and bound an extrapolation to
the ir limit. A rough estimate of the uncertainties of
this extrapolation of figure 11 would then be −28.68(22)
MeV.

In conclusion, our extrapolations in the ir cutoff λ of
−28.78(50) MeV or the ir cutoff λsc of 28.68(22) MeV
are consistent with each other and with the independent
calculations.

V. SUMMARY AND OUTLOOK

We reviewed the functional analysis theorems which
describe variational calculations of many-body systems
made with a trial function expanded in a complete set of
known functions. According to these theorems the con-
vergence properties of such a calculation are determined
by the interaction and by the dimensionless number N
which determines the truncation at a finite number of
basis functions. Among basis sets, harmonic oscillator
(HO) functions are distinguished by ease of separation
of relative and center of mass coordinates and by the
dimensional parameter ~ω which sets an intrinsic scale.
Motivated by effective field theory studies, one can define
quantities from (N , ~ω) forming ultraviolet (uv) and in-
frared(ir) momenta that act as cutoffs that characterize
the model space just as does (N , ~ω). Extending both
the uv cutoff to infinity and the ir cutoff to zero is pre-
scribed for a converged calculation. There have been two
alternate definitions of the ir cutoff; λ =

√
mN~ω and

λsc =
√
mN~ω/(N + 3/2). Note that λsc = λ2/Λ where

Λ =
√
mN (N + 3/2)~ω is the uv cutoff as usually de-
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fined. We calculated the ground state energy of light
nuclei with the “bare” and “soft” NN interactions Idaho
N3LO and JISP16. We investigated the behaviors of the
uv and ir regulators of model spaces used to describe 2H,
3H, 4He and 6He.

We obtained fully converged eigenvalues for 2H and 3H
which were in agreement with other calculations includ-
ing those (e.g. Faddeev approach) obtained from a direct
finite difference solution of partial differential equations
in many dimensions. These results could be used to ex-
amine the cutoff dependences of the model spaces (Λ, λ)
or (Λ, λsc) as one cutoff was held fixed and the other ap-
proached its limit. The examination was based upon the
ratio |∆E/E|, defined as |(E(Λ, λir) − E)/E| where E
is the fully converged ground state energy. Both pairs
of cutoffs acted as expected when Λ was held fixed and
λir tended toward zero; |∆E/E| decreases exponentially
(for the values of Λ available to the calculation) in Fig-
ures 3 and 5 provided Λ exceeds a threshold set by the
potential. On the other hand, in both figures drawing
an imaginary vertical line at a fixed λir which crosses
the curves shows that the calculation gets better as Λ
increases. It is in Figures 2 and 4 that the difference
between the two versions of the λir cutoff become evi-
dent. For the pair (Λ, λ) in Figure 2 |∆E/E| decreases
exponentially as the uv cutoff increases for all values of
λ investigated. But in Figure 4 |∆E/E| actually rises
as Λ → ∞ if λsc is larger than another threshold value
evidently set by the potential. As both cutoffs should be
sent to their respective limits for a converged calculation,
this behavior does not invalidate the identification of λsc
with λir, but it does seem a little peculiar. Perhaps this
behavior signals a need for higher order terms in λ/Λ in
the definition of λsc.

In any event, we have introduced a practical extrap-
olation procedure with Λ → ∞ and λir → 0 which can
be used when the size of the basis needed exceeds the
capacity of the computer resources as it does for 4He and
6He and certainly will for any more massive nuclei. Un-
like other extrapolation procedures the ones advocated in
this paper treat the variational parameters N and ~ω on
an equal footing to extract the information available from
sequences of calculations with model spaces described by
(N , ~ω). We have established that Λ does not need to be
extrapolated to ∞ but if Λ > ΛNN set by the potential
one can make the second extrapolation to zero with ei-
ther ir cutoff λsc (see Figures 7 and 11) or λ (see Figure
10). The choice of the scaling cutoff λsc is especially at-
tractive as Λ need not be held constant but any Λ large
enough can be used in the ir extrapolation. Values of
the ir cutoff λsc can be lowered (thereby increasing the
reliability of the extrapolation to λsc = 0) only by in-
creasing N ; a computational challenge which gets harder
the larger the number of particles in the nucleus. For
example, the largest N achievable with our calculation
which employs the Idaho N3LO NN interaction for the
nuclei 6Li and 6He is 15 (N = Nmax + 1 for these p-shell
nuclei). As the value of Λ must be 800 MeV/c or greater

for this NN interaction the smallest value of λsc ∼ 48
MeV/c. Our numerical investigation with the shell model
code ANTOINE [45] suggests that this is not low enough
for a reliable ir extrapolation and the reason lies entirely
in the inability to calculate with high enough N . On
the other hand, the largest N achievable for p-shell nu-
clei on current supercomputers using MFDn [46] ranges
from N = 17 for 6Li and 6He down to N = 11 for 12C
and 14N, so the smallest value for the ir cutoff would be
λsc ∼ 43 MeV/c for 6Li and 6He, and λsc ∼ 64 MeV/c
for 12C and 14N. It is not yet known whether a success-
ful ir extrapolation can be made for these heavier nuclei
with present day capabilities. For the softer JISP16 NN
potential which has a lower minimum Λ the ir extrapola-
tion is satisfactory, as demonstrated by the extrapolation
for 6He in Figure 11. Our experience with ir extrapola-
tions with these two potentials suggests a continuing role
for the similarity renormalization group evolution which
softens potentials [37–39].

For the future, we can envisage extending this extrapo-
lation technique to calculating other properties of nuclei,
properties which may or may not be as amenable as are
energy eigenvalues to the uv and ir regulators. The rms
point matter radii and the Gamow-Teller matrix element
(relevant to β decay) of light nuclei are important quan-
tities to calculate reliably for these (and more massive
nuclei) [42, 59]. In the nuclear structure folklore, r2 and
Dz (the z component of the electric-dipole operator) are
of long range and the full GT matrix element, including
meson-exchange currents, is of medium range. The elec-
tric dipole polarizabilities of light nuclei are necessary in
order to obtain accurate nuclear-polarization corrections
for precisely measured transitions involving S-waves in
one-and two-electron atoms. The defining relation for the
polarizability can be converted into a procedure which
needs only bound-state quantities and involves the long-
range dipole operator D [60]. A convergence analysis of
a HO expansion, which lets N →∞ at fixed ~ω, for elec-
tric dipole polarizabilities of 3H, 3He and 4He obtained
faster convergence for lower ~ω than for the binding en-
ergy itself [61]. It would be interesting to learn how the
procedure advocated here would work for these problems.
These latter problems, often require not only converged
ground state energies, but energies which agree with ex-
periment. For that, NNN interactions are considered
necessary [62], thereby leading to a need for more stud-
ies of the convergence and extrapolation concepts of this
paper.

VI. NOTE ADDED AFTER SUBMISSION

After submission of this manuscript, Furnstahl, Hagen
and Papenbrock posted an investigation of uv and ir cut-
offs in finite oscillator spaces [63] . They assume that λsc
(scaled by a factor of

√
2 from the λsc of this paper) is

the ir cutoff. They derive an explicit extrapolation for-
mula in their ir cutoff which is the same (exponential)
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as the one of this paper and is used in the same way:
establish that the uv cutoff is large enough and then ex-
trapolate in the ir variable. In addition, they suggest
a first (higher) order correction to both the uv and ir
regulators. These results are a useful advance on the ex-
ponential form of convergence in N shown less concretely
by the forty-year-old theorems of [2] and [20]. Their fi-
nal formula contains exponentials with arguments pro-
portional to N from the uv regulator and to

√
N from

their ir regulator. They caution, as have we, that results
such as these should be expected only for the “smooth”
potentials of [2] and [20] (or in their momentum space
characterization: “super-Gaussian falloff in momentum
space”) such as those inspired by chiral EFT or obtained
by renormalization group transformations.
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“Nuclear electric dipole moment of 3He”, Phys. Lett. B
665, 168 (2008).

[61] I. Stetcu, S. Quaglioni, J. L. Friar, A. C. Hayes and Petr

Navrátil, “Electric dipole polarizabilities of hydrogen and
helium isotopes”, Phys. Rev. C 79 , 064001 (2009).

[62] D. C. J. Marsden, P. Navrátil, S. A. Coon and B. R. Bar-
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