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We show how shape transitions in the neutron-rich exotic Si and S isotopes occur in terms of
shell-model calculations with a newly constructed Hamiltonian based on VMU interaction. We first
compare the calculated spectroscopic-strength distributions for the proton 0d5/2,3/2 and 1s1/2 or-

bitals with results extracted from a 48Ca(e,e’p) experiment to show the importance of the tensor-
force component of the Hamiltonian. Detailed calculations for the excitation energies, B(E2) and
two-neutron separation energies for the Si and S isotopes show excellent agreement with experimen-
tal data. The potential energy surface exhibits rapid shape transitions along the isotopic chains
towards N=28 that are different for Si and S. We explain the results in terms of an intuitive pic-
ture involving a Jahn-Teller-type effect that is sensitive to the tensor-force-driven shell evolution.
The closed sub-shell nucleus 42Si is a particularly good example of how the tensor-force-driven
Jahn-Teller mechanism leads to a strong oblate rather than spherical shape.

PACS numbers: 21.60.Cs.,27.40.+z,21.10.Pc,21.10.-k,21.30.Fe

Among the new frontiers of nuclear physics, one of the
most important is the evolution of single-particle energies
in nuclei far from stability that led to significant variation
of the shell structure and even dramatic changes in the
location of magic numbers [1, 2]. One of the ingredients
is the tensor force which can change spin-orbit splitting
significantly leading to tensor-force driven shell evolution
[3, 4]. While many experimental examples, e.g., [5–8],
have been accumulated on this phenomenon, its direct
test including fragmentation of single-particle strength
has not been presented. We shall show, in this paper,
the first test of this kind for proton 0d5/2-0d3/2 splitting

in 48Ca, comparing to spectroscopic factors measured in
the (e,e’p) experiment [9].

We shall then show1 that tensor-driven shell evolution
plays a critical role in the rapid shape transition as a
function of neutron and/or proton number, including tri-
axial and γ-unstable shapes. In particular, we show for
the first time how this shape transition at low energy can
be related to the Jahn-Teller type effect [11, 12], where
a geometric distortion is brought about by a particular
coherent superposition of relevant single-particle states
enhanced due to their (near) degeneracy.

These studies are performed in terms of the shell model
in a unified way with a new Hamiltonian. We shall show
calculated energy levels and B(E2) values for the Si and

1 A brief account with selected results of this work was presented
in [10].

S isotopes that are in good agreement with experiments
[13–19], and new predictions are made. Potential energy
surfaces (PES) are shown. The PES changes rapidly as a
function of neutron number, and are different for Si and
S. The PES for 42Si shows a strong oblate shape (rather
than spherical) due to the tensor-force-driven shell evo-
lution. These PES results are interpreted in an intuitive
picture involving shell gaps and the Jahn-Teller-type ef-
fect. Two-neutron separation energies are discussed also.

We outline the present shell-model calculations. The
sd and pf shells are taken as the valence shell with pro-
tons in sd and neutrons in pf . The interactions within
each of these shells are based on existing interactions:
USD [20] (GXPF1B [21]2) for the sd (pf) shell, except

for the monopole interactions [4, 23] V T=0,1
0d3/2,0d5/2

based on

SDPF-M [24] due to a problem in USD as pointed out in
[2]. The monopole- and quadrupole-pairing matrix ele-
ments 〈0f7/20f7/2 |V | 0f7/20f7/2〉J=0,2 are replaced with
those of KB3 [23]. This is mainly for a better descrip-
tion of nuclei of N ∼ 22. Although this replacement is
not so relevant to the present study where N is larger
in most cases, it has been made so that the applicabil-
ity of the new Hamiltonian becomes wider. The cross-
shell part, most essential for exotic nuclei discussed in

2 GXPF1B Hamiltonian was created from GXPF1A Hamiltonian
[22] by changing five T = 1 matrix elements and SPE involving
1p1/2. Such differences give no notable change to the present
work due to minor relevance of 1p1/2.
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this study but rather undetermined so far, is given basi-
cally by VMU of [4] with small refinements stated below.
The tensor-force component is exactly from VMU, imply-
ing the π + ρ meson exchange force. It has been used
in many cases [3, 4], and it has been accounted for mi-
croscopically under the new concept of Renormalization
Persistency [25] where modern realistic effective interac-
tions are analyzed in terms of the spin-tensor decompo-
sition technique [26–28]. The central-force component of
VMU interaction has been determined in [4] so as to re-
produce monopole properties of shell-model interactions
SDPF-M (sd-shell part) and GXPF1A [22, 29] by a sim-
ple Gaussian interaction. We introduce here slight fine
tuning with density dependence similar to the one in [27],
in order that its monopole part becomes closer to that
of GXPF1B. We include the two-body spin-orbit force of
the M3Y interaction [30]. (For the present study, all these
refinements produce minor changes, and do not change
the overall conclusions. The refinements have been made
so that the new Hamiltonian works well in a wide variety
of nuclei other than those of this study.) Following USD
and GXPF1B, all two-body matrix elements are scaled
by A−0.3. The single-particle energies (SPE) of sd shell
are taken from USD, and those of pf shell are determined
by requesting their effective SPEs on top of 40Ca closed
shell equal to the single-particle energies of GXPF1B.

The Hamiltonian, referred to as SDPF-MU hereafter,
is thus fixed prior to the shell model calculations pre-
sented in this paper. The diagonalization is performed by
the mshell64 code [31]. The VMU interaction has been
used also to construct the cross-shell part of a recent
shell-model Hamiltonian for p-sd shell nuclei including
neutron-rich exotic ones, providing with a good descrip-
tion of very light (B,C,N,O) nuclei [32].

We begin with the distribution of single-particle
strength of proton sd-shell orbits. Spectroscopic factors
obtained for 48Ca with the (e, e′p) reaction are displayed
in the upper panels of Fig. 1 [9]. The 0d5/2 single-particle
strength is highly fragmented due to its high excitation
energy (3-8 MeV range). The spectroscopic factors ob-
tained by the present calculation are shown in the lower
left-hand panel of Fig. 1, where an overall quenching fac-
tor 0.7 is used following the standard recipe to incor-
porate various effects of components outside the valence
shell [33]. The agreement is excellent both in the position
of peaks and their magnitudes. However, this agreement
is lost, if the tensor force is removed from the cross-shell
interaction, as shown in the right lower panel of Fig. 1.
For instance, the largest 0d3/2 and 1s1/2 peaks are in the
wrong order, and the strongest peaks of 0d5/2 move to-

wards higher energy. The 0d3/2-0d5/2 gap of 48Ca turns
out to be ∼5 MeV in the present calculation, but be-
comes ∼2 MeV larger, if the cross-shell tensor force is
switched off.

For 40Ca, although no experimental data by (e, e′p)
reaction is available [34], Bastin et al. suggested a re-
duction of proton 0d5/2-0d3/2 gap by 1.9 MeV from 40Ca

to 48Ca based on reaction data [16]. Effective SPEs ob-
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FIG. 1: (Color online) Spectroscopic factors of proton hole
states measured by 48Ca(e,e’p) [9] (upper) and its theoret-
ical calculation (lower left). The cross-shell tensor force is
removed in lower right panel. The black, blue and red bars
correspond to 1s1/2, 0d3/2 and 0d5/2 states, respectively.

tained from the SDPF-MU Hamiltonian are consistent
with this and other experimental data [1]. On the other
hand, the gap remains almost unchanged between 40Ca
and 48Ca, if the cross-shell tensor force is removed. We
note that the spectroscopic factor distributions for 0d3/2
and 1s1/2 were calculated also by a Green’s function
method by Barbieri [33], but there has been no previ-
ous report on the 0d5/2 strength.

The proton shell structure thus evolves from 40Ca to
48Ca. Because only the tensor force can change the 0d3/2-
0d5/2 gap by this order of magnitude (∼2 MeV), the
agreement shown in Fig. 1 provides us with the first evi-
dence from electron scattering experiments to the tensor-
force-driven shell evolution induced by the mechanism of
Otsuka et al. [3]. This agreement implies also the valid-
ity of the present SDPF-MU Hamiltonian, especially the
interaction between the proton sd and neutron pf shells.
We now move to the shape transitions in exotic Si

(Z=14) and S (Z=16) isotopes with even N=22-28. Be-
fore discussing quantitative results, we present an intu-
itive picture in Fig. 2 on the relation between the shell
structure and the shape of Si nuclei. To begin with, we
consider only two orbits 0d5/2 and 1s1/2 of protons for
the sake of simplicity. In a conventional view, Z=14 is a
sub-magic number : no mixing between 1s1/2 and 0d5/2
due to large 1s1/2-0d5/2 gap and/or weak mixing force.
Six protons occupy all states of 0d5/2 forming a closed
subshell, as depicted in Fig. 2(a). This should end up
with a spherical shape for a doubly magic nucleus, 42Si
(N=28), similarly to 34Si (N=20).
Figure 2 (b) indicates another situation where sizable

mixing occurs between the 1s1/2 and 0d5/2 orbits in the
case when the proton-neutron correlation is stronger than
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FIG. 2: (Color online) Intuitive illustration of the structure
of intrinsic state at Z=14. Single-particle states of magnetic
quantum numbers, denoted m, are shown. q implies intrinsic
quadrupole moment (fm2) obtained with harmonic oscillator
~ω=11.8 MeV.

in Fig. 2 (a) and competes with 1s1/2-0d5/2 spacing.
The proton-neutron interaction, apart from its monopole
part, can be modeled by a quadrupole-quadrupole inter-
action to a good extent. Effects of this interaction can be
discussed in terms of intrinsic states due to a quadrupole
deformation. Assuming an axially symmetric deforma-
tion, single-particle states of the same magnetic quantum
numbers, denoted m, are mixed in the intrinsic states.
Figure 2 (b) shows that this occurs for m = ±1/2 be-
tween 1s1/2 and 0d5/2, with amplitudes sinθ and cosθ,
respectively. The phase of the mixing amplitude depends
on the shape, prolate or oblate. In the case of Si iso-
topes, protons occupy the states of m = ±5/2,±3/2,
which yield in total a negative intrinsic quadrupole mo-
ment (oblate). The total intrinsic quadrupole moment
gains a larger magnitude, if the 1s1/2-0d5/2 mixing gives
a negative moment. The contribution from the proton-
neutron multipole interaction to the energy of total in-
trinsic state is proportional approximately to the product
of the proton intrinsic quadrupole moment and the neu-
tron one. Because a similar situation can occur for neu-
trons in 1p3/2 and 0f7/2 with a negative intrinsic moment
produced mainly by the m = ±7/2 component of 0f7/2,
a stronger binding is obtained for the total intrinsic state
with an oblate shape. Although the proton 0d3/2 orbit is
mixed to some extent in the actual shell-model calcula-
tion, the above mechanism still holds : the occupation of
m = ±5/2 remains with large negative quadrupole mo-
ment (oblate), and the mixing can occur among 0d5/2,
0d3/2 and 1s1/2 orbits in the relevant m = ±1/2 and
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FIG. 3: (Color online) (a,b) 2+1,2 (blue lines and red circles)

and 4+1 (green lines and red triangles) energy levels and (c,d)
B(E2;0+1 →2+1 ) values of Si and S isotopes for N=22-28. Sym-
bols are experimental data [13–19]. Solid (dashed) lines are
calculations with (without) the cross-shell tensor force.

±3/2 components in favor of the oblate shape.

This mechanism is of Jahn-Teller type, and it works
if the mixing due to the proton-neutron correlation can
compete with SPE spacings. The above intuitive pic-
tures with Figs. 2 (a,b) suggest rather robustly that the
shape of 42Si can be spherical or oblate, but not pro-
late. The 0d5/2-1s1/2 spacing is 7.8 MeV for 42Si with
the SDPF-MU Hamiltonian in the filling scheme. This
is indeed comparable with the ground-state expectation
value, -13.2 MeV, of multipole proton-neutron interac-
tion, obtained by the shell-model calculation discussed
below. Regarding the tensor force, when many neutrons
occupy the 0f7/2 orbital, the proton 0d5/2 is raised due
to the mechanism of Otsuka et al. [3] discussed for the
(e,e’p) data above. This effect is included in the result
of SDPF-MU Hamiltonian, reducing 0d5/2-1s1/2 spacing

by 1.1 MeV for 42Si. We shall see its importance now.

We here investigate quantitatively the structure of Si
and S isotopes in the context of the shell-model calcula-
tions with the SDPF-MU Hamiltonian. Figure 3 exhibits
properties of even-A Si and S isotopes. Effective charges
are (ep, en) = (1.35e, 0.35e) where an isoscalar shift fixed
for lighter isotopes are taken. The overall agreement
with experiment is excellent in Fig. 3. For instance,
in the present result, 2+1 levels of Si isotopes keep com-
ing down as N increases consistently with experiment.
The nice agreement suggests that the intuitive picture
with Fig. 2 (b) works particularly well towards 42Si, re-
sulting in a strongly deformed shape with low excitation
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FIG. 4: (Color online) Potential energy surfaces of Si iso-
topes for γ=0∼60◦ from N = 22 to 28 calculated with (left)
and without (right) the cross-shell tensor force. The energy
minima are indicated by red circles.

energies consistent with recent measurement in GANIL
[16]. However, if the tensor force is omitted from the
cross-shell interaction, the 2+1 level of 42Si goes up, sug-
gesting the case in Fig. 2 (a). Figure 3 exhibits results
for S isotopes also in good overall agreement, including a
bumpy behavior of the 4+1 level. Earlier shell-model cal-
culations with empirical interactions [35, 36] give larger
deviations and/or different trends from experiments. Dif-
ferent Hamiltonians are taken in [35] between Z ≤14 and
Z ≥15 isotopes related to the monopole pairing strength
in pf shell. The deviation from experiment becomes
larger if this change is switched off. The present Hamilto-
nian is the same for all isotopes, and has been fixed prior
to the shell-model calculations so as to make predictions.
The potential energy surface (PES) can be used to

understand shapes contained in theoretical calculations.
Figures 4 and 5 exhibit PES for Si and S isotopes, respec-
tively, obtained by the constrained Hartree-Fock method
[37] for the SDPF-MU Hamiltonian. The full Hamilto-
nian is taken in panels (a∼d) of the two figures, whereas
the cross-shell tensor force is removed in panels (e∼h).
We begin with PESs of Si isotopes (Fig. 4). Shape evolu-
tions are seen clearly in both sequences (a∼d) and (e∼h),
starting with similar patterns in 36Si. The shape evolves
as more neutrons occupy pf -shell, with distinct differ-

without tensor forcewith tensor force

(a) 38S

(c) 42S

(d) 44S

(MeV)

(h) 44S

(e) 38S

(g) 42S

(b) 40S (f) 40S

FIG. 5: (Color online) Potential energy surfaces of S isotopes
from N = 22 to 28. See the caption of Fig. 4.

ences between the two sequences. In (b,c), the defor-
mation becomes stronger from (a) with triaxial minima,
whereas the shape becomes more like modestly prolate
in (f,g). In (d), one finds a strongly oblate shape with
a sharp minimum, but the minimum is at the spheri-
cal shape in (h). This strong oblate deformation pro-
duces low 2+ level and large B(E2) in Fig. 3 for the
“doubly-closed” 42Si. Thus, the shape of exotic Si iso-
topes changes significantly within the range of ∆N ∼6.
This feature is partly due to growing collectivity with
more neutrons in the pf shell, but is also a manifesta-
tion of Jahn-Teller-type effect driven by the tensor force.
Without the tensor force, the SPE spacings are too large,
and the correlation energies cannot produce this effect.
The γ-unstable deformation is well developed in Fig. 4

(c), and this can be confirmed by the low-lying 2+2 level
of 40Si in Fig. 3. This level seems to agree with a recent
γ-ray experiment [15] where either of γ-rays 638(8) and
845(6) keV appears to feed directly the 2+1 state. We
stress that the 2+2 level is sensitive to the tensor force
through γ-instability in Si isotopes. In fact, the ratio
Ex(2

+
2 )/Ex(2

+
1 ) is as low as 1.5 for 40Si, whereas it be-

comes 4.4 for 42Si. The former is a prominent signature
of γ-instability, while the latter is consistent with a vibra-
tion from a profound PES minimum of axially-symmetric
deformation. Thus, the change from 40Si to 42Si is an in-
triguing example of the rapid and unexpected structure
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FIG. 6: (Color online) Two neutron separation energies of
Si and S isotopes from N = 22 to 28. Solid (dashed) lines
are calculations with (without) the cross-shell tensor force.
Points are experimental data [40, 41].

evolution. If the tensor force is switched off in the cross-
shell interaction, Ex(2

+
1 ) of

42Si is raised but B(E2) value
is still larger than that of 40Si. This is partly due to the
stretched minimum in Fig. 4 (h) and partly due to rela-
tively enhanced proton contribution in the E2 transition
because of N=28 closure.
The situation is quite different with PES of S isotopes

(Fig. 5). With two more protons added to Si isotopes, the
occupancy of the 0d5/2 orbit is closer to that of a closed
shell. The mixing between 1s1/2 and 0d3/2 then plays a
decisive role, leading to a structure favoring prolate defor-
mation. As for neutrons, m = ±7/2 components of 0f7/2
carry large negative intrinsic quadrupole moment and are
crucial for oblate shape, while the others have positive or
small negative values. In S isotopes, as protons favor pro-
late shapes, neutron sector becomes prolate for N <28,
by keeping the m = ±7/2 states (almost) unoccupied. At
N=28, the m = ±7/2 states are occupied more. How-
ever, the neutron 0f7/2-1p3/2 spacing decreases from Ca
isotopes to Si and S ones due to the vacancy of proton
0d3/2, and the excitation from the m = ±7/2 states to
other orbits does not cost much energy as compared to
gains from proton-neutron correlation. This gives rise
not to an oblate minimum but to triaxial softness. Thus,
the shape is determined, in the present cases, primarily
by the proton sector. We would like to emphasize the
crucial role of protons in determining shapes of Si and S
isotopes. We comment that the quasi SU(3) scheme [38],
constructed for the configurations comprised of almost
degenerate j and j − 2 orbits only, e.g., 0f7/2 and 1p3/2,
favors an oblate shape at N=28.
Panels (d) and (h) in Fig. 5 show prolate minima with

opposite trends from panels (c,g) which are rather similar
to each other. This difference arises within prolate shapes
with shallow minima, and thereby its appearance in the
energy levels is modest (See Fig. 3). The difference of the
shapes between Si and S isotopes may suppress transfer

reactions, for instance, two-proton removal from 44S [39].

We now discuss two-neutron separation energies (S2n)
shown in Fig. 6. The agreement between experiment and
the full calculation is quite good within ∼0.5 MeV, except
forN=22 Si value with discrepancy of 1.2 MeV due to the
mixing of intruder configurations in 34Si, an issue outside
this work. If the tensor force is switched off, deviations
of 1-3 MeV occur for Si and S isotopes in the direction of
larger S2n values. This means that the tensor-force effect
is repulsive and becomes larger from Ca to Si isotopes as
a whole, consistently with the tensor-force-driven shell
evolution. This evolution induces stronger deformation
in some cases, e.g., 42Si, where additional binding energy
is gained and can cancel partly this repulsive effect.

While Si and S isotopes have been discussed with
density-functional methods including appearance of
oblate shapes [42–45], there are problems to be solved.
No systematic calculations have been reported for levels
and B(E2)’s of Si isotopes. The 2+1 level calculated in [45]
reproduces experiment for 44S, but deviates by a factor
of two for 42Si. Fig. 3 (a,b) shows that the 2+1 level of
42Si is sensitive to the tensor force, whereas that of 44S is
not. The difference between 42Si and 44S in [45] might be
relevant to this. The systematics of 2+1 level in S isotopes
shows opposite trend in [44]. It will be also of interest to
see single-particle properties given by these works. For
instance, the proton 0d5/2-0d3/2 gap remains almost un-

changed from 40Ca to 48Ca in these calculations, but this
contradicts the trend seen in (e,e’p) data [9].

In summary, we have discussed the tensor-force driven
reduction of the spin-orbit splitting by the mechanism of
Otsuka et al. [3], for the first time, in terms of distri-
bution of spectroscopic factors measured by 48Ca(e,e’p)
experiment [9]. The SDPF-MU Hamiltonian has been
introduced based on the VMU interaction. The spectro-
scopic strength distribution provides a stringent test of
this Hamiltonian. The levels, B(E2)’s and S2n of exotic
Si and S isotopes are described by the same Hamiltonian
in a good agreement with all known experiments, ex-
hibiting a rather rapid change, as a function of N , for Si
isotopes but a quite different change for S isotopes. The
tensor-force driven shell evolution [3] plays a crucial role
in those shape transitions through the Jahn-Teller-type
effect, including a robust mechanism that favors stable
oblate shapes at sub-shell closures like 42Si. The B(E2)
values are sensitive to the tensor force. The next region
of the nuclear chart where such oblate shapes may occur
is near 78Ni.

This work was in part supported by MEXT Grant-in-
Aid for Scientific Research (A) 20244022 and for Young
Scientists (B) (21740204) and NSF grant PHY-1068217.
This work is a part of the CNS-RIKEN joint research
project on large-scale nuclear-structure calculations.
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