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The magnetic form factor of the deuteron in chiral effective field theory
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We calculate the magnetic form factor of the deuteron up to O(eP 4) in the chiral EFT expansion of
the electromagnetic current operator. The two LECs which enter the two-body part of the isoscalar
NN three-current operator are fit to experimental data, and the resulting values are of natural size.
The O(eP 4) description of GM agrees with data for momentum transfers Q2 < 0.35 GeV2.
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Introduction: In the past two decades chiral effective
field theory (χEFT) was fruitfully applied to few-nucleon
dynamics (see Refs. [1, 2] for recent reviews). Two-
nucleon potentials at next-to-next-to-next-to-leading or-
der (N3LO) in the chiral expansion were developed [3, 4]
which accurately describe low-energy scattering data and
the static properties of the deuteron. Higher-order cor-
rections to the three-nucleon force are presently under
investigation, see e.g. [10], although discussions regard-
ing non-perturbative renormalization of the Schrödinger
equation and implications for the χEFT power counting
continue, see [5–9] for samples of different views. In par-
allel to these developments in the strong sector, much ef-
fort has been devoted to pionic and electroweak reactions
in few-nucleon systems, see [11–13] for recent examples.

Electromagnetic reactions on light nuclei such as elas-
tic electron scattering, photo-/electrodisintegration and
radiative capture have been extensively studied in nu-
clear physics. In the single-photon approximation, their
theoretical description requires knowledge of the electro-
magnetic current operator, which should be constructed
consistently with the nuclear Hamiltonian. The deriva-
tion of exchange currents in χEFT was first addressed in
the seminal paper by Park et al., [14], who, however, lim-
ited themselves to threshold kinematics |q| ≪ Mπ with
Mπ denoting the pion mass. Recently, this work was ex-
tended to the general kinematics suitable to study, e.g.,
electron scattering off light nuclei at mometum transfer
of |q| of orderMπ by the JLab-Pisa [15–17] and Bochum-
Bonn groups [18, 19]. Here and in what follows, we dis-
cuss the expansion of the irreducible two-nucleon opera-
tors J0 and J in powers of P ≡ (p,mπ)/Λ with Λ denoting
the hard scale in the theory, e.g. the cutoff (∼ 600 MeV)
used in calculations. In this expansion the leading-loop
order is eP 4. However, most of the corrections to the two-
body pieces of the two-nucleon current and charge oper-
ators at this order are of isovector type and thus do not
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contribute to the deuteron form factors. In particular,
up to this order, the only two-body contributions to the

isoscalar charge density operator, J
(s)
0 emerge from the

leading relativistic corrections of one-pion range so that

J
(s)
0 is parameter free. The impact of these corrections

on the deuteron charge and quadrupole form factors, GC

and GQ is studied in Refs. [20, 21]. In these works the
deuteron wave functions obtained from χEFT potentials
at various orders were used to compute GC and GQ (see
also Refs. [22, 23] for earlier work along the same lines).
Good agreement with the compilation of elastic electron-
deuteron data from Ref. [24] was then found for both
form factors in the kinematic range Q2 < 0.35 GeV2,
provided factorization was employed in order to account
for single-nucleon structure.

On the other hand, the isoscalar two-nucleon current
operator, J(s) has two two-body contributions at order
eP 4: one from a short-distance operator and one of one-
pion range. The impact of these terms on the magnetic
moments of the deuteron and trinucleons was examined
in Ref. [25]. However, markedly more information on the
interplay of these terms with each other and with one-
body mechanisms is available via the |q|2-dependence of
observables. In this work we present a study in this
direction, using χEFT expressions for J(s) derived in
Refs. [18, 19] to extend the predictions given for GM in
Refs. [21, 23] to O(eP 4). We discuss the relevant terms
in the current operator and use the data on the magnetic
form factor of the deuteron at low values of |q|2 to deter-
mine two unknown low-energy constants (LECs). The
O(eP 4) χEFT results thereby obtained accurately de-
scribe experimental data on GM in the kinematic range
Q2 < 0.35 GeV2. This, together with the findings of
Ref. [21], provides a full set of results for elastic electron-
deuteron form factors at O(eP 4).

In the next section we describe the anatomy of the
calculation and outline the relevant terms in the two-
nucleon current operator. This is followed by a discussion
of our results, including those for the LECs. We finish
by summarizing.

Anatomy of the calculation: The magnetic form factor
of the deuteron we are focused in this work is related to
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the Breit-frame matrix element of the four-current oper-
ator Jµ according to the well-known relation

GM =
1√
2η|e| 〈1|J

+|0〉 , (1)

where J+ = J1 + iJ2 and η = |q|2/(4m2
d) with q ≡

p′
e − pe denoting the momentum transfer and md the

deuteron mass. (Since we work in the Breit frame we
have Q2 = |q|2.) The deuteron states are labelled by
the projection of its spin along the direction of q. Both
the deuteron wave functions and the current operator
appearing on the right-hand side of the above equation
are calculated order-by-order in χEFT.

We now briefly describe the χEFT expansion of the
two-nucleon current operator, Jµ, as it pertains to the
calculation of the deuteron form factors. We employ
Weinberg’s power counting throughout this work which
makes use of naive dimensional analysis to determine the
significance of various contributions. The leading con-
tribution to the charge density, J0, is given by an A0

photon coupling to a point proton at order e. Nucleon-
structure corrections start contributing to the one-body
current at order eP 2 [next-to-leading order (NLO)]. The
first isoscalar two-body contribution is generated from
a tree-level pion-exchange diagram at order eP 4, pro-
vided the nucleon mass is counted as mN ∼ Λ2/Mπ ≫ Λ
[18, 19] [41]. This correction is associated with a rela-
tivistic correction to the one-pion-exchange part of the
NN potential. There are numerous other corrections to
the two-body part of the charge operator at leading-loop
order, eP 4, from one- and two-pion exchange diagrams
and from pion loops involving the lowest-order contact
interactions, but this is the only isoscalar effect. The
explicit form of all terms can be found in Refs. [18, 19].

The chiral expansion of the three-current starts at or-
der eP with the single-nucleon contributions. The first
two-body terms emerge from tree-level one-pion exchange
diagrams at order eP 2 [NLO]. The next two-body correc-
tions to J occur at order eP 4 from pion loops and tree di-
agrams involving higher-order vertices from the effective
Lagrangian. The two-pion exchange contributions are
parameter-free [18], while the one-pion exchange terms
depend on the LECs d̄8, d̄9, d̄18, d̄21 and d̄22 entering

L(3)
πN [14, 26–28]. However, the only long-range two-body

mechanism in J(s) at this order is proportional to d̄9.
While this LEC could, in principle, be constrained by
pion photoproduction data, in practice these data pro-
vide little information on d̄9 [29, 30].

GM is of particular interest at O(eP 4) because it is
there that the first short-distance NN physics not de-
termined by NN scattering and gauge invariance ap-
pears. This is represented by the simplest M1 isoscalar
four-nucleon-one-photon contact term in the χEFT La-
grangian, which is of the form [19, 23, 31]:

LM1 =
eL2

2

(

N † ǫijkσiFjk N
) (

N †N
)

. (2)

The low-energy constant (LEC) L2 that appears in
Eq. (2) must be extracted from data on electromagnetic
reactions in the two-nucleon system.
The combination of these two effects yields a two-body

isoscalar current operator J(s) [18, 19]:

J
(s)
2B = 2e

gA i

F 2
π

d9 τ 1 · τ 2
σ2 · q2

q22 +M2
π

[q1 × q]

+ ieL2 (σ1 + σ2)× q1 + (1 ↔ 2) , (3)

where q labels the photon momentum and q1/2 labels
the momentum transfer on nucleon one/two respectively.
Since GM is determined completely by the one-body part
of J(s) up to O(eP 3) the total form factor is thus

GM =
1√
2η|e| 〈1|J

(s)
1B

+
+ J

(s)
2B

+
|0〉. (4)

Here we use factorization to compute J1B, i.e. we write:

J
(s)
1B

+
=

|e|
M

[G
(s)
E (Q2)2p+ + iG

(s)
M (Q2)(σ1 × q)+], (5)

with p the momentum of the struck nucleon, and G
(s)
E

and G
(s)
M the isoscalar single-nucleon form factors, for

which we take the parameterization of Ref. [32]. The use

of this ansatz for the one-body part of J(s)+ is equivalent
(up to corrections that begin only two orders beyond the
order to which we work) to making a χEFT expansion for
the “body” form factors DM and DE [33]. This allows us
to focus on the momentum transfer at which the χEFT
expansion for the NN current operator J breaks down,
without having to worry whether the theory is doing a
good job of describing isoscalar nucleon structure.
Results: We now evaluate the matrix elements in

Eq. (4) with a variety of χEFT deuteron wave functions
computed with the NLO and NNLO χEFT potentials
and different values of the cutoffs Λ in the Lippmann-
Schwinger equation and Λ̃ in the spectral function. The
result found for GM with LO χEFT wave functions and
the leading piece of J(s), denoted here as O(eP ), was
computed in Ref. [34]. Corrections to this come both
from higher-order pieces of the NN potential, V , which
affect the wave function, and from the corrections to J(s)

discussed in the previous section. The NNLO χEFT po-
tential includes all effects up to O(P 3) relative to leading
(in this counting), so its deuteron wave function, when
combined with the O(eP 4) J(s), yields a χEFT calcula-
tion for GM which includes all effects up to O(eP 4).
The pertinent matrix elements are computed via

Monte-Carlo (MC) integration. To increase efficiency,
we use importance sampling with the weight function of
Ref. [35]:

p (k ) ≡ p(k) =
(r − 3)(r − 2)(r − 1)

8π

Cr−3

(k + C)r
. (6)

The functional form of p(k) is chosen such that the weight
function is maximal at the origin, reflecting the large
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FIG. 1: (Color online) The magnetic formfactor GM as a
function of |q|. Experimental data for the magnetic moment is
from [36]. The remaining data are from the parameterization
of [37] (upward triangles) and scattering experiments reported
in [38] (downward triangles), [39] (squares) and [40] (solid
dots). The light (dark) band represents the results with NLO

(NNLO) wave functions, and J(s) computed up to O(eP 4).

S-wave component of the deuteron wave function. The
parameters C and r control the vanishing of the weight
function at large momenta and are tuned to optimal val-
ues (in terms of the efficiency of the MC integration)
by calculating the expectation value of the one-pion ex-
change potential yielding C = 1 GeV and r = 11.

As in Ref. [35] we perform a path average over sev-
eral runs. We use 2730 sample points and and the path
average is performed for 3000 runs. Analysis of the run-
to-run fluctuations indicates a final answer with better
than 1% precision throughout the momentum range of
0 − 800 MeV. At several points we compared this MC
answer to calculations using quadrature methods, and
always found agreement within the precision claimed.

We adopt the following procedure to determine the val-
ues of the two LECs entering J(s). First, we fix the value
of L2 for a given d̄9 by demanding that the magnetic mo-
ment of the deuteron is reproduced. We then perform a
χ2-fit to the experimental data for |q| < 400 MeV (in-
cluding four points from the parametrization of Ref. [37])
to determine d̄9 . Our attempts to use even lower-|q| data
for this fit resulted in unstable answers, reflecting the in-
sensitivity of GM to this LEC at small values of |q|.
The results of this procedure are shown in Fig. 1.

The light/blue (dark/red) band is obtained using wave
functions computed with the NLO (NNLO) χEFT po-
tential. The width of the band shows the variation of
the prediction as Λ and Λ̃ are changed in the range
Λ = 400 . . .550 MeV (Λ = 450 . . . 600 MeV) at NLO

(NNLO) and Λ̃ = 500 . . .700 MeV. The cutoff varia-
tion is reduced at NNLO, and the data well described
for Q2 < 0.35 GeV2.
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FIG. 2: (Color online) The magnetic formfactor GM as a
function of |q|. The light (dark) band represents the results
with NLO (NNLO) wave functions using the impulse approx-
imation. The dashed/dotted lines are the contributions from

two-body pieces of J(s) (light: NLO, dark: NNLO), as de-
scribed in the text. For remaining notation see Fig. 1.

In order to assess the momentum transfer at which
the χEFT expansion for J(s) breaks down, in Fig. 2 we
show the size of different contributions to the final result.
This time the bands represent the impulse approxima-
tion result obtained with NLO (light/blue) and NNLO
(dark/red) wave functions. The dotted (dashed) line is

the effect from the piece of J
(s)
2B that is proportional to

L2 (d̄9). For both two-body matrix elements, we show
results averaged over the five cutoff combinations con-
sidered, with the light blue lines showing the NLO case,
and the dark red lines obtained with NNLO wave func-
tions. We estimate the breakdown scale of the EFT ex-
pansion by values of momentum transfer at which the
O(eP 4) two-body contributions start becoming compa-
rable to the effect of the O(eP ) (impulse-approximation)
piece of the current. Fig. 2 shows that the smaller two-
body contributions to GM found with the NNLO wave
function delay the breakdown of the expansion. Even
so, we would infer a breakdown scale |q| = 600 MeV,
as there the short-distance effect ∼ L2 becomes equal in
magnitude to the impulse-approximation result.

In Table I we present the values of d̄9 and L2 obtained
in our fits. Small values of d̄9 are preferred, which is
consistent with the findings of Ref. [29]. Reassuringly, the
inferred values of d̄9 show only a very mild dependence
on the cutoffs as compared to the expected natural size of
this LEC, |d̄9| ∼ 1 GeV−2. In contrast, the values of L2

do depend on the choice of the regulator employed for the
NN potential, as one would expect. It is comforting to
see that all obtained values of L2 are natural with respect
to the cutoff scale Λ employed in these calculations. The
values of L2 reported in the table show that two-body
effects in GM play a larger role in the calculation with
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NLO deuteron wave functions, as seen in Fig. 2.
Summary: The first two-body effects in the deuteron

magnetic form factor GM , occur at O(eP 4) in χEFT,
i.e. three orders beyond leading. Inclusion of these
mechanisms in the computation of GM improves the de-
scription of data, and allows exact reproduction of the
deuteron magnetic moment, which otherwise is underpre-
dicted in χEFT. Experimental data is then well described
for Q2 < 0.35 GeV2, and the chiral expansion for GM is
found to converge well for Q2 < 0.25 GeV2, provided
that the NNLO wave functions of Ref. [4] are employed.
Finally, we note that the proposal of Ref. [6] to change
the scaling of short-distance χEFT operators in order to
ensure proper renormalization of the theory does not sig-
nificantly alter the relative importance of such operators
in the 3S1-

3D1 channel [8]. Therefore we expect that the
conclusions of this study will be quite robust with respect
to developments on this front.
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Order Λ/Λ̃ [MeV] d̄9 [GeV−2] L2 [GeV−4]

NLO 400/500 −0.010 0.243

NLO 400/700 −0.011 0.249

NLO 550/500 0.016 0.605

NLO 550/600 0.017 0.731

NLO 550/700 0.018 0.892

NNLO 450/500 −0.011 0.188

NNLO 450/700 −0.009 0.173

NNLO 550/600 0.005 0.089

NNLO 600/500 0.001 0.113

NNLO 600/700 −0.001 0.028

TABLE I: Values for d̄9 and L2 found by fitting data up to
|q| = 400 MeV, using different values of the cutoffs.
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