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Background: Measurements of neutron radii provide important constraints on the isovector
sector of nuclear density functionals and offer vital guidance in areas as diverse as atomic parity
violation, heavy-ion collisions, and neutron-star structure. Purpose: To assess the impact of spin-
orbit currents on the electromagnetic- and weak-charge radii of a variety of nuclei. Special emphasis
is placed on the experimentally accessible electroweak skin, defined as the difference between weak-
charge and electromagnetic-charge radii. Methods: Two accurately calibrated relativistic mean
field models are used to compute proton, neutron, charge, and weak-charge radii of a variety of
nuclei. Results: We find that spin-orbit contributions to the electroweak skin of light neutron-rich
nuclei, such as 22O and 48Ca, are significant and result in a substantial increase in the size of the
electroweak skin relative to the neutron skin. Conclusions: Given that spin-orbit contributions
to both the charge and weak-charge radii of nuclei are often as large as present or anticipated
experimental error bars, future calculations must incorporate spin-orbit currents in the calculation
of electroweak form factors.

PACS numbers: 21.10.Gv, 25.30.Bf, 24.80.+y,

I. INTRODUCTION

Recently the Lead Radius EXperiment (“PREX”) at the Jefferson Laboratory used parity violating electron scat-
tering to probe the weak-charge density of 208Pb [1, 2]. In Born approximation, the parity violating asymmetry—the
fractional difference in cross sections for positive and negative helicity electrons—is directly proportional to the weak
form factor, which is the Fourier transform of the weak-charge density. Although for a heavy nucleus one must in-
clude the effects of Coulomb distortions, these have been accurately calculated [3, 4]. Thus, parity-violating electron
scattering can be used with as much confidence to measure the weak-charge form factor of the nucleus as conventional
electron scattering has been used throughout the years to accurately map the electromagnetic charge distribution.
Many details of a practical parity-violating experiment, along with a number of theoretical corrections, have been
discussed in Ref. [5]. PREX demonstrated excellent control of systematic errors and showed that accurate and model
independent measurements of weak-charge densities are now feasible.

In this paper we focus on the electroweak skin of a nucleus which we define as

Rwskin≡Rwk −Rch , (1)

where Rwk and Rch are the root-mean-square radii of the weak-charge and electromagnetic-charge densities, respec-
tively, Note that unlike the point-neutron and point-proton densities, the weak-charge density—the source for the Z0

weak boson—and the electromagnetic-charge density are physical observables. For simplicity, we refer to Rwskin as
the weak skin. Given that the charge radius of 208Pb is very accurately known [6], the determination of the weak form
factor of 208Pb by the PREX collaboration resulted in the following value for its weak skin [2]:

Rwskin(208Pb) = 0.32± 0.18(exp)± 0.03(mod) fm . (2)

Note that the experimental error (“exp”) includes both statistical and systematic errors while the small model error
(“mod”) describes the sensitivity in the extraction of Rwk due to uncertainties in the surface thickness [2]. Although the
statistical accuracy of the measurement was compromised by unforeseen technical difficulties, a follow-up measurement
(“PREX-II”) designed to achieve the original±0.05 fm goal has been proposed and accepted [7]. Moreover, a fresh
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new proposal has been made to use parity-violating electron scattering to measure the weak form factor of 48Ca
at a momentum transfer of q = 0.778 fm−1. The Calcium Radius EXperiment (“C-REX”) is designed to constrain
the weak-charge radius of 48Ca to an accuracy of ±0.03 fm [8]. A measurement in a smaller neutron-rich nucleus
is desirable because the form factor can be measured at a larger momentum transfer where the parity-violating
asymmetry is larger; for comparison, the weak form factor in 208Pb was measured at q = 0.475 fm−1. In addition,
a precise measurement of the weak radius of 48Ca may have a significant impact on nuclear structure as it provides
information that is independent and complementary to that found in 208Pb [9]. Furthermore, it is reasonable to expect
first-principle calculations of the structure of 48Ca where the role of 3-neutron forces may be particularly interesting
and important. Finally, in conjunction with PREX and PREX-II, C-REX will provide vital guidance in areas as
diverse as atomic parity violation [10, 11], heavy-ion collisions [12–16], and neutron-star structure [17–22]. Given the
expected accuracy of these pioneering experiments, it is critical to assess the role of “sub-leading” contributions to
the weak skin of these nuclei. Thus, it is the main goal of the present contribution to quantify the impact of spin-
orbit currents on the electroweak skin of a variety of nuclei. We note that meson-exchange currents—which are not
considered in this contribution—can change the distribution of both electromagnetic and weak charge. For example
ρπγ and ωσγ meson-exchange currents (MEC) are known to modify significantly the electromagnetic form factors of
the deuteron [23]. However, heavy mesons are unlikely to transport charge over large distances, so we do not expect
significant MEC corrections to either Rch or Rwk for a heavy nucleus. Yet MEC corrections could be more important
for the case of the weak skin (Rwk−Rch) and this deserves further consideration.

The result depicted in Eq. (2) represents a true experimental milestone. It provides direct experimental evidence
that the weak-charge density in 208Pb extends further out than the corresponding electromagnetic-charge density.
That is, there is an enhancement of weak charges (which are dominated by neutrons) relative to electromagnetic
charges (which are dominated by protons) near the nuclear surface. A quantity that is closely related to the weak
skin of a heavy nucleus is the neutron skin. In analogy to the weak skin, the neutron skin is defined as the difference
between the point neutron Rn and point proton Rp root-mean-square radii:

Rnskin≡Rn −Rp . (3)

The weak and neutron skins are closely related to each other because the weak charge of a neutron (≈−1) is much
larger than the weak charge of the proton (≈ 0.07) largely in the same way as the electromagnetic charge of the
proton is much larger than that of the neutron. Indeed, to a good approximation the weak form factor of a single
nucleon equals the negative of the electromagnetic form factor of its isospin partner (see Appendix). The structure
of a nucleus is often modeled in terms of point nucleons interacting via strong nuclear potentials or meson exchanges.
Therefore, nuclear-structure calculations provide predictions for the neutron skin whereas it is the weak skin that is
experimentally accesible. In the present paper we calculate the difference between Rwskin and Rnskin that originates
from the internal structure of the nucleon. The internal structure of the nucleon is contained in a variety of well-
measured single nucleon electromagnetic and weak form factors. The electromagnetic size of the nucleon leads to a
charge radius of the nucleus Rch that is slightly larger than the point proton radius Rp due (mostly) to the charge
radius of a single proton rp (R2

ch≈R2
p+r2p). Similarly, the weak radius Rwk is slightly larger than Rn (mostly) because

of the weak-charge radius of a single neutron. Note that we have reserved the use of upper-case R to nuclear radii
and of lower-case r to the radii of single nucleons.

The manuscript has been organized as follows. In Sec. II we outline the formalism used to calculate weak and
electromagnetic charge form factors and densities. These form factors are computed from one-body currents that
include weak and electromagnetic single-nucleon form factors. We discuss in detail the contribution to both of the
form factors from the spin-orbit currents. For a recent reference on the impact of spin-orbit currents on the charge
density of light nuclei see Ref. [24]. However, to our knowledge the role of spin-orbit currents on the weak-charge
density has never been studied. In Sec. III we present results for proton, neutron, charge, and weak radii for a variety
of nuclei. Spin-orbit corrections are particularly large for light nuclei and we observe a significant increase in the weak
skin of these nuclei relative to their neutron skin. We offer our conclusion in Sec. IV.

II. FORMALISM

We start the formalism by writing the most general form of the single-nucleon matrix elements of the electroweak
current consistent with Lorentz covariance and parity invariance. That is [25],

〈N(p′,s′)|ĴµEM|N(p,s)〉 = U(p′,s′)
[
F1γ

µ + iF2σ
µν qν

2M

]
U(p,s) , (4a)

〈N(p′,s′)|ĴµNC|N(p,s)〉 = U(p′,s′)
[
F̃1γ

µ + iF̃2σ
µν qν

2M

]
U(p,s) , (4b)
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where U(p,s) are on-shell nucleon spinors, q≡ p′−p is the four momentum transfer to the nucleon, and F1,2(F̃1.2)
are electromagnetic (weak-neutral vector) Dirac and Pauli form factors, respectively. Note that the axial-vector
component of the weak neutral current makes no contribution to the elastic form factor of a nuclear ground state
of definite parity. As can be seen from the above equations, the formal structure of the vector current is the same
regardless of whether one considers electromagnetic or weak matrix elements or whether one considers protons or
neutrons. Thus, for illustration purposes we focus the derivation on the proton contribution to the charge form factor.

A. Charge Form Factor

Throughout this contribution we will assume the validity of the impulse approximation, namely, that the single-
nucleon form factors defined in Eq. (4) may be used without modification in the nuclear medium. Moreover, we rely
on an alternative description of the single-nucleon electromagnetic current based on the electric and magnetic Sachs
form factors rather than on F1,2. The two sets of form factors are related as follows:

GE(Q2) ≡ F1(Q2)− τF2(Q2) , (5a)

GM(Q2) ≡ F1(Q2) + F2(Q2) , (5b)

where Q2 =−qµqµ>0 and τ= Q2/4M2. In turn, the electromagnetic current operator may be written as

ĴµEM = GEγ
µ +

(
GM−GE

1 + τ

)[
τγµ + iσµν

qν
2M

]
. (6)

Given that we are interested in computing the elastic form factor of spherical nuclei, only the density (i.e., the zeroth
component of the current) needs to be consider. Such density is given by

Ĵ0
EM ≡ ρEM = GEγ

0 +

(
GM−GE

1 + τ

)[
τγ0 + γ0

γ · q
2M

]
. (7)

Thus, in the impulse approximation, the charge form factor of the nucleus may written as follows:

ZFch(q) = GE(q2)FV(q) +

(
GM(q2)−GE(q2)

1 + τ

)[
τFV(q) +

q

2M
FT(q)

]
, (8)

where Z is the number of protons and the charge form factor of the nucleus has been normalized to Fch(q= 0) = 1.
Note that all nuclear structure information is contained in the elastic (point-nucleon) vector and tensor form factors
defined as

FV(q) =

∫
ψ̄(r)eiq·rγ0ψ(r)d3r , (9a)

FT(q) =

∫
ψ̄(r)eiq·rγ0γ · q̂ψ(r)d3r . (9b)

We now proceed to evaluate these two nuclear form factors using a relativistic mean-field approximation.

B. Relativistic Mean-Field Approximation

In a relativistic mean-field approximation, the eigenstates of the Dirac equation corresponding to a spherically
symmetric ground state may be classified according to a generalized angular momentum κ [26]. That is, the single-
particle solutions of the Dirac equation may be written as

Unκm(r) =
1

r

(
gnκ(r)Y+κm(r̂)
ifnκ(r)Y−κm(r̂)

)
, (10)

where n and m are the principal and magnetic quantum numbers, respectively, and the spin-spherical harmonics are
defined as follows:

Yκm(r̂) ≡ 〈r̂|l 12jm〉 ; j = |κ|− 1

2
; l =

{
κ , if κ > 0;

−1− κ , if κ < 0.
(11)
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Note that for the phase convention adopted in Eq. (10) (namely, the relative factor of i) both g(r) and f(r) are real
functions in the case of real mean-field potentials. Further, the following spinor normalization has been used:∫

U†nκm(r)Unκm(r)d3r =

∫ ∞
0

[
g2nκ(r) + f2nκ(r)

]
dr = 1 . (12)

Thus, in a mean-field approximation the vector and tensor form factors may be expressed as a sum over occupied
single-particle states. That is,

FV(q) =
∑
nκm

∫
Unκm(r)j0(qr)γ0 Unκm(r)d3r , (13a)

FT(q) =
∑
nκm

∫
Unκm(r)j

1
(qr) iγ0γ · r̂Unκm(r)d3r . (13b)

Here j
l
(qr) are spherical Bessel functions and the sum over single-particle quantum numbers {nκm} is restricted

to the occupied orbitals. Note that by virtue of the spherical symmetry of the nuclear form factors, all explicit
dependence on q̂ has been eliminated through an “angle-average” (i.e., by integrating over dq̂/4π). This fact leads
to a considerable simplification and enables one to readily perform the integrals over the remaining solid angle. One
finally obtains:

FV(q) =
∑
nκ

(2j+1)

∫ ∞
0

[
g2nκ(r) + f2nκ(r)

]
j
0
(qr)dr , (14a)

FT(q) =
∑
nκ

2(2j+1)

∫ ∞
0

gnκ(r)fnκ(r)j
1
(qr)dr . (14b)

Note that for a spherically symmetric ground state there is a third independent “scalar” form factor that is identical
to the vector one except for a relative minus sign between upper and lower components. Given the form of the
electromagnetic current adopted in Eq. (4), and ignoring possible off-shell ambiguities, the scalar form factor plays
no role in the present discussion.

In summary, nuclear charge and weak form factors—both normalized to one at q=0—are now obtained from Eq. (8)
by properly adding proton and neutron contributions. That is,

ZFch(q) =
∑
i=p,n

(
G i

E(q2)F i
V(q) +

(
G i

M(q2)−G i
E(q2)

1 + τ

)[
τF i

V(q) +
q

2M
F i
T(q)

])
, (15a)

QwkFwk(q) =
∑
i=p,n

(
G̃ i

E(q2)F i
V(q) +

(
G̃ i

M(q2)−G̃ i
E(q2)

1 + τ

)[
τF i

V(q) +
q

2M
F i
T(q)

])
, (15b)

where Qwk is the weak-vector charge of the nucleus (see Appendix).

C. Electromagnetic and Weak Charge Radii

The experimentally measurable electromagnetic Rch and weak Rwk charge radii are obtained from the slope of the
respective form factors at the origin. That is,

Rch = −6
dFch

dq2

∣∣∣
q=0

and Rwk = −6
dFwk

dq2

∣∣∣
q=0

. (16)

Although in the next section we provide results in the form of tables and figures, it is illuminating to discuss the
particle content of both Rch and Rwk. We start with the former. According to Eq. (15a), the electromagnetic charge
form factor to first order in q2 may be written as follows:

ZFch(q) = Z

(
1− q2

6
R2
p

)(
1− q2

6
r2p

)
+

q2

4M2
κpZ(1 + fp

T
) + . . .

+ N

(
1− q2

6
R2
n

)(
0− q2

6
r2n

)
+

q2

4M2
κnN(1 + fn

T
) + . . . (17)
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where r2p,n and κp,n are single-nucleon electromagnetic mean-square radii and anomalous magnetic moments, respec-
tively. Note that we have defined

fp
T

=
4M

3Z

∑
nκ

(2j+1)

∫ ∞
0

rgpnκ(r)fpnκ(r)dr , (18a)

fn
T

=
4M

3N

∑
nκ

(2j+1)

∫ ∞
0

rgnnκ(r)fnnκ(r)dr . (18b)

Using Eq. (17) one can readily obtained an expression for the electromagnetic charge radius of the nucleus. That is,

R2
ch = R2

p + r2p + 〈r2p〉so +
N

Z

(
r2n + 〈r2n〉so

)
, (19)

where “spin-orbit” contributions to the charge radius have been defined as follows:

〈r2p〉so = − 3κp
2M2

(1 + fp
T

) , (20a)

〈r2n〉so = − 3κn
2M2

(1 + fn
T

) . (20b)

In the context of a relativistic mean-field approximation—where both upper and lower components are self-consistently
generated from the Hartree equations—there are no further simplifications. However, one can shed light into the nature
of the spin-orbit contribution by generating the lower component from the upper component by assuming a free-space
relation. That is,

fnκ(r) =
1

2M

( d
dr

+
κ

r

)
gnκ(r) . (21)

In this free-space limit an enormous simplification ensues, as the tensor integrals given in Eq. (18) can be evaluated
in closed form. In this limit the spin-orbit contributions to the charge radius become

〈r2p〉so = − 3κp
2M2

(1 + fp
T

)→ − 2κp
M2Z

∑
nκ

sgn(κ)l(l + 1) , (22a)

〈r2n〉so = − 3κn
2M2

(1 + fn
T

)→ − 2κn
M2N

∑
nκ

sgn(κ)l(l + 1) . (22b)

The above results indicate that: (a) there is no contribution from s-states and (b) there is an exact cancellation
between spin-orbit partners, which have the same l but opposite signs for κ. Thus, in the particular case of 48Ca the
only spin-orbit contribution comes from the “unpaired” 1f7/2 neutron orbital. For this case we obtain the following
figure of merit:

〈r2〉so ≡
N

Z
〈r2n〉so =

6κn
5M2

≈ −0.101 fm2 . (23)

Thus, the spin-orbit contribution amounts to approximately −0.015 fm of the total charge radius of 48Ca, which is
significantly larger than the quoted experimental error [6]. Note that in a self-consistent RMF approximation the
cancellation between spin-orbit partners, although still large, will be incomplete. However, there is an additional
cancellation between neutron and proton orbitals with the same quantum numbers due to their almost equal but
opposite anomalous magnetic moments. Ultimately, the spin-orbit contribution is dominated by the unpaired orbitals.

To obtain the weak-charge radius Rwk one proceeds in an analogous manner but now starting from Eq. (15b).
Expanding the weak charge form factor to first order in q2 one obtains

QwkFwk(q) = Z

(
1− q2

6
R2
p

)
gpv

(
1− q2

6
r̃2p

)
+

q2

4M2
κ̃pZ(1 + fp

T
) + . . .

+ N

(
1− q2

6
R2
n

)
gnv

(
1− q2

6
r̃2n

)
+

q2

4M2
κ̃nN(1 + fn

T
) + . . . (24)

where gpv = 0.0721 and gnv = −0.9878 are (radiatively-corrected) single-nucleon weak-vector charges [2, 25]. Note
that the weak-charge radii r̃2p,n and anomalous weak-magnetic moments κ̃p,n may be expressed exclusively in terms
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of the corresponding electromagnetic and strange-quark quantities, as indicated in the Appendix. In this way, the
weak-charge radius of the nucleus can now be readily extracted from Eq. (24). That is,

R2
wk =

Z

Qwk

[
gpv
(
R2
p + r̃2p

)
+ 〈r̃2p〉so

]
+

N

Qwk

[
gnv
(
R2
n + r̃2n

)
+ 〈r̃2n〉so

]
(25)

where spin-orbit contributions to the weak-charge radius are defined in analogy to Eq. (22):

〈r̃2p〉so = − 3κ̃p
2M2

(1 + fp
T

) , (26a)

〈r̃2n〉so = − 3κ̃n
2M2

(1 + fn
T

) . (26b)

Given that Qwk =Zgpv +Ngnv (with gpv ≈0 and gnv ≈−1) the weak-charge radius of the nucleus Rwk is dominated by
the contribution from the neutron radius Rn.

We close this section by providing a figure of merit for the weak-charge radius of 48Ca by neglecting the strange-
quark contribution and by assuming the free-space relation in the evaluation of the tensor integrals [Eq. (18)]. We
obtain:

R2
wk =

Z

Qwk

[
gpvR

2
p + gpvr

2
p + gnvr

2
n

]
+

N

Qwk

[
gnvR

2
n + gnvr

2
p + gpvr

2
n +

6

7M2
(gnvκp + gpvκn)

]
. (27)

Note that in the above expression single-nucleon mean-square radii (r2p,n) as well as anomalous magnetic moments

(κp,n) are purely electromagnetic. Assuming (point) proton and neutron radii for 48Ca as predicted by the FSUGold
model [27] (or “FSU” for short) we obtain

Rwk =3.679(3.669) fm , (28)

where the quantity in parenthesis represents the FSU prediction without including the spin-orbit contribution that
amounts to:

〈r̃2〉so ≡
N

Qwk
〈r̃2n〉so =

N

Qwk

6(gnvκp + gpvκn)

7M2
≈ +0.077 fm2 . (29)

Given that the weak spin-orbit contribution has the opposite sign as the corresponding electromagnetic one [see
Eq. (23)], the spin-orbit contribution to the weak skin of 48Ca is significant; of about 0.03 fm (see Table II). This is
within the projected accuracy of the proposed C-REX experiment [8].

D. Electroweak Nucleon Form Factors

Since our main objective is the calculation of electromagnetic- and weak-charge radii, we adopt a simple dipole
parametrization of the single nucleon form factors that is accurate at moderate values of the momentum transfer.
That is, we define electromagnetic single nucleon form factors as follows [28]:

G p
E(Q2) =

G p
M(Q2)

µp
=
Gn

M(Q2)

µn
= GD(Q2) , (30)

where the dipole form factor is given by

GD(Q2) =

(
1 +

Q2

12
r2p

)−2
. (31)

Here r2p=0.769 fm2 is the mean-square proton radius, µp=2.793 the proton magnetic moment, and µn=−1.913 the

neutron magnetic moment. For the electromagnetic neutron form factor—which vanishes at Q2 = 0—we rely on the
following Galster parametrization [28]:

Gn
E (Q2) = −

(
Q2r2n/6

1 +Q2/M2

)
GD(Q2) , (32)
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where r2n = −0.116 fm2 is the electromagnetic mean-square radius of the neutron. Note that all form factors are
expressed exclusively in terms of experimentally determined single nucleon mean-square radii and magnetic mo-
ments [29]. Finally, given that the strange-quark form factors of the nucleon are small at small momentum transfers,
we will ignore them in this contribution. In this case, the weak-charge form factors of the nucleon can be expressed
exclusively in terms of the corresponding electromagnetic form factors given here and the weak charges of the nucleon
(see Appendix). For example, using Eqs.(A.8) and (A.9) the weak mean-square radii and magnetic moments are given
by

r̃2p = 2.358 fm2 , µ̃p = +2.091 ; (33a)

r̃2n = 0.777 fm2 , µ̃n = −2.897 . (33b)

III. RESULTS

In this section we present results—primarily proton, neutron, charge, and weak-charge radii—for a variety of
nuclei as predicted by two accurately calibrated relativistic mean field models: FSU [27] and NL3 [30, 31]. We start by
displaying in Table I the contribution from the individual single-particle orbitals in 48Ca to the charge and weak-charge
spin-orbit radius. For illustration purposes, the predictions have been made using only the FSU parametrization. The
quantities in parenthesis represent the results obtained by assuming a free-space relation between upper and lower
components, as indicated in Eq. (21). Qualitatively, all major trends in the results may be understood using this
simplified case. In particular, the results displayed in parenthesis in Table I: (i) are independent of the dynamics, (ii)
scale as l(l+1), and (iii) display an exact cancellation among spin-orbit partners [see Eqs. (22)]. Thus, in this limit
the sole contribution to the spin-orbit radius comes from unpaired spin-orbit partners (an unpaired 1f7/2 neutron

orbital in the case of 48Ca). Given the natural ordering of spin-orbit partners in nuclei, namely, the κ<0 orbital more
deeply bound than the κ>0 orbital, the spin-orbit contribution to the charge radius is always negative in the case of
unpaired neutrons. Note that the situation is reversed in the case of protons due to an anomalous magnetic moment
of opposite sign to that of the neutron. Moreover, in the case of the weak-charge radius, the spin-orbit contribution
is always of opposite sign—for both neutrons and protons—than in the electromagnetic case. Indeed, for a given
nucleon orbital the ratio of spin-orbit contributions is given by the following simple expression:

〈r̃2p,n〉so
〈r2p,n〉so

=

(
κ̃p,n
κp,n

)(
Z

Qwk

)
≈
(
κn,p
κp,n

)(
Z

N

)
< 0 . (34)

Hence, although in general small, charge and weak-charge spin-orbit radii contribute with the same sign to the weak
skin of a nucleus. For example, as indicated in Table II the spin-orbit contribution amounts to about 0.04 fm in the
case of the weak skin of 22O and to about 0.03 fm for 48Ca.

Also shown in Table I are predictions from the self-consistent RMF approach, where now both upper and lower
components are dynamically generated. The qualitative trends discussed previously are clearly preserved, although
now the cancellation among spin-orbit partners is incomplete. For example, the contributions from the 1p orbitals differ
from each other by about 55-60%. However, although the spin-orbit cancellation is incomplete, there is an additional
cancellation stemming from the nucleon anomalous magnetic moments (which are nearly equal in magnitude but
opposite in sign). Ultimately, the spin-orbit radius continues to be dominated by the unpaired 1f7/2 neutron orbital.
Note, however, that the exact RMF prediction exceeds by about 30% the analytic result obtained from assuming the
free-space relation. This enhancement is due to the reduction of the effective nucleon mass in the nuclear medium.

In Table II predictions are displayed for the root-mean-square radii for a variety of magic (or semi-magic) nuclei as
predicted by the NL3 and FSU models. Also shown (last three entries) are nuclei of relevance to the atomic-parity
violating program [11]. These nuclei are relevant as they are members of long chains of naturally occurring isotopes
that help eliminate uncertainties in the atomic theory by forming suitable ratios of parity-violating observables. By
doing so, uncertainties in neutron radii become the limiting factor in the search of physics beyond the standard model.
Note that the NL3 and FSU models—although both accurately calibrated—predict large differences in neutron radii.
However, we caution the reader that in the case of semi-magic and open-shell nuclei, such as 118Sn, 138Ba, 158Dy,
and 176Yb, nuclear deformation and pairing correlations—which have not been included—may play an important
role. Moreover, although accurately calibrated, note that most mean-field models (including the ones used here) are
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nlj (κ) 〈r2p〉so 〈r2n〉so 〈r2〉so
1s1/2 (−1) +0.570(+0.000) −0.648(+0.000) −0.078(+0.000)

1p3/2 (−2) +3.107(+1.583) −3.409(−1.690) −0.302(−0.107)

1p1/2 (+1) −1.997(−1.583) +2.113(+1.690) +0.116(+0.107)

1d5/2 (−3) +7.138(+4.750) −7.710(−5.069) −0.572(−0.319)

1d3/2 (+2) −6.205(−4.750) +6.613(+5.069) +0.408(+0.319)

2s1/2 (−1) +0.178(+0.000) −0.177(+0.000) +0.001(+0.000)

1f7/2 (−4) +0.000(+0.000) −13.042(−10.138) −13.042(−10.138)

Total +2.791(+0.000) −16.260(−10.138) −13.469(−10.138)

nlj (κ) 〈r̃2p〉so 〈r̃2n〉so 〈r̃2〉so
1s1/2 (−1) −0.489(+0.000) +0.494(+0.000) +0.005(+0.000)

1p3/2 (−2) −2.669(−1.360) +2.595(+1.286) −0.074(−0.074)

1p1/2 (+1) +1.716(+1.360) −1.608(−1.286) +0.108(+0.074)

1d5/2 (−3) −6.132(−4.081) +5.869(+3.859) −0.263(−0.222)

1d3/2 (+2) +5.331(+4.081) −5.034(−3.859) +0.297(+0.222)

2s1/2 (−1) −0.153(+0.000) +0.135(+0.000) −0.018(+0.000)

1f7/2 (−4) +0.000(+0.000) +9.928(+7.717) +9.928(+7.717)

Total −2.396(+0.000) +12.379(+7.717) +9.983(+7.717)

TABLE I: Contributions from the individual single-particle orbitals to the spin-orbit component of the mean square charge
radius (upper table) and weak-charge radius (lower table) of 48Ca. Mean square radii are expressed in units of 10−2 fm2 and
were generated using the FSU interaction. Quantities displayed in parenthesis have been computed using the free-space relation
given in Eq. (21).

unable to predict with high accuracy charge radii throughout the nuclear chart. Indeed, sometimes even trends along
an isotopic chain are difficult to reproduce; particularly noteworthy is the case of 40Ca and 48Ca, where the charge
radius of the former exceeds (slightly) the one of the latter [6].

The first three columns of numbers in Table II provide predictions for the point-proton, point-neutron, and charge
radii of several nuclei. To a large extent these results are expected and in some particular cases (such as 208Pb) have
been extensively discussed. For example, given that the charge form factor of many of these nuclei has been accurately
measured via (parity conserving) elastic electron scattering, this information—mostly in the form of charge radii—has
been incorporated into the calibration of the RMF models. Thus, the predictions of both models for charge radii are in
fairly good agreement (e.g., they differ by only 0.009 fm in the case of 208Pb). In contrast, the lack of reliable neutron
form factors leaves the isovector sector of the relativistic functionals largely unconstrained, thereby generating large
differences in the predictions of neutron radii (e.g., 0.064 fm, or more than 1%, in the case of 208Pb). Fortunately, the
prospects of constraining the isovector sector through the measurement of neutron-radii are very good. Indeed, the
vigorous and highly successful parity-violating program at JLAB has recently provided the first model-independence
evidence in favor of a weak skin in 208Pb. Moreover, a follow-up measurement has been approved to achieve the
original±0.05 fm goal (PREX-II) and a fresh new one (C-REX) has been proposed to constrain the neutron radius
of 48Ca to±0.03 fm. It is therefore critical and timely to assess the impact of the spin-orbit corrections on the weak
radius of these nuclei—which until now has never been considered.

Given the enormous cancellation among spin-orbit partners and proton-neutron orbitals with the same quantum
numbers, the spin-orbit contribution to the charge and weak-charge radii lacks the coherence displayed by the dominant
vector form factor [see Eqs. (14)]. Thus, one expects that the spin-orbit correction will be largest for light nuclei with
unpaired spin-orbit partners. Indeed, Table II displays relatively large spin-orbit contributions—of ≈ 0.045 fm and
≈ 0.03 fm—to the weak skin of 22O and 48Ca, respectively. These spin-orbit corrections are commensurate with
the projected experimental uncertainty so they must be included in the prediction of both charge and weak-charge
radii. Charge and weak-charge densities for 22O and 48Ca—with and without spin-orbit corrections—as predicted
by the FSU interaction are also shown in Fig. 1. Note that the effect from neglecting the spin-orbit contribution
is clearly discernible in the figure, as is the fact that the modification to the charge and weak-charge radii goes in
the opposite direction—thereby enhancing its contribution to the weak skin. As alluded earlier, the impact of the
spin-orbit contribution diminishes with increasing baryon number and amounts to only ≈0.002 fm in the case of the
weak radius of 208Pb—significantly below the anticipated±0.05 fm of the PREX-II measurement. Yet, the ≈0.004 fm
contribution to the charge radius of 208Pb is significantly larger than the minute 0.0009 fm error quoted in Ref. [6]. In
the particular case of atomic nuclei of relevance to the atomic parity violating program, the spin-orbit contribution to
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Nucleus Model Rp Rn Rch Rwk Rnskin Rwskin

22O NL3 2.593 3.026 2.671(2.700) 3.172(3.158) 0.433 0.502(0.458)

FSU 2.580 2.997 2.658(2.688) 3.144(3.129) 0.417 0.487(0.442)
48Ca NL3 3.379 3.605 3.449(3.467) 3.724(3.711) 0.226 0.275(0.243)

FSU 3.366 3.563 3.435(3.455) 3.683(3.669) 0.197 0.247(0.214)
90Zr NL3 4.194 4.308 4.254(4.268) 4.404(4.393) 0.114 0.149(0.126)

FSU 4.181 4.269 4.242(4.255) 4.364(4.353) 0.088 0.123(0.098)
118Sn NL3 4.561 4.760 4.636(4.628) 4.835(4.843) 0.199 0.199(0.215)

FSU 4.559 4.707 4.634(4.625) 4.780(4.788) 0.148 0.147(0.162)
132Sn NL3 4.643 4.989 4.700(4.705) 5.077(5.074) 0.346 0.377(0.369)

FSU 4.654 4.925 4.710(4.716) 5.011(5.008) 0.271 0.301(0.292)
208Pb NL3 5.460 5.740 5.510(5.514) 5.815(5.814) 0.280 0.305(0.300)

FSU 5.469 5.676 5.519(5.523) 5.749(5.747) 0.207 0.230(0.224)
138Ba NL3 4.776 5.012 4.827(4.838) 5.100(5.093) 0.237 0.273(0.255)

FSU 4.775 4.957 4.826(4.837) 5.043(5.035) 0.182 0.217(0.198)
158Dy NL3 5.039 5.235 5.099(5.098) 5.309(5.311) 0.196 0.210(0.212)

FSU 5.027 5.172 5.087(5.086) 5.245(5.246) 0.146 0.158(0.160)
176Yb NL3 5.215 5.497 5.273(5.272) 5.573(5.574) 0.282 0.300(0.302)

FSU 5.208 5.424 5.266(5.265) 5.498(5.498) 0.215 0.232(0.233)

TABLE II: Proton, neutron, charge, and weak-charge radii (in fm) of a variety of nuclei as predicted by the NL3 and FSU
relativistic mean field models. The last two columns display the neutron skin (Rn-Rp) and weak skin (Rwk-Rch), respectively.
Quantities displayed in parenthesis have been computed without the spin-orbit correction.

the weak-charge radius of 138Ba, 158Dy, and 176Yb amounts to ≈0.008 fm, ≈−0.002 fm, and ≈−0.001 fm, respectively.
Note that whereas the NL3 and FSU predictions for the weak skin of the various nuclei differ significantly, the spin-
orbit contribution appears to have very little model dependence. In general, we find that the intrinsic structure of
the nucleon leads to a weak skin that is larger than the corresponding neutron skin. Moreover, for light neutron-
rich nuclei—such as 22O and 48Ca—the spin-orbit contribution generates a further enhancement of the weak skin.
In particular, whereas the FSU interaction predicts a neutron skin in 22O of Rnskin = 0.417 fm, the prediction for
the experimentally measurable weak skin is significantly larger, namely, Rwskin = 0.487 fm. Although not as large,
the effect is still significant in 48Ca (Rnskin = 0.197 fm and Rwskin = 0.247 fm) and even in 208Pb (Rnskin = 0.207 fm
and Rwskin = 0.230 fm). We also display some of these results in graphical form in Fig. 2 where predictions for the
weak skin—with and without spin-orbit contributions—are shown as a function of the corresponding neutron skin.
Again, the neutron skin is interesting as it represents a pristine nuclear-structure observables that is instrumental
in constraining the isovector sector of the nuclear density functional. The weak skin, on the other hand, although
sensitive to the internal structure of the nucleon, is both experimentally accessible as well as strongly correlated to the
neutron skin. Note that in Fig. 2 we have added the line Rwskin =Rnskin to indicate that in all cases (except for 118Sn)
the weak skin is larger than the neutron skin—and significantly larger for the lighter neutron-rich nuclei. Finally, the
fact that the points are more “compressed” in the case of FSU than NL3 is a reflection of the softer symmetry energy
of the former relative to the latter.

IV. CONCLUSIONS

A relativistic mean-field approximation has been used to compute proton, neutron, charge, and weak-charge densities
and form factors of a variety of neutron-rich nuclei. Special emphasis has been placed on the impact of spin-orbit
currents on the electroweak skin of these nuclei. Although closely related to the neutron skin, the weak skin—defined
as the difference between the experimentally accesible weak- and electromagnetic-charge radii—is sensitive to the
internal structure of the nucleon. The weak-charge radius of a nucleus is closely related to the (point) neutron radius
because the weak charge of the neutron is much larger than that of the proton. This is analogous to the reason why
the charge and proton radii are closely related. In the absence of spin-orbit corrections, and regardless of the model,
we found a weak skin larger than the neutron skin for all nuclei investigated here.

Once spin-orbit currents were incorporated, a significant increase in the weak skin—especially in the case of the two
lighter nuclei 22O and 48Ca—was observed. In particular, we found quite generally that the spin-orbit contribution
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FIG. 1: (Color online). Charge and weak-charge densities for 22O (a) and 48Ca (b) as predicted by the FSU interaction. The
dashed lines represent the corresponding densities in the absence of spin-orbit corrections.

to the weak and charge radii enter with opposite sign so their impact is enhanced when computing the weak skin. For
example, in the case of 48Ca the spin-orbit enhancement amounts to about 0.03 fm; this is commensurate with the
projected accuracy of the C-REX experiment. The impact of the spin-orbit contribution decreases with increasing
mass number, so its effect in 208Pb is small (0.006 fm) and well below the proposed ±0.05 fm accuracy. The spin-orbit
contribution is in general small due to the strong cancellation between spin-orbit partners and between neutron-
proton pairs in identical single-particle orbits. Given that it lacks the coherence displayed by the dominant (vector)
contribution, spin-orbit currents have the largest impact on light neutron-rich (or proton-rich) nuclei with unpaired
spin-orbit partners, as in the case of the 1f7/2 neutron orbital in 48Ca. We note that in the RMF case where the
cancellation among spin-orbit partners is incomplete, there is a further enhancement (of about 30%) relative to the
non-relativistic predictions due to the presence of a strongly attractive scalar potential (the so-called “M?-effect”).

In summary, accurately calibrated relativistic mean field models have been used to compute the impact of spin-orbit
currents on the electroweak skin of a variety of nuclei. Given that spin-orbit contributions to both the charge and
weak-charge radii may be significant and often as large as existent or projected experimental uncertainties, spin-orbit
currents should be routinely incorporated into future calculations of both charge and weak-charge form factors.
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Appendix: Single-nucleon electroweak currents

In terms of the underlying quark vector currents, the electromagnetic and weak neutral currents displayed in Eq. (4)
are given by the following expressions [25]:

ĴµEM =

3∑
f=1

Qf q̄fγ
µqf =

2

3
ūγµu− 1

3
d̄γµd− 1

3
s̄γµs , (A.1a)

ĴµNC =

3∑
f=1

gfvq̄fγ
µqf = guv ūγ

µu+ gdv d̄γ
µd+ gsvs̄γ

µs , (A.1b)
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FIG. 2: (Color online). Electroweak skin (Rwk-Rch) with and without spin-orbit corrections as a function of neutron skin
(Rn-Rp) for the various neutron-rich nuclei considered in this work. Predictions are made using both the NL3 (a) and FSU (b)
interactions.

where gfv is the weak-vector charge of quark “f” expressed in terms of its weak isospin and the weak mixing angle.
That is,

gfv = 2T f
3 − 4Qf sin2 θw =

{
+1− 8

3 sin2 θw ' +0.384 if f={u,c,t},
−1 + 4

3 sin2 θw ' −0.692 if f={d,s,b}.
(A.2)

Note that we are assuming that the heavy-quark (c,b,t) content of the nucleon is negligible. Also note that the
weak-vector charge of the quarks are to a good approximation equal to the negative of the electromagnetic charge
of its weak isospin partner. This is the main reason why the neutral Z0-boson is an excellent probe of the neutron
density. Assuming isospin invariance, namely, that the up(down)-quark distribution in the proton equals the down(up)-
quark distribution in the neutron and that the strange-quark distribution is equal in both, the proton and neutron
electromagnetic currents may be written in the following way:

JµEM(p) ≡ 〈p|ĴµEM|p〉 =
2

3
V µu −

1

3
V µd −

1

3
V µs , (A.3a)

JµEM(n) ≡ 〈n|ĴµEM|n〉 =
2

3
V µd −

1

3
V µu −

1

3
V µs , (A.3b)

where V µu , V µd , and V µs are matrix elements of the respective quark vector currents in the proton. From the above
equations one can determine V µu and V µd in terms of the two electromagnetic currents and V µs . That is,

V µu = 2JµEM(p) + JµEM(n) + V µs , (A.4a)

V µd = JµEM(p) + 2JµEM(n) + V µs . (A.4b)

In turn, these relations may be used to express the matrix elements of the weak neutral current in terms of the
corresponding matrix elements of the electromagnetic current plus the strange-quark contribution. Inserting these
relations into Eq. (A.1b) one obtains:

JµNC(p) = gpvJ
µ
EM(p) + gnvJ

µ
EM(n) + ξ(0)v V µs , (A.5a)

JµNC(n) = gnvJ
µ
EM(p) + gpvJ

µ
EM(n) + ξ(0)v V µs , (A.5b)
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where proton, neutron, and singlet weak-vector charges are given—including radiative corrections—by [32],

gpv = 2guv + gdv = (1− 4 sin2 θw)(1 +Rp
v) ≈ 0.0712 , (A.6a)

gnv = guv + 2gdv = −(1 +Rn
v) ≈ −0.9877 , (A.6b)

ξ(0)v = guv + gdv + gsv = −(1 +R(0)
v ) ≈ −0.9877 . (A.6c)

Note that these values are very close to the ones used in Ref. [2] which are the ones that have been adopted here (i.e.,
gpv =0.0721 and gnv =−0.9878). Finally, electric and magnetic Sachs form factors for the weak neutral current may be
expressed in terms of the corresponding electromagnetic form factors plus the strange-quark contribution as follows:

G̃ p
E,M(Q2) = gpvG

p
E,M(Q2) + gnvG

n
E,M(Q2) + ξ(0)v G s

E,M(Q2) , (A.7a)

G̃n
E,M(Q2) = gnvG

p
E,M(Q2) + gpvG

n
E,M(Q2) + ξ(0)v G s

E,M(Q2) . (A.7b)

In particular, using these relations we obtain the following expressions for the nucleon weak-charge radii:

gpv r̃
2
p = gpvr

2
p + gnvr

2
n + ξ(0)v r2s , (A.8a)

gnv r̃
2
n = gnvr

2
p + gpvr

2
n + ξ(0)v r2s . (A.8b)

Similar expressions follow in the case of the nucleon weak magnetic moments:

µ̃p = gpvµp + gnvµn + ξ(0)v µs , (A.9a)

µ̃n = gnvµp + gpvµn + ξ(0)v µs . (A.9b)

Note that the mean-square strange radius and strange magnetic moment are defined as

r2s =−6
dG s

E(Q2)

dQ2

∣∣∣
Q2=0

and µs=G s
M(Q2 =0) . (A.10)
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