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Abstract

Parity violating (PV) effects in neutron-deuteron radiative capture are studied using Desplan-

ques, Donoghue, and Holstein (DDH) and effective field theory (EFT) weak potentials. The values

of PV effects are calculated using wave functions, obtained by solving three-body Faddeev equations

in configuration space for realistic strong potentials. The relations between physical observables

and low-energy constants are presented, and dependencies of the calculated PV effects on strong

and weak potentials are discussed. The presented analysis shows the possible reason for the existing

discrepancy in PV nuclear data analysis using the DDH approach and reveals a new opportunity

to study short range interactions in nuclei.
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I. INTRODUCTION

Low energy parity violating (PV) effects play an important role in understanding the main

features of the Standard model. Many nuclear PV effects were measured and calculated

during the last several years. Despite the fact that existing calculations of nuclear PV

effects are in a reasonably good agreement with the measured ones, lately it became clear

(see, for example [1–4] and references therein) that it is rather difficult to describe the

available experimental data with the same set of weak nucleon coupling constants using the

traditional DDH [5] weak meson exchange potential.

As a possible solution for this problem, a new approach, based on the effective field theory

(EFT), has been introduced to parameterize PV effects in a model independent way (see,

papers [1, 4, 6] and references therein). The main goal of the EFT approach is to describe

a large number of PV effects in terms of a small number of constants (LEC), which are the

free parameters of the theory. Unfortunately, the number of experimentally measured (and

independent in terms of unknown LECs) PV effects in two body systems is not enough to

constrain all LECs [7–10]. In order to determine these constants, it is necessary to include

also the data obtained on heavier nuclear systems.

Furthermore, one should better understand PV effects in heavier nuclei because these

effects might be essentially enhanced [11–13] in many body systems. However, how to apply

the EFT approach for the calculations of PV effects in nuclei is still an open question.

To verify the possible issues related to the application of the DDH description of PV effects

in nuclei and the possibility of systematic calculations of PV effects in nuclei using the EFT

approach, it is desirable to start from the calculations of PV effects in the simplest nuclear

systems, such as neutron-deuteron (n-d) compound. PV effects for elastic n-d scattering have

been calculated recently [14, 15] using both the DDH and the EFT approaches. However,

before extending these techniques to many-body nuclear systems, it is important to consider

inelastic processes which are usually more sensitive to short range interactions.

With this aim, we present in this paper a comprehensive analysis of PV effects in neutron-

deuteron radiative capture [16–19] using weak potential of the DDH-type, as well as weak

potentials obtained in pionless and pionful EFT with realistic strong potential models. This

“hybrid” method has an advantage to treat the DDH and the EFT approaches in the same

framework. For strong interactions, we have tested several realistic nucleon-nucleon poten-
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tials, also in conjunction with three-nucleon forces. Three-nucleon wave functions have been

obtained by solving Faddeev equations in configuration space for the complete Hamiltonians

comprising both weak and strong interactions.

The paper is structured as follows. In the next section, a brief description of the employed

formalism is presented. Then, we discuss the results of our calculations and perform a

detailed analysis of model and cutoff dependencies of the calculated PV parameters. In

conclusion, the implications of our results are summarized.

II. FORMALISM

We consider three parity violating observables in the radiative neutron capture on

deuterons (n+d→3 H+γ) at thermal neutron energy: circular polarization of emitted pho-

tons (P γ), asymmetry of photons in relation to neutron polarization (aγn), and asymmetry of

photons in relation to deuteron polarization (Aγ
d). For low energy neutrons, the expressions

for these PV effects could be written in terms of parity conserving magnetic dipole (M1)

and parity violating electric dipole (E1) transition matrix elements as:
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Here, M1 and E1 amplitudes are defined as reduced matrix elements of the multipole oper-

ators

X1J ≡ 〈−q, JB||T̂X
1 ||J〉, with X = (M,E), (2)

where JB and J are total angular momenta of a bound and scattering states respectively,

and q is a momentum of the outgoing photon. The electromagnetic multipole operators in

the limit of small q can be written as

T̂Mag
JM (q) ≃ − qJ

i(2J + 1)!!

√
J + 1

J

∫
dx[µ̂(x) +

1

J + 1
r× Ĵc(x)] · ∇(xJYJM)

T̂El
JM(q) ≃ qJ

(2J + 1)!!

√
J + 1

J

∫
dx(xJYJM ρ̂(x)−

iq

J + 1
µ̂(x) · [r ×∇xJYJM ]),
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where Ĵc(x) is a convection current, µ̂(x) is a magnetization current, ρ̂(x) is a charge op-

erator, and q = ω is a photon energy. In our calculations, we use the M1 operator up to

N3LO in chiral order counting, which includes contributions from two-pion exchange and

contact currents obtained in heavy baryon chiral perturbation theory [20]. For calculations

of E1 amplitudes at the leading order, we use only the E1 charge operator, which is related

to 3-vector currents by Siegert’s theorem. Since in the used spherical harmonics convention

both parity conserving M1 and parity violating E1 amplitudes are purely imaginary, it is

convenient to define real-valued M̃J and ẼJ matrix elements as

M1J = i
ωµN√
6π
√
4π
M̃J , E1J = −i ω√

6π
ẼJ , (3)

where µN = 1
2mN

.

The results of calculations of parity conserving M1 amplitudes for radiative thermal neu-

tron capture on deuteron have been reported in papers [20, 21] using a “hybrid” method,

where wave functions were obtained from realistic potential models and the current opera-

tors were derived from the heavy baryon chiral effective field theory. The results of these

calculations can be approximated [20] by the following expressions 1

M̃ 1

2

= +21.87 + 10.76[(Bmodel/Bexp)
−2.5 − 1] fm

3

2 ,

M̃ 3

2

= −12.24− 11.35[(Bmodel/Bexp)
−2.5 − 1] fm

3

2 , (4)

where two low energy constants of the two-body M1 operators are fixed [20] by experimental

values of 3H and 3He magnetic moments. In these expressions, M1 amplitudes and the

binding energy Bmodel of 3H depend on the model of strong interactions. However, the

observed explicit correlation between the calculated M1 amplitudes and the binding energy

Bmodel provides the unique opportunity to eliminate this model dependence. This might be

done by setting Bmodel/Bexp = 1 in eq.(4). Then obtained M1 amplitudes lead to the value

of the total neutron-deuteron radiative capture cross section σtot = 0.49(1) mb, which is well

consistent with the experimental data.

E1 amplitudes are calculated using three-body wave functions, which are obtained by

solving Faddeev equations in a configuration space. We have tested different combinations

1 The sign of the M1 operator is changed from the one used in [20] to be consistent with the convention

used in this work.
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of strong and weak potentials. For a strong (parity conserving) part of the Hamiltonian,

we choose a set of realistic models of nucleon-nucleon interactions, namely: Argonne v18

potential (AV18) [22], INOY potential [23], Reid soft-core potential (Reid) and Nijmegen

potential(NijmII) [24]. Also, we have performed calculations for the AV18 potential in con-

junction with the Urbana IX three-nucleon force potential [25] (denoted as AV18+UIX). In

this paper, we consider three types of parity violating weak potentials: the standard DDH

potential with meson exchange nucleon-nucleon interactions, the potential derived from pi-

onless version, and the potential derived from pionful version of the effective field theory.

Therefore, for the parity violating part of the Hamiltonian, we used one of these weak po-

tentials and treated it as a perturbation to the parity conserving part of the Hamiltonian.

Our approach could be considered as a “hybrid” method, similar to the “hybrid” approach

in the line of Weinberg’s scheme [26, 27], which has been successfully applied for the calcu-

lations of weak and electromagnetic processes involving three-body and four-body hadronic

systems [20, 21, 28–31], and for the calculations of parity violating [15] and time reversal

violating effects in elastic n-d scattering [32, 33]. It is worth mentioning that alternative

calculations of parity violating effects in elastic n-d scattering using pionless EFT [34] are

well consistent with the hybrid calculations [15], though more detailed comparison between

these two methods is required.

A. The parity violating potentials

To understand the possible difference in the description of parity violating effects by the

DDH and the EFT-type of potentials, we compare the operator structure of the potentials

for the DDH potential [35] and for two different choices of the EFT potentials [1], which are

derived from pionless and pionful EFT Lagrangian. All these potentials can be expanded in

terms of O
(n)
ij operators [14] as

vαij =
∑

n

cαnO
(n)
ij , α = DDH, pionless EFT or pionful EFT (5)

with the explicit forms for the operators O
(n)
ij and the corresponding parameters cαn, listed

in table I 2, where coefficients cαn have dimension of [fm] and scalar functions fα
n (r) have

2 Note that we use a consistent relation between the coefficient C 6π
6 in a weak Lagrangian [14] and the

coefficient c 6π1 of a weak potential, which is different from the relation used in [15], c 6π1 = 2µ2

Λ3
χ

C 6π
6 . However,
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TABLE I: Parameters and operators of parity violating potentials. gA = 1.26, Fπ = 92.4 MeV.

Tij ≡ (3τ zi τ
z
j − τi · τj). Scalar function L̃Λ(r) ≡ 3LΛ(r)−HΛ(r).

n cDDH
n fDDH

n (r) c6πn f 6π
n (r) cπn fπ

n (r) O
(n)
ij

1 + gπ
2
√
2mN

h1π fπ(r) −µ2C 6π
6

Λ3
χ

f 6π
µ (r) + gπ

2
√
2mN

h1π fπ
Λ(r) (τi × τj)

z(σi + σj) ·X(1)
ij,−

2 − gρ
mN

h0ρ fρ(r) 0 0 0 0 (τi · τj)(σi − σj) ·X(2)
ij,+

3 − gρ(1+κρ)
mN

h0ρ fρ(r) 0 0 0 0 (τi · τj)(σi × σj) ·X(3)
ij,−

4 − gρ
2mN

h1ρ fρ(r)
µ2

Λ3
χ
(C 6π

2 + C 6π
4 ) f 6π

µ (r)
Λ2

Λ3
χ
(Cπ

2 + Cπ
4 ) fΛ(r) (τi + τj)

z(σi − σj) ·X(4)
ij,+

5 − gρ(1+κρ)
2mN

h1ρ fρ(r) 0 0
2
√
2πg3AΛ2

Λ3
χ

h1π Lπ
Λ(r) (τi + τj)

z(σi × σj) ·X(5)
ij,−

6 − gρ
2
√
6mN

h2ρ fρ(r) −2µ2

Λ3
χ
C 6π
5 f 6π

µ (r) −2Λ2

Λ3
χ
Cπ
5 fΛ(r) Tij(σi − σj) ·X(6)

ij,+

7 − gρ(1+κρ)

2
√
6mN

h2ρ fρ(r) 0 0 0 0 Tij(σi × σj) ·X(7)
ij,−

8 − gω
mN

h0ω fω(r)
2µ2

Λ3
χ
C 6π
1 f 6π

µ (r)
2Λ2

Λ3
χ
Cπ
1 fΛ(r) (σi − σj) ·X(8)

ij,+

9 − gω(1+κω)
mN

h0ω fω(r)
2µ2

Λ3
χ
C̃ 6π
1 f 6π

µ (r)
2Λ2

Λ3
χ
C̃π
1 fΛ(r) (σi × σj) ·X(9)

ij,−

10 − gω
2mN

h1ω fω(r) 0 0 0 0 (τi + τj)
z(σi − σj) ·X(10)

ij,+

11 − gω(1+κω)
2mN

h1ω fω(r) 0 0 0 0 (τi + τj)
z(σi × σj) ·X(11)

ij,−

12 − gωh1
ω−gρh1

ρ

2mN
fρ(r) 0 0 0 0 (τi − τj)

z(σi + σj) ·X(12)
ij,+

13 − gρ
2mN

h
′1
ρ fρ(r) 0 0 −

√
2πgAΛ2

Λ3
χ

h1π Lπ
Λ(r) (τi × τj)

z(σi + σj) ·X(13)
ij,−

14 0 0 0 0 2Λ2

Λ3
χ
Cπ
6 fΛ(r) (τi × τj)

z(σi + σj) ·X(14)
ij,−

15 0 0 0 0
√
2πg3AΛ2

Λ3
χ

h1π L̃π
Λ(r) (τi × τj)

z(σi + σj) ·X(15)
ij,−

dimension of [fm−1].

The operators O
(n)
ij in the last column are represented as products of isospin, spin, and

vector operators X
(n)
ij,±, which are defined as

X
(n)
ij,+ ≡ [pij , fn(rij)]+,

X
(n)
ij,− ≡ i[pij, fn(rij)]−, (6)

where pij ≡
(pi−pj)

2
.

One can see that all weak potentials have the same operator structure, being represented

by fifteen symmetry allowed basic operators. Thus, the difference between weak potentials is

it does not affect our results in [15] because they are based only on the calculations of matrix elements of

the O
(1)
ij operators.
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TABLE II: The cutoff parameters for the DDH parity violating potentials in GeV units[36]. For

the masses of the mesons we use mπ = 0.138 GeV, mρ = 0.771 GeV, and mω = 0.783 GeV.

Λπ Λρ Λω

DDH-I 1.72 1.31 1.50

DDH-II ∞ ∞ ∞

due merely to the choice of the coupling constants assigned to each operator and the scalar

functions which describe the radial behavior of the term with a particular operator. The

scalar functions in the DDH potential are constrained by the meson exchange mechanism.

On the other hand, the scalar functions in the EFT potential are required to be only smooth

and well localized functions. In this sense, the EFT potentials have more degrees of freedom

than the DDH model, which assumes a specific meson-exchange dynamics.

For the case of the DDH potential, the radial functions fx(r), x = π, ρ, and ω are usually

written as a normal or modified Yukawa functions with the corresponding cutoff terms

fx(r) =
1

4πr

{
e−mxr − e−Λxr

[
1 +

Λxr

2

(
1− m2

x

Λ2
x

)]}
, (7)

where, mx is a x-meson mass, and Λx is the corresponding cutoff parameter. We adopt two

sets of the scalar functions: with the cutoff terms (DDH-I) and without them (DDH-II), as

described in Table II.

In the EFT, the results of calculations of low energy observables should be independent

of specific forms of the scalar functions fµ(r) in the pionless EFT (π/EFT) potentials and

of the scalar functions, used for the contact terms, in pionful EFT (πEFT), provided these

functions are well localized (close to the delta function) and, at the same time, are smooth

enough to be used in numerical calculations. This is because the dependencies on the mass

scale (µ) and on the particular choice of the form of these functions must be absorbed by

the renormalization of the corresponding low energy constants. Thus, for our calculations in

pionless EFT, we use two sets of the scalar functions, which we call π/EFT-I and π/EFT-II,
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respectively 3:

fµ(r) =
1

4πr
e−µr, for π/EFT-I,

fΛ(r) =
1

Λ2
δΛ(r) =

1

Λ2

∫
d3k

(2π)3
e−ik·re−

k2

Λ2 , for π/EFT-II (8)

with the mass scale parameters µ and Λ, which provide a cutoff scale of the theory. For

example, the natural scale of the cutoff parameters in pionless theory is (µ,Λ) ≃ mπ.

The pionful EFT model (πEFT) has explicit long range interaction terms resulting from

one pion exchange (V−1,LR) and from higher order long range corrections (V1,LR). Also, it has

middle range interactions terms due to two pion exchange (V1,MR) contributions, as well as

short range interactions (V1,SR) terms due to nucleon contact interactions. The radial part

of the leading term of the long range one pion exchange, V−1,LR, is described by the modified

Yukawa function fπ(r). The short range interaction function V1,SR in the pionful theory has

the same structure as in the pionless EFT. However, in spite of the structural similarity,

the origin of these functions is different, therefore, as a consequence, their numerical values

can be different. The only term in pionful EFT which has a different operator structure, in

compare to the DDH and the pionless EFT potentials, is a higher order long range correction

term V PV
1,LR. We can ignore these higher order corrections related to long range interactions

because they are suppressed and can be absorbed by the renormalization of low energy

constants [6]. Therefore, the pionful EFT does not introduce a new operator structure as

long as we neglect V PV
1,LR term [6, 37]. The middle range interaction terms V1,MR can be

described by L(q) and H(q) functions in a momentum space

L(q) ≡
√

4m2
π + q2

|q| ln

(√
4m2

π + q2 + |q|
2mπ

)
, H(q) ≡ 4m2

π

4m2
π + q2

L(q), (9)

where, qµ = (q0, q) = pµ1 − p
′µ
1 = p

′µ
2 − pµ2 . For the sake of simplicity, to transform these

scalar functions into a configuration space representation by Fourier transform, we use only

one cutoff parameter for all regulators SΛ(q). Therefore, one can write

{LΛ(r), HΛ(r), fΛ(r), f
π
Λ(r)} =

1

Λ2

∫
d3q

(2π)3
e−iq·rSΛ(q){L(q), H(q), 1,

Λ2

q2 +m2
π

}, (10)

where LΛ(r) and HΛ(r) correspond to two-pion exchange loop contributions, fΛ(r) and

fπ
Λ(r) describe short range contact terms and long range one-pion exchange contributions,

3 Note that these functions are different from ones used in [15].
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correspondingly. It should be noted that we introduce the cutoff function even for the case

of a long range one-pion exchange potential to regularize a short range part of one-pion

exchange. Among the possible choices, we use two types of regulators, which are called

πEFT-I and πEFT-II4:

Sexp
Λ (q) = e−

q
2

Λ2 for πEFT-I, Sdipole
Λ (q) =

(Λ2 − 4m2
π)

2

(Λ2 + q2)2
for πEFT-II. (11)

One can see that the function fΛ(r) in the πEFT-I looks similar to the function for the

π/EFT-II case; however, it leads to different regularizations since a typical value of the cutoff

parameter for the πEFT theory exceeds the pion mass scale and should be at least about of

the ρ meson mass scale, while for the pionless case it is close to the pion mass. Therefore,

the LECs for the same operators in the pionless and the pionful EFT potentials can be very

different.

B. Three nucleon wave functions

Nuclear wave functions of initial (neutron-deuteron scattering) and final (bound triton)

states of the neutron-deuteron radiative capture process are obtained in the context of a

non-relativistic quantum three particle problem. We consider neutrons and protons as an

isospin degenerate states of the same particle nucleon, whose mass is fixed to ~
2/m = 41.471

MeV·fm. The three-particle problem is formulated by means of Faddeev equations in a

configuration space [38]. Using the isospin formalism, three Faddeev equations become

formally identical, which for pairwise interactions reads

(E −H0 − Vij)ψk = Vij(ψi + ψj), (12)

where (ijk) are particle indexes, H0 is kinetic energy operator, Vij is a two body force

between particles i, and j, ψk = ψij,k is so called Faddeev component. In the last equation,

the potential formally contains both strong interaction, parity conserving, part (V PC
ij ) and

weak interaction, parity violating, part (V PV ), i.e.: Vij = V PC
ij + V PV

ij . Due to the presence

of a parity violating potential, the system’s wave function does not have a definite parity

and contains both positive and negative parity components. As a consequence, the Faddeev

4 Note that the convention is different from the one used in [15].
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components of the total wave function can be split into the sum of positive and negative

parity parts:

ψk = ψ+
k + ψ−

k (13)

At low neutron energies, the dominant components of both initial and final state nuclear

wave functions have positive parity. Parity violating interaction is weak (V PV
ij << V PC

ij );

then by neglecting second order weak potential terms, one obtains a system of two differential

equations:

(
E −H0 − V PC

ij

)
ψ+
k = V PC

ij (ψ+
i + ψ+

j ), (14)
(
E −H0 − V PC

ij

)
ψ−
k = V PC

ij (ψ−
i + ψ−

j ) + V PV
ij (ψ+

i + ψ+
j + ψ+

k ) (15)

One can see that the first equation (14) defines only the positive parity part of the wave

function. This equation contains only a strong nuclear potential and corresponds to the stan-

dard three nucleon problem: s-wave neutron-deuteron scattering, or an bound state of the

triton. The solution of the second differential equation (15), which contains inhomogeneous

term V PV
ij (ψ+

i + ψ+
j + ψ+

k ), gives us negative parity components of wave functions.

To solve these equations numerically, we use our standard procedure, described in detail

in [39]. Using a set of Jacobi coordinates, defined by xk = (rj−ri) and yk =
2√
3
(rk− ri+rj

2
),

we expand each Faddeev component of the wave function in bipolar harmonic basis:

ψ±
k =

∑

α

F±
α (xk, yk)

xkyk

∣∣∣
(
lx (sisj)sx

)
jx
(lysk)jy

〉
JM
⊗
∣∣(titj)tx tk

〉
TTz

, (16)

where index α represents all allowed combinations of the quantum numbers presented in

the brackets, lx and ly are the partial angular momenta associated with respective Jacobi

coordinates, si and ti are spins and isospins of the individual particles. Functions Fα(xk, yk)

are called partial Faddeev amplitudes. It should be noted that the total angular momentum

J , as well as its projection M , are conserved. Isospin breaking is taken fully into account

by considering both T = 1/2 and T = 3/2 channels of the total isospin.

Equations (14) and (15) must be supplemented with the appropriate boundary conditions

for Faddeev partial amplitudes F±
α . First of all, partial Faddeev amplitudes are regular at

the origin:

F±
α (0, yk) = F±

α (xk, 0) = 0. (17)

For the bound state problem, the system’s wave function also vanish exponentially as either

xk or yk becomes large. This condition is imposed by setting Faddeev amplitudes to vanish
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at the borders (xmax, ymax) of a chosen grid , i.e.:

F±
α (xk, ymax) = 0, F±

α (xmax, yk) = 0. (18)

For neutron-deuteron scattering with energies below the break-up threshold, partial Faddeev

amplitudes also vanish for xk → ∞, thus the last equality in (18) also applies for the

scattering.

At yk → ∞, all Faddeev amplitudes vanish except for those consistent with the open

channel, describing neutron-deuteron relative motion. For the case of thermal neutrons, we

keep only relative s-wave amplitudes in the asymptote. This behavior is imposed by:

F (±)
α (x, ymax) = f

(±)
lx,jx,sx,tx

(x)(ymax −
2√
3
aJ)δly ,0δjy,1/2δjx,1. (19)

Here, f
(±)
lx,jx

(x) are reduced deuteron wave function components with respective parity (±),
orbital momentum lx, total angular momentum jx, total spin sx and total isospin tx. The

corresponding deuteron wave function is calculated before three-nucleon scattering problem

is undertaken. Neutron-deuteron scattering lengths aJ for the angular momenta J = 1/2

and J = 3/2 are obtained by solving equation (14).

The formalism described above can be easily generalized to accommodate three-nucleon

forces, as is described in paper [40].

C. Evaluation of the matrix elements

In order to calculate parity violating E1 matrix elements, we define real Ẽ (n)J matrix

elements corresponding to each operator O(n) as

ẼJ =
∑

n

cnẼ (n)J , (20)

where the sum is taken over different parity violating operators with corresponding LECs cn,

defined in the Table I. At the leading order, the electromagnetic charge operator does not

violate parity. Therefore, parity violating E1 amplitude results only from a small admixture

of parity violating components of wave functions. In the convention we use, parity violating

wave functions are purely imaginary both for a bound state and for a zero energy n-d

scattering; then one has

Ẽ (n)J = −Ẽ (n)J,(+) + Ẽ
(n)
J,(−), (21)
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where ẼJ,(±) are amplitudes for transitions from a parity conserving scattering wave to a par-

ity violating bound state, and from a parity violating scattering wave to a parity conserving

bound state, respectively.

In the first order of perturbation, parity violating E1 amplitudes can be presented as a

linear combination of matrix elements X(m) calculated for each of parity violating potential

operators O
(m)
ij . Then, all PV observables aγn, P

γ, Aγ
d can be expanded as

X =
∑(

cm
µN

)
X(m), (22)

(whereX stands for aγn, P
γ, or Aγ

d, and µN is introduced because of a dimension of coefficients

cm) in terms of the corresponding multipole amplitudes X(m), presented by the following

expressions:

aγ,(m)
n = (−2

3

√
4π)

[√
2(Ẽ (m)

3

2

M̃ 1

2

+ Ẽ (m)
1

2

M̃ 3

2

) + 5
2
(Ẽ (m)

3

2

M̃ 3

2

)− (Ẽ (m)
1

2

M̃ 1

2

)
]

|M̃ 1

2

|2 + |M̃ 3

2

|2
(23)

P γ,(m) = (−2
√
4π)

[
Ẽ (m)

1

2

M̃ 1

2

+ Ẽ (m)
3

2

M̃ 3

2

]

|M̃ 1

2

|2 + |M̃ 3

2

|2
(24)

A
γ,(m)
d = (

1

2

√
4π)

[
−5Ẽ (m)

3

2

M̃ 3

2

− 4Ẽ (m)
1

2

M̃ 1

2

+
√
2Ẽ (m)

3

2

M̃ 1

2

+
√
2Ẽ (m)

1

2

M̃ 3

2

]

(|M̃ 1

2

|2 + |M̃ 3

2

|2)
. (25)

It should be noted that for the EFT potentials, each parity violating coefficient cn has an

explicit cutoff or scale dependence multiplier 1
µ2 ( or

1
Λ2 ). Therefore, we present all results in

normalized forms, as µ2(or Λ2)× Ẽ (m)(or X(n)), to remove this artificial scale dependence.

We calculate parity violating E1 amplitude using one-body charge operator

E1J = 〈JB||
q√
6π

∑

i

Qiri||J〉 = (−i)
∑

n

ω√
6π
cnẼ (n)J , (26)

where, Qi and ri are i-th nucleons charge and the position in the center of mass system,

such that

3∑

i=1

Qiri =
1

2

(
1

2
x3(τ2 − τ1)z +

1√
3
y3(τ3 −

τ1 + τ2
2

)z
)
. (27)

Then, using the wave function expansion

|ψi〉 =
∑

α

Fα,i(x, y)

xy
|α〉, (28)
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one obtains

E1 =

√
1

6π
ω(

√
3

4
)3
∑

α,β

∫
dxx2

∫
dyy2

(
F ∗
β,f(x, y)

xy

1

4
x
Fα,i(x, y)

xy
〈β||x̂||α〉〈β|(τ2 − τ1)z|α〉

+
F ∗
β,f(x, y)

xy

1

2
√
3
y
Fα,i(x, y)

xy
〈β||ŷ||α〉〈β|

(
τ3 −

τ1 + τ2
2

)z

|α〉
)
, (29)

where (
√

3
4
)3 comes from the normalization of y. The angular parts of these matrix elements

are calculated analytically, while the radial integrals are taken numerically.

III. RESULTS AND DISCUSSIONS

The results of our calculations are presented separately for the three choices of weak

potentials: for the DDH potential, for the pionless and for the pionful potentials derived in

the EFT approach.

A. The DDH potential results

The results obtained with the DDH potential are in a reasonably good agreement with the

previous calculations [16–19], considering the difference in wave functions, and give us the

opportunity to estimate the values of all PV effects in terms of PV meson-nucleon coupling

constants h as

an = 0.42h1π − 0.17h0ρ + 0.085h1ρ + 0.008h2ρ − 0.238h0ω + 0.086h1ω − 0.010h′1ρ = 4.11× 10−7(30)

Pγ = −1.05h1π + 0.19h0ρ − 0.096h1ρ − 0.018h2ρ + 0.28h0ω − 0.046h1ω + 0.023h′1ρ = −7.31× 10−7(31)

Aγ
d = −1.51h1π + 0.17h0ρ − 0.083h1ρ − 0.024h2ρ + 0.024h0ω + 0.013h1ω + 0.032h′1ρ = −9.05× 10−7.(32)

The coefficients in these expressions are obtained using strong AV18+UIX and weak

DDH-II potentials, while the final values of PV observables are given for the “best” values

of the DDH coupling constants. The contributions of different PV operators to the transition

amplitudes ẼJ,(P ), where (P ) indicates the parity of scattering waves, are shown in Table

III. One can see that unlike the n-d elastic scattering case, there is no dominance of the

J = 3
2
channel and, as a consequence, all operators contribute almost equally to the capture

process.
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TABLE III: Parity violating amplitudes ẼJ,(P ) in fm
3

2 units, where (P ) stands for the parity of a

scattering wave, calculated with AV18+UIX strong and DDH-II weak potentials.

n Ẽ 1

2
,(+) Ẽ 1

2
,(−) Ẽ 3

2
,(+) Ẽ 3

2
,(−)

1 −3.37 × 10−1 −3.75× 10−2 −1.44× 10−2 −2.97 × 10−1

2 −2.64 × 10−3 −1.52× 10−2 −5.37× 10−3 −2.52 × 10−2

3 −9.72 × 10−3 3.12 × 10−2 −1.35× 10−2 1.31 × 10−2

4 1.03 × 10−2 −1.32× 10−2 1.47× 10−2 −2.87 × 10−3

5 1.26 × 10−2 −1.56× 10−2 1.75× 10−2 −3.79 × 10−3

6 −2.03 × 10−3 −8.85× 10−3 −1.85× 10−3 1.51 × 10−3

7 −2.42 × 10−3 −9.62× 10−3 −2.45× 10−3 1.94 × 10−3

8 −7.37 × 10−3 2.43 × 10−2 −1.08× 10−2 9.51 × 10−3

9 −7.10 × 10−3 1.24 × 10−2 −1.05× 10−2 −2.14 × 10−3

10 9.79 × 10−3 −1.25× 10−2 1.39× 10−2 −2.71 × 10−3

11 1.20 × 10−2 −1.48× 10−2 1.67× 10−2 −3.61 × 10−3

12 −2.75 × 10−3 9.29 × 10−3 −4.10× 10−4 −9.10 × 10−3

13 −3.05 × 10−3 1.84 × 10−2 −1.96× 10−3 −1.53 × 10−2

TABLE IV: The DDH PV coupling constants in units of 10−7 (h′ρ contribution is neglected). The

strong interactions parameters are g2π
4π = 13.9,

g2ρ
4π = 0.84, g2ω

4π = 20, κρ = 3.7, and κω = 0.

DDH Coupling DDH ‘best’ 4-parameter fit[41]

h1π +4.56 −0.456

h0ρ −11.4 −43.3

h2ρ −9.5 37.1

h0ω −1.9 13.7

h1ρ −0.19 −0.19

h1ω −1.14 −1.14
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TABLE V: Parity violating observables for different potential models with the DDH-best parameter

values and Bowman’s 4-parameter fits in 10−7 units.

DDH-best values 4-parameter fits

models an Pγ Ad an Pγ Ad

AV18+UIX/DDH-I 3.30 −6.38 −8.23 1.97 −2.16 −1.81

AV18/DDH-II 4.61 −8.30 −10.3 4.60 −5.18 −4.46

AV18+UIX/DDH-II 4.11 −7.30 −9.04 4.14 −4.71 −4.09

Reid/DDH-II 4.74 −8.45 −10.4 4.70 −5.25 −4.46

NijmII/DDH-II 4.71 −8.45 −10.5 4.76 −5.26 −4.41

INOY/DDH-II 9.24 −12.9 −13.8 17.5 −17.9 −13.5

To check the possible model dependence of these results, we compare PV observables

for the “best” DDH values and for the 4-parameter fit [41] of weak coupling constants (see

Table IV). For weak potentials, we used both DDH-I and DDH-II radial functions with

strong interactions described by AV18, AV18+UIX, Reid, NijmII, and INOY models. The

results for these calculations are summarized in Table V. The difference in the values of

Pγ and Ad effects for the “best” DDH values and for the 4-parameter fit proves that PV

effects in radiative capture are very sensitive to the particular choice of the values of meson-

nucleon coupling constants. The an observable is less sensitive to the choice of weak coupling

constants for some strong potentials. However, since we do not know exact values of the

weak coupling constants, we have to consider a model dependence of individual amplitudes

rather than a total sum of them. These individual matrix elements are very sensitive to the

choice of strong potentials as is discussed below. This model dependence indicates a possible

serious problem in the calculation of PV effects in nuclei because many old calculations of

PV effects in nuclei often used different potential models without a consistent treatment of

model dependencies. A detailed discussion of the potential model dependencies is be given

in a later part of this paper.
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B. Pionless EFT potential results

Let us analyze the EFT approach with PV potentials obtained in the pionless EFT by

using scalar functions corresponding to two different schemes for a cutoff procedure: π/EFT-I

and π/EFT-II. The calculated PV amplitudes for these two weak EFT potentials with the

same AV18+UIX strong interaction potential are summarized in Table VI. The difference

between π/EFT-I and π/EFT-II results is not surprising because they have different forms of

the scalar functions. A correct comparison of these two calculations should be done after

the renormlaization of all LECs for each case, however there is not enough experimental

data to obtain these LECs. For further discussions of cutoff and model dependencies see a

later section.

TABLE VI: Parity violating amplitudes ẼJ,(P ) for AV18+UIX strong interaction and PV π/EFT-I

and PV π/EFT-II potentials with µ = 138 MeV.

π/EFT-I π/EFT-II

op Ẽ 1

2
(+) Ẽ 1

2
(−) Ẽ 3

2
(+) Ẽ 3

2
(−) Ẽ 1

2
(+) Ẽ 1

2
(−) Ẽ 3

2
(+) Ẽ 3

2
(−)

1 −0.164 −0.0183 −0.00704 −0.145 −0.579 −0.766 0.0409 −0.136

4 0.268 −0.274 0.399 −0.0964 0.428 0.0462 0.681 0.157

6 −0.00616 −0.196 −0.0390 0.0530 0.0711 −0.179 −0.0555 −0.0291

8 −0.302 0.407 −0.297 0.218 −0.592 0.00657 −0.515 0.0643

9 −0.0863 0.174 −0.148 0.00634 −0.145 0.313 −0.316 0.139

The contributions of different operators from these two weak EFT potentials with the

same AV18+UIX strong potential to PV effects are shown in Table VII. One can see that

in the pionless EFT, all operators have approximately the same level of contribution to PV

effects, which is consistent with the results for the DDH model.
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TABLE VII: Parity violating observables for AV18+UIX strong potential for π/EFT-I and π/EFT-II

at µ = 138 MeV. The results are in fm−2 units.

π/EFT-I π/EFT-II

n cn
µNµ2 µ2a

(n)
n µ2P

(n)
γ µ2A

(n)
d µ2a

(n)
n µ2P

(n)
γ µ2A

(n)
d

1 4mN

Λ3
χ
C 6π
6 0.0217 −0.0552 −0.0793 −0.0273 0.0216 0.00919

4 2mN

Λ3
χ
(C 6π

2 + C 6π
4 ) −0.0794 0.0655 0.0316 −0.0556 0.0219 −0.0232

6 − 2
Λ3
χ
C 6π
r −0.0281 0.0596 0.0801 −0.0369 0.0653 0.0808

8 −4mN

Λ3
χ
C 6π
1 0.104 −0.103 −0.0758 0.0875 −0.0676 −0.0262

9 4mN

Λ3
χ
C̃ 6π
1 0.0381 −0.0429 −0.0367 0.0671 −0.0502 −0.0171

C. Pionful EFT potential results

The PV transition amplitudes calculated for strong AV18+UIX potential and PV pionful

EFT potential with cutoff parameter Λ = 600MeV are presented in Table VIII. The results

for PV observables are provided in Table IX. It reveals a strong dependence on the choice

of the scalar functions which, as is mentioned in the previous section, are expected to be

absorbed by the corresponding LECs. (For the comparison with the pionless case, one

shall take into account additional Λ2/Λ2
χ multipliers in the coefficients of leading one-pion

exchange operators which appear due to loop diagrams contributions in the pionful EFT.)
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TABLE VIII: E1 amplitudes calculated for AV18+UIX and πEFT-I at Λ = 600 MeV in fm
3

2 unit.

(The Λ2 multiplier is not included.)

operator Ẽ 1

2
(+) Ẽ 1

2
(−) Ẽ 3

2
(+) Ẽ 3

2
(−)

1 −3.51 × 10−1 −7.40 × 10−2 −1.15 × 10−2 −2.86 × 10−1

4 3.56 × 10−2 −3.86 × 10−2 4.97 × 10−2 −7.90 × 10−3

5 3.43 × 10−2 −4.36 × 10−2 4.81 × 10−2 −9.25 × 10−3

6 −7.37 × 10−3 −3.18 × 10−2 −6.42 × 10−3 4.20 × 10−3

8 −2.65 × 10−2 7.65 × 10−2 −3.75 × 10−2 2.84 × 10−2

9 −2.32 × 10−2 4.48 × 10−2 −3.51 × 10−2 −5.06 × 10−3

13 −4.32 × 10−4 6.26 × 10−2 −6.46 × 10−3 −4.36 × 10−2

14 −1.33 × 10−2 5.33 × 10−2 −6.11 × 10−3 −4.66 × 10−2

15 1.27 × 10−2 1.28 × 10−1 −2.19 × 10−2 −9.03 × 10−2

TABLE IX: PV observables for PV πEFT-I and πEFT-II potentials and AV18+UIX strong poten-

tial at Λ = 600 MeV.

πEFT-I πEFT-II

n a
γ(n)
n P

(n)
γ A

γ(n)
d a

γ(n)
n P

(n)
γ A

γ(n)
d

1 0.0412 −0.106 −0.153 0.0210 −0.0562 −0.0820

4 −0.0108 0.0103 0.00700 −0.0689 0.0653 0.0434

5 −0.0114 0.0113 0.00812 −0.0644 0.0632 0.0446

6 −0.00362 0.00751 0.0100 −0.0209 0.0447 0.0603

8 0.0151 −0.0163 −0.0133 0.0918 −0.0983 −0.0793

9 0.0100 −0.0126 −0.0123 0.0497 −0.0625 −0.0604

13 0.00934 −0.0207 −0.0283 0.0490 −0.109 −0.149

14 0.00987 −0.0220 −0.0302 0.0271 −0.0836 −0.126

15 0.0170 −0.0379 −0.0518 0.110 −0.244 −0.333

Since all LECs are unknown for each considered case, it is impossible to compare the

πEFT-I and the πEFT-II results this time.
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D. Cutoff and model dependence

The presented results reveal model dependencies of the calculated matrix elements, both

on weak as well as on strong interactions. These model dependencies have different levels

of importance for calculations of PV effects using different approaches. For the case of the

DDH approach, the model dependence is directly related to the reliability of the calculations

of PV effects in nuclei. In general, the EFT approach shall lead to model independent

results; however, to guarantee a model independence, the intrinsic cutoff dependence must

be checked explicitly. For the case of a “hybrid” EFT approach, which is not completely

free from the possible model dependencies, a careful analysis of both cutoff dependencies

and model dependencies for all matrix elements and for physical observables is required.

In our approach, we used numerically exact solutions for the wave functions of three-

nucleon systems, however they depend on the choice of a strong interaction part of the

Hamiltonian. For M1 amplitude, we use results of N3LO EFT calculations [20] which give

a total cross section uncertainty better than 3%, including uncertainties from potential model

dependencies, cutoff dependencies and higher order corrections. Another possible source for

model dependencies is a choice of PV violating potentials, which, for the EFT approach,

means the choice of the scalar functions used for the regularization. It should be noted

that in the EFT, the model dependence of physical observables is not directly related to the

model dependence of the calculated PV amplitudes because they are affected by the model

dependence of the corresponding LECs. Unfortunately, at the present time these LECs are

unknown, which prevents us from a derivation of PV observables in EFT formalism.

Since most realistic strong potentials have a similar long range behavior, corresponding

to one-pion exchange, the main difference between strong potentials is related to the middle

and short range contributions. Thus, rather strong model dependence of PV amplitudes

implies that matrix elements related to n-d radiative capture process are sensitive to these

short range interactions. This sensitivity to a short range dynamics is new phenomenon

observed in radiative n-d capture and is in direct contrast with the case of parity violation

in elastic n-d scattering, where PV matrix elements are practically insensitive [15] to the

choice of strong potentials.

This is partially related to the fact that in the case of elastic n-d scattering, the dominant

contribution to PV effects comes from the J = 3/2 channel, which is repulsive and thus less

19



sensitive to short range details of the potential. Conversely, in the case of n-d radiative

capture, almost all channels equally contribute to the values of PV effects. In addition

to that, for the radiative capture, the mechanism of pion exchange is not the dominant

one, and, as a consequence, the contributions from heavier meson exchanges (short distance

contributions) become important. Therefore, one can see a number of reasons why PV three-

body radiative capture processes should be more sensitive to a short distance dynamics than

PV effects in three-body elastic scattering. It should be noted that even in the two-body

case, circular photon polarization P γ in n-p radiative capture, which is not dominated by

one-pion exchange, shows stronger model dependence [36] than the asymmetry aγn, which

defined by the one-pion exchange mechanism.

As mentioned above, a strong dependence of PV effects on the choice of potentials could be

a serious problem in the case of the DDH meson exchange model, implying an uncertainty in

the theoretical predictions and a difficulty in comparing results of different calculations. On

the other hand, in the regular EFT approach, the dependence on a cutoff parameter and on

the choice of scalar functions must be absorbed-compensated by the renormalization of the

low energy constants. After the proper renormalization one must get a model independent

prediction for the low energy observables. This is not exactly true for the hybrid method,

where strong interactions are introduced by realistic strong potentials. However, it can be

argued that short distance details of the system dynamics would not be very important for

the calculations of low energy observables according to the basic principle of the effective

field theory. The removal of the possible model dependence, related to the difference in

short range parts of the wave functions, can be achieved by the introduction of the cutoff

and renormalization of LECs in hybrid approach. A study of the behavior of the calculated

matrix elements as a function of cutoff parameters in hybrid approach could be used to

check the validity of these arguments.

20



100 200 300 400 500 600
−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

Λ(MeV)

 

 

Av18
Av18+UIX
NijmII
Reid
Inoy

100 200 300 400 500 600
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

Λ(MeV)

 

 

Av18
Av18+UIX
NijmII
Reid
Inoy

FIG. 1: (Color online) Cutoff and strong model dependencies of the amplitudes for π/EFT-I cal-

culated with AV18, AV18+UIX, Nijmegen-II, INOY, and Reid strong potentials. The first graph

shows µ2Ẽ 3

2
(+) for operator 1 and the second graph shows µ2Ẽ 3

2
(+) for operator 9 in fm− 1

2 units.

The multiplier µ2 is used to absorb artificial cutoff dependence of cn coefficients.

As an example, let us consider the µ2Ẽ 3

2
(+) matrix elements as a function of a cutoff

mass, which is calculated for operators 1 and 9 in the π/EFT-I approach with different

strong potentials (see Fig.1). The choice of these operators is related to their symmetry

properties: the operator 1 has quantum numbers corresponding to pion-exchange while the

operator 9 to ρ-meson exchange. Since we use the same scalar functions both for the π/EFT-I

and for the DDH-II schemes of calculations, we can apply the result of this analysis also to

the calculations in the DDH-II scheme by interpreting µ as an exchanged meson mass. Once

again one observes a rather strong dependence on the choice of a strong potential and on a
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cutoff mass parameter.

Analyzing results of Fig.1 from the point of view of the DDH approach, where the matrix

element for the operator 1 at µ = mπ corresponds to the pion-meson exchange and the

matrix element for the operator 9 at µ = mρ corresponds to the rho-meson exchange, one

can see a larger strong potential model dependence for the ρ-meson exchange than for the

pion exchange. The observed large difference between AV18 and AV18+UIX calculations at

the same µ = mρ indicates the importance of the inclusion of 3-body strong potentials in

the DDH-type model. Unfortunately, most calculations of PV effects in nuclear physics with

the DDH potential do not include strong 3-body forces, which could be a possible source for

the existing discrepancy [42] in the analysis of PV effects.

On the other hand, from the point of view of the π/EFT, the reasonable cutoff mass

scale cannot exceed the value of a pion mass, where the dependence on strong interaction

potential is small. Since the cutoff in the EFT could be considered as a measure of our

knowledge of short range physics, the increasing of the cutoff parameter implies stronger

dependence on the short distance details. Fig.1 shows that by lowering the cutoff, one can

diminish the strong potential model dependence. This is because by lowering of the cutoff

parameter, we are effectively switching to the regime where the theory becomes sensitive

only to a long range part of interactions. Then, one can expect a smaller model dependence

when the cutoff parameter is low, because all strong potentials have a similar long range

behavior. Therefore, Fig.1 is consistent with the basic principle of the EFT and shows that

the hybrid method works well.

The remaining weak dependence on a strong interaction model at µ ≃ mπ scale could be

related both to short and to long range parts of the potentials. If they are the remainder

of the short distance part of wave function, the difference should be absorbed by LECs.

Conversely, the difference in a long range part of the wave function can not be removed

by the renormalization of LECs in the hybrid method. However, as demonstrated in [20],

this long range part difference is governed by strong interaction observables and should be

easily treated by analyzing the correlations between matrix elements and effective range

parameters.
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FIG. 2: (Color online) Cutoff and strong model dependencies of the amplitudes for πEFT-I with

various strong potential models. The first graph shows Λ2Ẽ 1

2
,(+) and the second graph shows

Λ2Ẽ 3

2
,(+) for op1. in fm− 1

2 units. The multiplier Λ2 is used to absorb artificial cutoff dependence

of cn coefficients.

To analyze the possible model dependence for the pionful EFT approach, let us consider

a contribution of operator 1 to Λ2Ẽ 1

2
,(−) and to Λ2Ẽ 3

2
,(+) calculated in the πEFT-I approach

(see Fig. 2). In the πEFT, the physical range for a cutoff mass scale parameter Λ is about

500 < Λ < 800 MeV. One can observe a rather important dependence on a strong potential

model in this region. We cannot discern a long range from a short range model dependency

unless all LECs are determined. However, a smaller range of the variation of matrix elements

for different strong potentials at the pion mass scale indicates that the contribution of a long

range part of strong potentials to the region of the interest (500 < Λ < 800 MeV) is small.

This means that the large model dependence in this range (500 < Λ < 800 MeV) is due to
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a short range part of the wave function, therefore, this cutoff and model dependence should

be absorbed by the higher order contact terms.

Though the general behavior of the matrix elements is consistent with the expectations

of the EFT, the 3-body system is rather complicated to see the direct relations between the

2-body PV potential and 3-body PV matrix elements. Therefore, it is useful to re-analyze

the two-body n-p capture process, for which the large model dependence for the circular

polarization of photons, P γ, was reported in [36].

E. Two body radiative capture(n+ p→ d+ γ)

Parity violating asymmetry of photons for polarized neutron capture on protons and

photon circular polarization for the case of unpolarized neutron capture can be written as

aγ =
−
√
2Re{M∗

1 (
1S0)E1(

3S1)}
|M1(1S0)|2

(33)

P γ =
2Re[M1(

1S0)E
∗
1(

1S0)]

|M1(1S0)|2
. (34)

Here, we neglect M1(
3S1), and E1(

1P1 ←3 S1) amplitudes. The E1(
3S1) amplitude is a sum

of the amplitudes with contributions from parity violating bound state wave function and

from parity violating scattering wave (3P1 ←3 S1). Since M1(
3S1) amplitude is suppressed,

one can consider only E1(
1S0) contribution to the P γ, which is dominated by ρ and ω meson

exchanges in the DDH formalism. (The aγn is dominated by one-pion exchange.)

Parity conserving M1 amplitude can be written as

M1(1S0) = i
ωµN√
6π
√
4π
M̃ = i

ωµN√
6π
√
4π

(√
4π
√
3(393.06) fm

3

2

)
. (35)

Then, PV observables can be written as

aγn =
∑

m

(
cm
µN

)
(−
√
8π)
Ẽ (m)(3S1)

M̃(1S0)
,

P γ =
∑

m

(
cm
µN

)
(−2
√
4π)
Ẽ (m)(1S0)

M̃(1S0)
. (36)

Using strong AV18 and weak DDH-II potentials, one can obtain

aγn = 0.15h1π + 0.00137h1ρ − 0.00405h1ω − 0.00137h′1ρ , (37)

P γ = −0.0104h0ρ − 0.00817h2ρ + 0.0111h0ω. (38)
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TABLE X: Two-body Parity violating observables for potential models with DDH-best parameter

values and Bowman’s 4-parameter fits.

models aγn Pγ

DDH-best 4-para. fit DDH-best 4-para. fit

AV18 +DDH-I 5.25 × 10−8 −4.91 × 10−9 6.94 × 10−9 4.76 × 10−9

AV18 +DDH-II 5.29 × 10−8 −4.81 × 10−9 1.76 × 10−8 3.01 × 10−8

NijmII+DDH-II 5.37 × 10−8 −4.99 × 10−9 2.61 × 10−8 6.41 × 10−8

Reid+DDH-II 5.33 × 10−8 −4.85 × 10−9 2.65 × 10−8 4.68 × 10−8

INOY+DDH-II 5.60 × 10−8 −3.94 × 10−9 2.55 × 10−7 9.68 × 10−7

The calculated values of PV observables for different sets of strong potentials and different

choices of the DDH coupling constants are summarized in Table X. One can see that the

circular polarization P γ, being dominated by heavy meson exchange, shows large model

dependence in agreement with the analysis of n-d case.
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FIG. 3: (Color online) Cutoff and strong model dependencies of amplitudes for π/EFT-I with

various strong potential models. The first graph shows µ2Ẽ1,(+) of operator 1 and the second graph

shows µ2Ẽ0,(−) of operator 9 in fm− 1

2 units. The multiplier Λ2 is used to absorb artificial cutoff

dependence of cn coefficients.

The cutoff and model dependence of the transition matrix elements calculated for opera-

tors 1 and 9 using the π/EFT-I approach, shown in Figure 3, remind the corresponding cutoff

and model dependencies of the n-d capture process. One can see that the model dependence

is more pronounced at the scale of ρ or ω meson masses in comparison to the pion mass

region scale. This is also consistent with the statement given for the hybrid approach that

one can regularize the short distance contributions by introducing a cutoff parameter and,

as a consequence, reduce the uncertainty related to short range interactions. This indicates

that the possible reason for model and cutoff dependencies in the 3-body (n-d capture) pro-
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cess has the same origin as those in the 2-body case, and it can be treated regularly in the

hybrid approach.

For the completeness of the analysis, we present contributions of different PV operators

to PV observables calculated in the 6 πEFT and the πEFT approaches with AV18 potential

(see tables XI and XII, correspondingly). The large difference between matrix elements

with pionless and pionful PV potentials could be explained by different scales of the cutoff

parameters, and the comparison of the results obtained from these two approaches could be

done only after the renormalization of low energy constants.

TABLE XI: Two body Parity violating observables for AV18 and π/EFT potential at µ = 138 MeV.

π/EFT-I π/EFT-II

n µ2a
(n)
n µ2P

(n)
γ µ2a

(n)
n µ2P

(n)
γ

1 6.02 × 10−3 0 1.36 × 10−2 0

6 0 2.48× 10−2 0 5.71× 10−2

8 0 1.99× 10−2 0 1.78× 10−2

9 0 −2.17 × 10−2 0 −5.97 × 10−2

TABLE XII: Two body Parity violating observables for AV18 and πEFT potential at Λ = 600

MeV. Only non-vanishing matrix elements are shown.

πEFT-I πEFT-II πEFT-I πEFT-II

op a
γ(n)
n a

γ(n)
n op P

(n)
γ P

(n)
γ

1 1.22 × 10−2 7.14 × 10−3 6 3.05 × 10−3 2.01 × 10−3

13 1.11 × 10−3 5.59 × 10−4 8 2.70 × 10−3 1.80 × 10−3

14 1.33 × 10−3 7.41 × 10−4 9 −4.13 × 10−3 −2.36 × 10−3

15 2.17 × 10−3 1.00 × 10−3

IV. CONCLUSION

PV effects in neutron-deuteron radiative capture are calculated for DDH-type and EFT-

type, pionless and pionful, weak interaction potentials. Three-body problem was solved
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using Faddeev equations in a configuration space, as well as by varying a strong interaction

part of the Hamiltonian. A number of different realistic strong potentials have been tested,

including AV18 NN interaction in conjunction with UIX 3-nucleon force. The analysis of the

obtained results shows that the values of PV amplitudes depend both on the choice of weak

and strong interaction models. In order to obtain model independent EFT predictions for

PV observables, one should perform all calculations in a self-consistent way [43]. However,

we demonstrated that this dependence has the expected behavior in the framework of the

standard pionless and pionful EFT approaches even in the ”hybrid” approach. Therefore,

this dependence is expected to be absorbed by the LECs both in the ”hybrid” approach and

in the full EFT calculations.

For the case of the DDH approach, the observed model dependence indicates intrinsic

difficulty in the description of nuclear PV effects and could be the reason for the observed

discrepancies in the nuclear PV data analysis (see, for example [44] and referencies therein).

Thus, the DDH approach could be a reasonable approach for the parametrization and for

the analysis of PV effects only if exactly the same strong and weak potentials are used in

calculating all PV observables in all nuclei. However, the existing calculations of nuclear

PV effects have been done using different potentials; therefore, strictly speaking, one cannot

compare the existing results of these calculations among themselves. Further, most of the

existing calculations do not include three body interactions which is shown to be important.

We would like to mention that the observed sensitivity of PV effects to short range

parts of interactions could be used as a new method for the study of short ranges nuclear

forces. Once the theory of PV effects is well understood, or once we use exactly the same

parametrization for weak interactions, PV effects can be used to probe a short distance

dynamics of different nuclear systems described by different strong potentials.
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