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Abstract

The cross section for radiative capture of neutron on carbon-14 is calculated using the model-

independent formalism of halo effective field theory. The dominant contribution from E1 transition

is considered, and the cross section is expressed in terms of elastic scattering parameters of the

effective range expansion. Contributions from both resonant and non-resonant interaction are

calculated. Significant interference between these leads to a capture contribution that deviates

from a simple Breit-Wigner resonance form.
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I. INTRODUCTION

The radiative capture of neutron on carbon-14 14C(n, γ)15C plays an important role in

astrophysics. It is part of the neutron induced carbon-nitrogen-oxygen (CNO) cycle in the

helium burning layer of asymptotic giant branch stars and in the core helium burning of

massive stars [1]. These neutron induced reactions can lead to appreciable changes in the

CNO abundances. 14C(n, γ)15C is the slowest reaction in the cycle and leads to substantial

enrichment of 14C abundance [1]. In astrophysical scenarios involving inhomogeneous Big

Bang Nucleosynthesis, the slow 14C(n, γ)15C reaction acts as a bottle neck in the production

of heavier nuclei A > 14 [2, 3]. The 14C(n, γ)15C cross section has been measured in

direct capture experiments [4–6] , and also extracted indirectly from Coulomb dissociation

data [7–10]. Interpretation of Coulomb dissociation data for the capture rate requires careful

treatment of the parent 15C and daughter 14C nuclei in the strong Coulomb field of a heavy

nucleus besides the nuclear interactions [11–13]. Coulomb dissociation provides an alternate

method to estimate the direct capture reactions involving radioactive isotopes that are often

difficult to measure experimentally. The 14C(n, γ)15C provides an opportunity to compare

and contrast the capture rates that are obtained from direct capture measurements and

Coulomb dissociation data [12, 14]. Developing theoretical methods for radiative capture

reactions is important for ongoing experimental efforts, and those planned at FRIB [15].

We calculate the radiative capture 14C(n, γ)15C cross section at low-energies using halo

effective field theory (EFT) [16, 17]. This reaction has been calculated before in other

theoretical formulations such as Refs. [2, 12, 18, 19]. Halo EFT has been used to study

the s-wave alpha-alpha resonance [20] and the three-body halo nuclei [21]. Recently it has

been used to calculate electromagnetic transitions and transition probability strength in one-

neutron halo 11Be [22], radiative neutron capture on 7Li [23, 24], and proton-7Li interaction in

coupled-channel extension [25]. In EFT, the cross section is expressed as an expansion in the

small ratio of the low-momentum physics scale Q of interest over the high-momentum physics

scale Λ that involves short distance physics not relevant at low-energy. In the EFT, once

the relevant degrees of freedom at the low-momenta (long distance) scale are identified, no

modeling of the high-momentum (short distance) physics is attempted. It provides a model-

independent framework for calculations whose accuracy can be systematically improved as

long as there is a clear separation between the momenta scales Q� Λ, see Refs. [26–30] for

2



details on the EFT formalism.

We consider center-of-mass (c.m.) momenta p . 60 MeV (corresponding to non-

relativistic energies . 2 MeV) that is below the threshold for the excited states of 14C

nucleus (or neutron). As such in the EFT, the neutron and 14C core are treated as inert

point-like particles. The ground state of 15C, identified as Jπ = 1
2

+
, has a neutron separation

energy B of only 1.218 MeV that correspond to a binding momenta of γ =
√

2µB ≈ 46.21

MeV, where µ is the neutron-14C reduced mass. In nuclear structure calculations the ground

state of 15C can be considered a single neutron halo bound to a 14C core. Then in the single-

particle approximation, it is described as a 2S1/2 state of n+ 14C. We use the spectroscopic

notation 2S+1LJ with S the spin, L the orbital angular momentum and J the total angular

momentum. The momenta p, γ are the soft scale Q. The c.m. momenta threshold for pion

physics, the excited states of 14C, etc., is identified with the hard scale Λ ∼ 100− 200 MeV.

At low-energy, the capture from lower partial wave initial states should dominate. How-

ever, neutron capture from the initial s-wave state to the ground state through M1 transi-

tion is suppressed (at one-body current level) due to the orthogonality of the continuum and

bound state wave functions. The lowest multipole transition to the ground state is through

E1 transition from the initial p-wave states 2P1/2 and 2P3/2. We note that transition from

the initial s- and p-wave states to the excited state of 15C Jπ = 5
2

+
is possible. However,

transitions to the excited state has been found to be a small contribution to the total capture

rate [2, 19, 31]. We ignore such contributions in this calculation where we concentrate on

the dominant effects.

The paper is organized as follows. In section II we introduce the basic theory and the

interactions necessary for the 14C(n, γ)15C cross section calculation. The Lagrangian for

the s- and p-wave interaction of neutron and carbon-14 is presented. We describe how the

EFT couplings can be constrained from data. The E1 capture cross section is calculated in

section III. We consider both the direct capture and Coulomb dissociation data. The EFT

couplings are constrained to reproduce the available data. From the analysis, we formulate a

power counting for estimating the sizes of the couplings and the various EFT contributions.

In section IV we present our conclusions.
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II. FORMALISM

The construction of the EFT for 14C(n, γ)15C require description of the n+14C bound

state in the 2S1/2 channel, and the initial state interaction of n+14C in the 2P1/2 and 2P3/2

channels. The interaction in the 2S1/2 channel is written as

Ls = φ†α

[
∆(0) + i∂0 +

∇2

2M

]
φα + h(0)

[
φ†α(NαC) + h. c.

]
, (1)

where φα is an auxiliary field with a spin index α, Nα is the neutron field and C is the

carbon-14 scalar field. M = Mn + Mc with neutron mass Mn = 939.6 MeV and 14C core

mass Mc = 13044 MeV. Using the equation of motion for the φ field, it can be integrated out

of the theory in Eq. (1), and the interaction Lagrangian written entirely in terms of four-

particle neutron carbon-14 interactions. The non-relativistic s-wave amplitude is calculated

from the diagrams in Fig. 1. We get

iA0(p) = −ih2
0Dφ(

p2

2µ
, 0) = − i[h(0)]2

∆(0) + p2/(2µ) + µ[h(0)]2(λ+ ip)/(2π)
, (2)

where the dressed φ propagator is

iDφ(p0,p) =
i

∆(0) + p0 − p2/(2M) + i[h(0)]2f0(p0,p)
, (3)

f0(p0,p) =− i2µ
(
λ

2

)4−D ∫
dD−1q

(2π)D−1

1

q2 − 2µp0 + µp2/M − i0+

=− iµ

2π
(λ−

√
−2µp0 + µp2/M − i0+),

with λ ∼ Q the renormalization scale. We use the power divergence subtraction scheme

where divergences in space-time dimensions D = 4 and lower are subtracted [32]. In Eq. (2),

we iterate the interaction to all order to describe a s-wave bound state. At low-energy

matching the EFT amplitude Eq. (2) to the effective range expansion (ERE)

iA0(p) =
2π

µ

i

p cot δ0 − ip
≈ 2π

µ

i

−γ + ρ(p2 + γ2)/2− ip, (4)

we get

2π∆(0)

µ[h(0)]2
+ λ =γ − 1

2
ργ2, (5)

− 2π

[h(0)]2µ2
=ρ,
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where µ = MnMc/(Mn + Mc) is the reduced mass, γ ≈ 46.21 MeV is the 15C ground

state binding momentum and ρ is the effective range in s-wave. There is no experimental

constraint on the value of ρ. A priori it is not clear if the effective range ρ, which has

the dimension of inverse momentum, should scale with the high-momentum (short distance)

scale ρ ∼ 1/Λ or with the low-momentum (long distance) scale ρ ∼ 1/Q. If its the former,

ρ is a next-to-leading order (NLO) correction whereas if its the latter, its a leading order

(LO) contribution in EFT [32–34].

iA(κ) =

ih(κ) ih(κ)

= + + · · ·
ih(κ) ih(κ)

FIG. 1. Elastic scattering amplitudes A(κ) in s- and p-waves. Double line is the 14C propagator,

single line the neutron propagator, dashed line the bare dimer propagator. κ = 0, 1, 2 corresponds

to 2S1/2, 2P1/2 and 2P3/2 channels, respectively.

To describe the incoming 2P1/2 and 2P3/2 states we consider a Galilean invariant form

consisting of the relative neutron and 14C core velocity vC − vN , and the neutron field Nα

and the scalar carbon-14 field C . In particular we want to project a generic tensor ψαi with

a vector index i = 1, 2, 3 for the p-wave and a spin index α = 1, 2 for the neutron spin into

the total angular momentum J = 1/2 piece and J = 3/2 piece. This can be done as

ψαi =
1

3
(σiσj)

αβψβj +

[
δijδ

αβ − 1

3
(σiσj)

αβ

]
ψβj , (6)

where the two pieces are the irreducible forms representing the 2P1/2 and 2P3/2 states respec-

tively. σi are the Pauli matrices. Thus the p-wave interaction in the EFT can be written

as

Lp = χα,ηi
†
[
∆(η) + i∂0 +

∇2

2M

]
χα,ηi +

√
3h(η)[χα,ηi

†Pαγ,η
ik Nγ

( →
∇
Mc

−
←
∇
Mn

)
k

C + h. c], (7)

where η = 1, 2 corresponds to the 2P1/2 and 2P3/2 channels respectively. These particular

p-wave channels in 11Be were also studied in Refs. [22]. The auxiliary field χαi plays in p-wave

a role similar to the φα field in the s-wave earlier in Eq. (1). The projectors Pαβ,η
ij in Eq. (7)

5



are

Pαβ,1
ij =

1

3
(σiσj)

αβ, (8)

Pαβ,2
ij =δijδ

αβ − 1

3
(σiσj)

αβ.

The p-wave elastic scattering amplitude is given by a set of diagrams similar to the s-wave

amplitude, Fig. 1. We get

iAη1(p) = −[h(η)]2
k2

µ2
iDη

χ(p2/(2µ), 0) =
2π

µ

ip2

−2πµ∆(η)

[h(η)]2
− πλ3

2
−
(

3λ
2

+ π
[h(η)]2

)
p2 − ip3

, (9)

using the p-wave propagator for the χη field

iDη
χ(p0,p) =

i

∆(η) − 1
2µ
ζ2 + 2[h(η)]2

µ
f1(p0,p)

, (10)

f1(p0,p) =
1

4π

(
ζ3 − 3

2
ζ2λ+

π

2
λ3

)
,

where ζ =
√
−2µp0 + µp2/M − i0+.

The EFT couplings in the p-wave can be related to observables by comparing the EFT

amplitude in Eq. (9) to the ERE as done for the s-wave earlier. For the p-wave we get

iAη1(p) = i
2π

µ

p2

p3 cot δη1 − ip3
≈ i

2π

µ

p2

−1/a
(η)
1 + r

(η)
1 p2/2− ip3

, (11)

and

−2πµ∆(η)

[h(η)]2
− π

2
λ3 =− 1/a

(η)
1 , (12)

−3

2
λ− π

[h(η)]2
=

1

2
r

(η)
1 .

The ERE parameters a
(1)
1 , r

(1)
1 and a

(2)
1 , r

(2)
1 can in principle be used to determine the

EFT couplings ∆(1), h(1) and ∆(2), h(2) in the 2P1/2 and the 2P3/2 channels, respectively.

However, due to lack of sufficient elastic n+14C scattering data the ERE parameters in

p-wave are not known. In the EFT it is not clear a priori how the couplings should be

estimated. In the natural case where all couplings scale with the high-momentum scale Λ,

initial p-wave interaction would be perturbative. In the presence of shallow bound, virtual

or resonance states in the p-wave, the EFT couplings are fine tuned to scale with powers

of the low-momentum scale Q. Then the p-wave operators in Eq. (7) need to be treated
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non-perturbatively [16, 17]. Even in the case where the p-wave interaction is perturbative,

treating it non-perturbatively does not introduce uncontrolled error in the EFT calculation.

Thus resuming the p-wave interaction with the interactions in Eq. (7) to all order we get a

result valid in the natural and the un-natural case.

Out of the four unknown p-wave couplings, we can determine two of the couplings from

the known resonance 1
2

−
state of 15C, with a resonance energy Er ≈ 1.885 MeV and width

Γr ≈ 40 keV in the c.m. frame. This resonance state is in the 2P1/2 channel in the EFT.

To describe the resonance one needs to treat the p-wave interaction non-perturbatively.

Analyzing the elastic scattering amplitude near the resonance, we get [23]

a
(1)
1 = −µΓr

p5
r

, and r
(1)
1 = − 2p3

r

µΓr
. (13)

This determines the couplings ∆(1), h(1) from the resonance parameters. The a
(1)
1 , r

(1)
1 ob-

tained from the 1
2

−
resonance state when used in the capture cross section Eq. (18) gives

negligible contribution to 14C(n, γ)15C away from the resonance. Near the resonance it

produces a sharp peak as we show later in Fig. 3. We determine the scaling of the remaining

two p-wave EFT couplings by analyzing available 14C(n, γ)15C data in the following.

III. RESULTS

ih(κ) ih(κ)

ih(κ) ih(κ)ih(κ) ih(κ)
(a) (b)

(c)

FIG. 2. E1 capture. Double dashed line is used to distinguish the final state 15C dimer field φ

from the single dashed dressed dimer field χη representing initial p-wave interaction. Wavy lines

represent photons. κ = 1, 2 corresponds to initial state interaction in the 2P1/2 and 2P3/2 channels,

respectively.

The capture reaction 14C(n, γ)15C proceeds through the diagrams in Fig. 2. We only
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concentrate on the E1 transition. The photon couples to the charge of the 14C core through

minimal coupling. This corresponds to gauging the core momentum p→ p + ZceA, where

Zc = 6. The contribution from the first diagram Fig. 2 (a) can be projected onto the

capture contribution from initial 2P1/2 and 2P3/2 channels using the projectors from Eq. (8).

Including the contribution from the diagrams (b) and (c) that involve the initial state p-wave

interactions from Eq. (7), the amplitude square can be written as

|M2P1/2|2 =

∣∣∣∣∣12eh0

√
Zφ

Mc

∣∣∣∣∣
2

32MnMcMp2

9

∣∣g2P1/2(p)
∣∣2 (14)

g
2P1/2(p) =

µ

p2 + γ2
+

6πµ

−1/a
(1)
1 + r

(1)
1 p2/2− ip3

[
γ

4π
+

ip3 − γ3

6π(p2 + γ2)

]
,

in the 2P1/2 channel. The first term, without the initial state p-wave interaction, in g
2P1/2 is

from diagram Fig. 2 (a). In the 2P3/2 channel we get a similar expression

|M2P3/2|2 =

∣∣∣∣∣12eh0

√
Zφ

Mc

∣∣∣∣∣
2

16MnMcMp2

9

∣∣g2P3/2(p)
∣∣2 (5− 3 cos2 θ), (15)

g
2P3/2(p) =

µ

p2 + γ2
+

6πµ

−1/a
(2)
1 + r

(2)
1 p2/2− ip3

[
γ

4π
+

ip3 − γ3

6π(p2 + γ2)

]
.

We used c.m. kinematics: p the carbon-14 core momentum, k the photon momentum and

k̂ · p̂ = cos θ. There is a contribution from the interference between the two p-wave channels

that vanish when we average over the angle θ to calculate the total unpolarized cross section.

We made the leading order approximation |k| = k0 ≈ (p2 + γ2)/(2µ). The wave function

renormalization factor Zφ is related to the residue at the pole of the propagator of the φ

particle that represents the 15C ground state. It is calculated from the dressed φ propagator

as

Z−1
φ =

∂

∂p0

[Dφ(p0,p)]−1
∣∣∣
p0=p2/(2M)−B

= 1 +
µ2h2

0

2πγ
= −1− ργ

ργ
, (16)

where B = γ2/(2µ) ≈ 1.218 MeV is the ground state binding energy.

The spin averaged differential cross section in the c.m. frame is written as

dσ

d cos θ
=

1

32πs

|k|
|p|
|M|2

2
. (17)

At LO we can write the Mandelstam variable s ≈ (Mn + Mc)
2 = M2. We write the total

cross section as

σ(p) =
1

2

64πα

M2
c µ

2

pγ(p2 + γ2)

1− ργ
[
2|g2P1/2(p)|2 + 4|g2P3/2(p)|2

]
, (18)
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where the electron charge is defined as α = e2/(4π) = 1/137.

The cross section in Eq. (18) depends on three unknown EFT couplings that can be

expressed in terms of three ERE parameters: the s-wave effective range ρ, the 2P3/2 channel

scattering volume a
(2)
1 and the 2P3/2 channel “effective range” r

(2)
1 . Written in this form, the

contributions from Figs. 2 (a), (b) and (c) are model-independent as the ERE parameters

are not model specific definitions but universal that are in principle directly related to the

n+14C elastic scattering phase shifts. The total 2P1/2 and 2P3/2 contribution from the tree

level diagram Fig. 2 (a) without the effective range correction ρ is around 5µb. This is

comparable to the data [6, 10] in Fig. 4 but also indicates that effective range ρ correction

and/or initial state p-wave interaction is important at LO to explain the data. In the

natural case a
(2)
1 ∼ 1/Λ3, r

(2)
1 ∼ Λ, and initial state p-wave interaction in Fig. 2 (b) and (c) is

suppressed compared to the diagram (a) by factors of Q3/Λ3. Two typical unnatural cases

in the p-wave were considered in Refs. [16] and [17]. In the former a
(2)
1 ∼ 1/Q3, r

(2)
1 ∼ Q

and the p-wave interaction in all the three diagrams are of the same order. In the latter

a
(2)
1 ∼ 1/(Q2Λ), r

(2)
1 ∼ Λ and the p-wave interaction in diagram (b) and (c) is Q/Λ suppressed

compared to diagram (a). We construct a systematic EFT by considering ρ ∼ 1/Λ and

a
(2)
1 ∼ 1/Q3, r

(2)
1 ∼ Q. Then the s-wave effective range ρ correction is a NLO effect, and

the 2P3/2 interactions are LO. We present only the LO result where the effective range ρ

contribution is neglected.

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

5

6

Ec.m.HMeVL

Σ
HΜ

bL

FIG. 3. (Color online) Resonant and non-resonant contribution to E1 capture cross section σ(Ec.m.)

in the 2P1/2 channel. Solid (blue) curve is the resonant contribution, and dashed (red) curve is the

non-resonant contribution.
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In the 2P1/2 channel, the LO cross section is determined by the 15C ground state binding

momentum γ, and the 1
2

−
state resonance energy Er and width Γr. In Fig. 3, we compare

the contribution from Fig. 2 (a) to that from Fig. 2 (b), (c). The dashed curve shows the

non-resonant contribution in the 2P1/2 channel and the solid curve shows the 1
2

−
resonant

contribution (in the same 2P1/2 channel). As expected the resonant contribution is large

near the resonance energy Er ≈ 1.885 MeV, and comparatively negligible elsewhere. More

importantly we notice that the non-resonant contribution is non-negligible throughout the

energy region. This implies that the interference between the resonant and non-resonant

contribution in the total cross section is significant as we see later.
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FIG. 4. (Color online) E1 capture cross section σ(Ec.m.) with a
(2)
1 = −n1/(Q

3), r
(2)
1 = 2n2Q, and

Q = 40 MeV. Solid (blue) curve uses (n1, n2) = (2, 1.5); dot-dashed (red) curve uses (n1, n2) =

(1.5, 1.2); dashed (black) curve uses (n1, n2) = (0.818, 1.12). Square (maroon) direct capture data

from Ref. [6], circle (dark blue) Coulomb dissociation data from Ref. [10].

In the 2P3/2 channel the undetermined ERE parameters are a
(2)
1 , r

(2)
1 at LO. In the EFT

power counting, a
(2)
1 ∼ 1/(Q2Λ2), r

(2)
1 /2 ∼ Q. Thus we use the parametrization a

(2)
1 =

−n1/(Q
3), r

(2)
1 = 2n2Q where n1 and n2 are expected to be O(1) for a consistent and

reliable EFT calculation. In Fig. 4 we plot the total cross section for some reasonable

values of n1 and n2 of O(1). We pick Q = 40 MeV. For example, (n1, n2) = (2, 1.5)

and (n1, n2) = (1.5, 1.2) reproduces the direct capture data from Ref. [6]. We also show

Coulomb dissociation data from Ref. [10]. A χ-square fit to the Coulomb dissociation data

with Q = 40 MeV gives (n1, n2) = (0.818, 1.12). The fact that the data can be described

by n1, n2 of O(1), as assumed in constructing the EFT power counting, indicates the EFT
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calculation is self-consistent. The resonance contribution near Ec.m. ≈ 1.89 MeV differs

from a simple Breit-Wigner form. This is a result of the significant interference between the

non-resonant and resonant contribution in the 2P1/2 channel alluded to earlier in discussing

Fig. 3.

10-6 10-5 10-4 0.001 0.01 0.1 1
15

20

25

30

35

40

45

Ec.m.HMeVL

Σ
�

E
c.

m
.

HΜ
b�

M
eV

1�
2 L

FIG. 5. (Color online) E1 capture S-factor Sn = σ/
√
Ec.m.. We use the same set of parameters

(including ρ = 0) and legends as in Fig. 4.

Traditionally the cross section σ in Eq. 18 is presented in terms of the S-factor Sn =

σ/
√
Ec.m. for use in astrophysical calculation at low-energy [35]. As the capture proceeds

through p-wave initial states to s-wave final state, the S-factor is a constant at low-energy [2,

35]. In Fig. 5 we plot the S-factor Sn = σ/
√
Ec.m. using the cross section σ from Eq. (18).

We use the same values of parameters (including ρ = 0) used in Fig. 4. The three set

of values for Sn at low-energy are consistent within the 30% accuracy expected of the LO

result. We note that the larger values of Sn (solid curve) are close to the values obtained

in the microscopic calculation in Ref. [19], and the intermediate values of Sn (dot-dashed

curve) are close to the values obtained in the potential model calculation in Ref. [2]. The

S-factor is a constant at low-energy and expanding it to the lowest order in energy we get

Sn =
16πα

√
2µ

M2
c γ(1− ργ)

[
12− 4(a

(1)
1 + 2a

(2)
1 )γ3 + ([a

(1)
1 ]2 + 2[a

(2)
1 ]2)γ6

]
+O(Ec.m.). (19)

The contribution from p-wave interaction in the 2P1/2 channel through a
(1)
1 is negligible

at low-energy, Fig. 3. The result in Eq. (19) is accurate to NLO at low-energy where

contributions from p-wave ERE parameters such as r
(1)
1 , r

(2)
1 are suppressed. The NLO

correction to Sn at low energy is through the effective range ρ contribution as seen in
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Eq. (19).

In Fig. 6, we look at the E1 reduced transition probability strength [11, 36]

dB(E1)

dErel

=
9

16π3

µEc.m.

E3
γ

σ(Ec.m.), (20)

and compare with available data [10]. We ignored any recoil and equated Eγ = Erel +B. We

used (n1 = 0.818, n2 = 1.12) with Q = 40 MeV. The agreement with data is not surprising

since the capture cross section in Fig. 4 was extracted using Eq. (20). This assumed negligible

nuclear contribution from the Pb target at the forward angles (large impact parameter) in

Ref. [10].
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FIG. 6. (Color online) B(E1) strength. Solid (blue) curve uses a
(2)
1 = −0.818/Q3, r

(2)
1 = 1.12×2Q

with Q = 40 MeV. Circle (dark blue) data from Ref. [10].

IV. CONCLUSIONS

In this work we consider the radiative capture cross section for 14C(n, γ)15C in halo EFT.

The dominant contribution from the E1 transition between the initial p-wave continuum

state and the final s-wave ground state of 15C is calculated. The EFT is constructed in

the single-particle approximation taking advantage of the low neutron separation energy

in 15C nuclei. A consistent power counting is developed where the leading contribution

involve initial state p-wave interactions. Both the resonant and non-resonant interaction is

considered.

The EFT result is written in a model-independent form using the ERE parameters. In

particular, the result depends on the 15C ground state binding momentum γ, and on the

12



scattering parameters a
(1)
1 , r

(1)
1 and a

(2)
1 , r

(2)
1 that encapsulate the interactions in the initial

2P1/2 and 2P3/2 channels, respectively. The 2P1/2 parameters are constrained using the

resonance energy and width of the 1
2

−
resonance state of 15C. The scattering parameters in

the 2P3/2 channel are estimated from the direct capture and Coulomb dissociation data.

The EFT calculation is shown to be able to describe the energy dependence of the capture

cross section at the order of the calculation. The EFT couplings constrained from direct cap-

ture reaction and Coulomb dissociation have values consistent with the EFT power counting.

The values of the p-wave couplings constrained from the direct capture and Coulomb dis-

sociation data are also consistent with each other within the expected leading order EFT

error O(Q/Λ) ∼ 30% on the coupling. The contribution from the resonance in the 2P1/2

channel differs from a simple Breit-Wigner form due to a significant interference with the

non-resonant contribution in this channel. It would be interesting to see if this can be con-

firmed experimentally with more accurate measurements near the resonance energy. Future

work should address contributions from the excited 5
2

+
state of 15C to the direct capture re-

action 14C(n, γ)15C. Higher order contributions from two-body currents should be explored

as well.
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