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Abstract

We study the incoherent neutrinoproduction of photons and pions with neutrino energy Eν 6

0.5 GeV. These processes are relevant to the background analysis in neutrino-oscillation experi-

ments, for example MiniBooNE [A. A. Aquilar-Arevalo et al. (MiniBooNE Collaboration), Phys.

Rev. Lett. 100, 032301 (2008)]. The calculations are carried out using a Lorentz-covariant effective

field theory (EFT) which contains nucleons, pions, the Delta (1232) (∆s), isoscalar scalar (σ) and

vector (ω) fields, and isovector vector (ρ) fields, and has SU(2)L⊗SU(2)R chiral symmetry realized

nonlinearly. The contributions of one-body currents are studied in the local fermi gas approxima-

tion. The current form factors are generated by meson dominance in the EFT Lagrangian. The

conservation of the vector current and the partial conservation of the axial current are satisfied au-

tomatically, which is crucial for photon production. The ∆ dynamics in nuclei, as a key component

in the study, are explored. Introduced ∆-meson couplings explain the ∆ spin-orbit (S-L) coupling

in nuclei, and this leads to interesting constraints on the theory. Meanwhile a phenomenological

approach is applied to parametrize the ∆ width. To benchmark our approximations, we calculate

the differential cross sections for quasi-elastic scattering and incoherent electroproduction of pions

without a final state interaction (FSI). The FSI can be ignored for photon production.
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I. INTRODUCTION

This paper is a continuing work of [1, 2], focusing on neutrinoproduction of photons and

pions from nuclei with neutrino energy Eν 6 0.5 GeV. In Refs. [1, 2], we introduced the ∆

resonance as a manifest degrees of freedom to the EFT, known as quantum hadrodynamics

or QHD [3–10]. (The motivation for this EFT and some calculated results are discussed in

Refs. [4, 5, 11–20].) To calibrate the reaction mechanism on the nucleon level, we studied

the productions from nucleons [2]. The calculations are motivated by the fact that the

neutrinoproductions of π0 and photon from nuclei (and nucleons) are potential backgrounds

in neutrino-oscillation experiments, MiniBooNE for example [21–23]. Currently, it is still

a question whether the neutral current (NC) photon production might explain the excess

events seen at low reconstructed neutrino energies, which the MicroBooNE experiment plans

to answer [24]. Moreover, Refs. [25–28] point out the possible role of anomalous interaction

vertices involving ω(ρ) Z and γ in NC photon production. So it is necessary to calculate the

cross sections for these processes. Here by using the QHD EFT, we study the incoherent

productions, in which the nucleus is excited. The other one is the coherent production

with the nucleus being intact, which is the topic of future work 1. We will discuss the

power-counting 2 of the calculations through which we will show that the contributions of

the anomalous interactions are small in the incoherent NC production of photons (they

contribute at next-to-next-to-leading-order). To benchmark the approximation scheme, we

study electron scattering in both quasi-elastic and pion production channels.

There have been several experiments measuring the weak response of nuclei across the

quasi-elastic region to the ∆ excitation peak. In most experiments [30–37], which have 12C

and 16O as the primary target nuclei, the mean energy of the beam is around 1 GeV. As

emphasized in [2], we expect our theory to work up to 0.5 GeV, so we do not rely on these

experiments to constrain the theory at this stage. On the theoretical side, much work has

been done, for example in [29, 38–60]. Most of these papers are based on the global or local

fermi gas approximation and include contributions from one-body currents, with improved

1 Recently, a unified framework handling the two has been proposed in [29].
2 In an EFT, there are an infinite number of interaction terms allowed by various constraints. To organize

them, we can associate power-counting to each vertex and diagram. The calculation can be done in a

perturbative way by summing up diagrams up to some particular power ν. See Refs.[1, 2, 5, 17–20] for

detailed discussions about power-counting in QHD EFT.
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treatment for FSI and ∆ dynamics in the medium. The same approach has also been applied

in electron scattering, for example in [61]. In [55–60], scaling approaches are used to address

quasi-elastic scattering. Moreover, the contribution from two-body currents was studied

nonrelativistically for example in [62]. In the most of these calculations, the ∆ dynamics

in nuclei is based on the work of [63], in which the ∆ self-energy has been studied using a

nonrelativistic model. Parallel to the nonrelativistic studies, some work has been initiated in

the relativistic framework, QHD EFT, using the local fermi gas (LFG) approximation and

including one-body currents [64–68]. The two-body current was investigated relativistically

in [69, 70]. These works mainly focus on electron scattering. But the handling of the ∆

resonance in these papers is somewhat phenomenological. Moreover in both nonrelativistic

and relativistic studies, photon production is rarely investigated.

In this paper, we also apply the LFG approximation [64] to study the one-body current

contribution. As shown in [1, 2], we make use of meson dominance to generate form factors

for various currents. Because of the built in symmetries in the Lagrangian, the conservation

of vector current and the partial conservation of axial current are satisfied. These properties

are well preserved in the LFG approximation. Especially for photon production, vector

current conservation is crucial. The ∆ dynamics, as a key component in this work, is

explored to some extent. We introduce interactions between ∆ and non-Goldstone meson

fields to generate the S-L coupling that has been introduced in phenomenological models [71,

72]. On the other hand, phenomenological knowledge about S-L coupling puts constraints

on these couplings. Moreover the ∆ decay width increases in the nucleus, because more

decay channels are opened up and this effect overcome the reduction of pion decay phase

space. Here we follow the phenomenological studies and separate the width to the pion

decay width and anything else parameterized by the imaginary part of the ∆ spreading

potential. As a result of opening new decay channels, the flux having excited a ∆ resonance

can be transferred to channels that do not involve pion or photon production. Moreover,

Pauli blocking can reduce the pion and photon production cross section further, because

of the reduction of the final particle’s phase space 3. In this paper, we explore how both

∆ and nonresonant contributions are reduced compared to those in free nucleon scattering.

3 The binding effect should be important when the neutrino energy is close to threshold, where the simple

approximations used here are not feasible. But this is clearly not important around 0.5 GeV.

3



However, we do not include FSI effects for pions and knocked out nucleons. The simple

treatment can be found in [73, 74], while the complete treatment is implemented in various

event generators of experiments, NUANCE for example [75], and GiBUU model [46, 47].

Hence we only compare our predictions with the output of NUANCE without FSI 4.

The paper is organized as follows. In Sec. II, we first discuss the LFG approximation

and then apply it to electron quasi-elastic scattering, which serves as a benchmark. In

Sec. III, the calculation scheme for pion (photon) production is briefly introduced. Then

the ∆ dynamics is studied with emphasis on the connection between ∆-meson interactions

and S-L coupling. The modification of the ∆ width is also discussed. After that, electron

scattering at the ∆ peak is studied, and results are compared with data with explanation

of the missing strength. The cross sections of neutrinoproduction of pions are also shown

and compared to NUANCE’s output. Sec. IV is dedicated to the NC photon production.

Finally Sec. V contains a short summary. In the appendices, we show detailed kinematic

analyses for both quasi-elastic scattering and pion production.

II. QUASI-ELASTIC SCATTERING IN LFG APPROXIMATION

This section serves as an illustration of the LFG approximation used for quasi-elastic

scattering and for photon and pion production. (See Ref. [2] for discussion on the free

nucleon interaction amplitude in all these processes.) Here we make use of the mean-field

approximation to calculate the nuclear ground state. The relevant leading order Lagrangian

is (the full Lagrangian can be found in [1, 5] for example):

L = N
[
iγµ

(
∂̃µ + igρρµ + igvVµ

)
−M + gsφ

]
N . (1)

The mean-field approximation is presented simply as the follows. Inside the nuclear matter,

the vector ρ3µ and V µ, and scalar φ fields develop nonzero expectation values. In the

lab frame of the matter, only two fields (φ and V 0) have nonzero values (in the isospin

asymmetric case, ρ0 can also develop a nonzero value). As a result, the nucleon’s mass

4 The predictions from NUANCE shown throughout this paper are obtained from the NUANCE v3 event

generator [75]. Multiple resonances are considered in NUANCE, but the ∆ dominates. The axial mass

Mπ

A
= 1.10 ± 0.27 GeV is used which is the same as that used by the MiniBooNE experiment for their

baseline calculations [76]. However, the actual backgrounds used in their final analyses were scaled to

data in a separate exercise.
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FIG. 1: (color online). Proton and neutron density in 12C with G1 and G2 parameter sets.

is modified: M∗ = M − gs〈φ〉. At the lowest order, the spectrum of nucleons is E(~p) =
√

~p2 +M∗2+gv〈V 0〉. Inside a finite nucleus, due to different boundary conditions, the mean-

field expectation value is space dependent and can be calculated numerically. By using this

approximation, we can calculate the bulk properties of the nucleus, the details of which can

be found in Ref. [5] for example.

Following [5], we calculate the local density ρp/n(~r) and field expectation value in 12C

(the major nucleus in MiniBooNE’s detector). Figs. 1 and 2 show the results based on G1

and G2 parameter sets in [5]. We will explore the difference due to the two sets in electron’s

quasi-elastic scattering.

To calculate the electroweak response of nuclei, we use the LFG approximation. This

approach has been applied in [64] to study electron quasi-elastic scattering. First, assuming

the Impulse Approximation (IA), the interaction happens every time between probe and

each individual nucleon This only holds when the transferred momentum is high enough

that the interference between different nucleons is reduced due to the big recoil. Second,

the response of the nucleus is the incoherent sum of the response of the fermion gas in

different regions. This works when the probe’s wave length is small enough compared to a

characteristic length scale of the nucleus density profile. The discussion can be summarized
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FIG. 2: (color online). 〈gsφ〉 and 〈gvV 0〉 in 12C with G1 and G2 parameter sets.
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FIG. 3: The kinematics in the lab frame of the nucleus for a lepton interacting with one nucleon

inside the nucleus.

in the following equation:

σ =

∫
dV

1

2p0li

∫
d3~p∗nf

(2π)32p∗0nf

d3~plf
(2π)32p0lf

d3~p∗ni
(2π)32p∗0ni

(2π)4δ4(q + p∗ni − p∗nf)
∑

sf ,si

|Mfi|2 . (2)

In this equation, pli and plf are the incoming and outgoing lepton momentum, q ≡ pli − plf

is the momentum transfer, pni si and pnf sf are the scattered nucleon’s initial and final

momentum and spin projection. Mfi is the one-body interaction amplitude. The kinematic

configuration is shown in Fig. 3. The integration over initial and final nucleon momentum

depends on the space dependent Fermi momentum. A detailed discussion about this equation

can be found in Appendix A.

The interaction amplitude Mfi in Eq. (2) can be expressed in terms of various current
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matrix elements (V i
µ Ai

µ and JBµ are respectively the isovector vector current, isovector axial-

vector current and baryon current, i = ±1, 0 [1, 2]). For electron quasi-elastic scattering (A

and B in the state are nucleon isospin),

Mfi =
e2

q2
〈J (lep)

EM µ〉〈J
(had) µ
EM 〉 ,

〈J (had)µ
EM 〉 ≡ 〈N,B|V 0µ +

1

2
Jµ
B|N,A〉 ; (3)

For charged current (CC) quasi-elastic scattering (i = ±1, GF is the Fermi constant and Vud

is the u and d quark mixing element in the CKM matrix),

Mfi = 4
√
2GFVud〈J (lep)

Liµ 〉〈J (had)iµ
L 〉 ,

〈J (had)iµ
L 〉 ≡ 〈N,B|1

2
(V iµ + Aiµ)|N,A〉 ; (4)

For NC quasi-elastic scattering (θw is the weak mixing angle),

Mfi = 4
√
2GF 〈J (lep)

NCµ〉〈J
(had)µ
NC 〉 ,

〈J (had)µ
NC 〉 ≡ 〈N,B|J0µ

L − sin2 θwJ
µ
EM |N,A〉 . (5)

The electroweak currents of leptons are well known, and 〈N,B|V i
µ(J

B
µ , A

i
µ)|N,A〉 can be

found in [2]. But we need to include the nucleon spectrum modification to the results of [2],

which is straightforward complete in the LFG approximation.

A short discussion on FSI is in order here. The picture is the following: the interaction

channels are opened in the initial interacting vertex, and then these channels would couple

to each other when particles are traveling through the nucleus. The flux among all the

initial channels are redistributed due to FSI. This picture is adopted in the GiBUU model

calculations for example for CC and NC processes [46] [47]. From conservation of probability,

assuming the picture mentioned above is valid, we should expect the sum of these channels in

the initial vertex to match the inclusive data. Moreover, Coulomb distortion of the electron

is not included in this calculation.

In the upper panels of Figs. 4, 5, and 6, we present differential cross sections dσ/dq0dΩ

for electron scattering off 12C at given electron energies and scattering angles. In this section

we only focus on the so-called quasi-elastic peak at lower energy region, which is believed

to be dominated by one nucleon knock out. The higher energy peak will be discussed in

Sec. III. In Fig. 4, the electron energy is Ei = 0.63 GeV, and the scattering angle is
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FIG. 4: (color online). Inclusive data for differential cross section of electron scattering off 12C.

Incoming electron energy is Ei = 0.62 GeV, and scattering angle is θlf = 60◦. The kinematics is

measured in the lab frame. Data are from Ref. [77]. Explanations of different plots can be found

in the text.

θlf = 60◦. The plots “G1” and “G2” are the calculations done with G1 and G2 parameter

sets [5]. The difference between the two is small. The data are from Ref. [77]. The validity

of the form factors realized by meson dominance needs to be discussed here. In this figure,

Q2 ≈ 0.3 GeV2, |~q| ≈ 0.55 GeV at the peak. Below the peak, Q2 is slightly bigger than

0.3 GeV2, and above the peak, Q2 6 0.3 GeV2. As discussed in [2], meson dominance works

when Q2 6 0.3 GeV2, and hence can be applied here. This is also true for Figs. 5 and 6. In

Fig. 5, the electron energy Ei = 0.68 GeV, and the scattering angle θlf = 36◦. In Fig. 6, the

electron energy Ei = 0.73 GeV, and the scattering angle θlf = 37.1◦. The data are from [77]

8



 0

 5

 10

 15

 20

 25

 30

 35

 0  0.1  0.2  0.3  0.4  0.5dσ
/d

q0 dΩ
 [1

0-3
1 cm

2 /(
G

eV
 s

r 
nu

cl
eo

n)
]

q0 (GeV)

Ei=0.68GeV
θ=36°

(a)

(0, 0), G1
(1, 1), G1

(1, 0.8), G1
(1, 1), constant width, G1

Oset self energy, G1
(1, 1) only ∆, G1

G1
G2

data

 0

 5

 10

 15

 20

 25

 30

 35

 0  0.1  0.2  0.3  0.4  0.5dσ
/d

q0 dΩ
 [1

0-3
1 cm

2 /(
G

eV
 s

r 
nu

cl
eo

n)
]

q0 (GeV)

Ei=0.68GeV
θ=36°

(b)

(1,1,Γsp=0)+MEC+QE, G1
(1, 1, Γsp=0), G1

MEC
QE,G1

data

FIG. 5: (color online). Inclusive data for differential cross section of electron scattering off 12C.

Incoming electron energy is Ei = 0.68 GeV, and scattering angle is θlf = 36◦. The kinematics is

measured in the lab frame. Data are from [77]. Explanations of different plots can be found in the

text.

and [78]. Again, we see only small differences between the “G1” and “G2” parameter sets.
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FIG. 6: (color online). Inclusive data for differential cross section of electron scattering off 12C.

Incoming electron energy is Ei = 0.73 GeV, and scattering angle is θlf = 37.1◦. Data are from

[78]. Explanations of different plots can be found in the text.

III. PION PRODUCTION

A. Approximation scheme and ∆ dynamics in the nuclear medium

By using the LFG approximation detailed before, the formula for the cross section can

be written as

σ =

∫
dV

1

2p0li

∫
d3~p∗nf

(2π)32p∗0nf

d3~kπ
(2π)32k0

π

d3~plf
(2π)32p0lf

d3~p∗ni
(2π)32p∗0ni

×(2π)4δ4(q + p∗ni − p∗nf − kπ)
∑

sf ,si

|Mfi|2 . (6)
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with the lepton and producing a pion.
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FIG. 8: Feynman diagrams for pion production. Here, C stands for various types of currents

including vector, axial-vector, and baryon currents. Some diagrams may be zero for some specific

type of current. See Ref. [2] for the details.

The details can be found in Appendix B. The notations for various momentum are explained

in Fig. 7. All the integrations except the volume integration depend on the space coordinate

~r through the space dependent Fermi momentum. The amplitude Mfi in Eq. (6) is similar

to those in Eqs. (3), (4), and (5), except that the hadronic currents should be changed to

those relevant to pion production:

〈J (had)µ〉 ≡ 〈N, π|J (had)µ|N〉 .

Several Feynman diagrams contribute here, as shown in Fig. 8, including diagrams with the

∆ [(a) and (b)] and all the rest which we define as nonresonant diagrams. See Ref. [2] for

details about them. Among the medium-modifications of the matrix elements, the behavior

11



of the ∆ needs to be singled out. First, let’s focus on the real part of the ∆ self-energy. We

start from the following Lagrangian (a similar Lagrangian can be found in [68]):

L∆;π,ρ,V,φ =
−i

2
∆

a

µ

{
σµν ,

(
i 6 ∂̃ − hρ 6ρ− hv 6V −m+ hsφ

)} b

a
∆bν

− f̃ρhρ

4m
∆λρµνσ

µν∆λ − f̃vhv

4m
∆λVµνσ

µν∆λ . (7)

Here the ∆ field is given by the Rarita-Schwinger representation, and a, b = ±3/2,±1/2

are ∆ isospin indices [1]. At the normal nuclear density, the ∆ is not stable in nuclear

medium. So the expectation values of meson fields are not changed in normal nuclei on

mean-field level. Similar to the nucleon case, the ∆ spectrum in nuclear matter (without

∆-pion interaction) is given by

p0∆ = hv〈V 0〉+
√

m∗2 + ~p2∆

≡ hv〈V 0〉+ p∗0∆

= hv〈V 0〉+
√

m∗2 + ~p∗2∆ ,

m∗ ≡ m− hs〈φ〉 .

The effect of introducing hs and hv couplings on the equation of state (EOS) was analyzed in

[65, 80, 81]. Some constraints on the couplings, rs ≡ hs/gs and rv ≡ hv/gv, were calculated in

[65, 81]. Here we resort to the scattering problem to find other constraints. In pion-nucleus

scattering studies [71, 72], S-L coupling of the ∆ inside the nucleus was introduced by hand,

although its origin is not clear in the nonrelativistic model. In this model, a mechanism

similar to the generation of the nucleon’s S-L coupling is used to generate ∆’s. Following

discussions in [82] and using the Lagrangian in Eq. (7), we can estimate the S-L coupling of

∆:

h∆ =
1

3

[
1

2m2 r

d

dr

(
hs〈φ〉+ hv〈V 0〉

)
− f̃v

mm r

d

dr

(
hv〈V 0〉

)
]
~S · ~L

≡ α(r)~S · ~L . (8)

Here, m ≡ m − 1
2
(hs〈φ〉+ hv〈V 0〉). In Fig. 9, we compare our estimates of α(r) defined in

Eq. (8) with two different phenomenological fits for 12C. We can see our estimates based on

three different parameter sets, rs = 1, rv = 1, 0.9, 0.8, and f̃v = −1.0, are consistent with
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FIG. 9: (color online). The strength of ∆’s S-L coupling in 12C. Here we compare two phenomenol-

ogy results with our three calculations based on different parameter sets. The “Horikawa” is from

[72]. The “Nakamura” is from [71]. All these calculations involve setting the G1 parameter to

describe the nucleus ground state. We change rv to 1, 0.9, 0.8 while keeping rs = 1, f̃v = −1.

the “Nakamura” result in [71], while the “Horikawa” result in [72] is significantly larger than

the “Nakamura” result when r ≥ 1 fm. Meanwhile, all the couplings are consistent with the

“naturalness” assumption, which also motivates our choice of f̃v = −1. We do not show the

consequence of rs = rv = 0, since there is no S-L coupling generated in this case.

Secondly, we turn to the imaginary part of the self-energy. It is known that Pauli blocking

effects decrease the width due to reduction of the pion-decay phase space, while the collision

channels, ∆N ↔ NN for example, increase the width. The two competing processes have

been investigated in the nonrelativistic models. At normal nuclear density, the net result

is to increase the width [63]. In phenomenological fits [79] [72], this increase is taken into

account by introducing a density-dependent complex spreading potential for the ∆. Here

we follow this approach. Above pion threshold,

Γ∆ = Γπ + Γsp ,

Γsp = V0 ×
ρ(r)

ρ(0)
. (9)

Γπ is the ∆ pion-decay width [63, 66] 5. Γsp (V0 ≈ 80 MeV) is the width in other channels,

5 In the Γπ calculation, only Pauli-blocking is considered. Modifications of the real part of the nucleon and

∆ self-energies are not included.

13



and has been fitted in [71, 72]. Below pion threshold (useful in photon production),

Γ∆ = Γsp = V0 ×
ρ(r)

ρ(0)
. (10)

In the cross channel of the ∆ diagram, we set the width to zero. Moreover, in the literature

[50, 83], the simple increase of the ∆ width by δΓ ≈ 40 MeV has been used for pion

production:

Γ∆ → 120 MeV + 40 MeV . (11)

This procedure turns out to work qualitatively as shown later. Furthermore in [61], the ∆

self-energy calculated in [63] is used for inclusive electron scattering off nuclei. In Sec. III B,

we will compare our results using Eqs. (9) and (10) with those using Eq. (11) and the width

in [61, 63].

B. Pion Electroproduction

Here we focus on the region beyond quasi-elastic scattering in the upper panels of Figs. 4,

5, and 6. It is believed that the second peak mainly comes from the ∆ excitation inside the

nucleus. In the upper panels of these figures, we provide our pion-production results (without

FSI) due to six different calculations. We include the full set of Feynman diagrams in the

first five calculations, and diagrams with ∆ in s and u channels in the sixth. The difference

among the first three calculations is the choice of (rs, rv) parameter sets: (rs = 0, rv = 0),

(rs = 1, rv = 1), and (rs = 1, rv = 0.8). In these three, the ∆ width shown in Eqs. (9) and

(10) is applied. In the fourth calculation, we set (rs = 1, rv = 1) and apply the constant

shift of the ∆ width as shown in Eq. (11). The fifth calculation is done by using the ∆

self-energy as calculated in [63, 84], which is essentially repeating the calculations in [61].

The sixth calculation has (rs = 1, rv = 1) and uses the same ∆ width as used in first three.

First, let’s discuss the location of the ∆-peak along the q0 axis. The different choice of rs

and rv indicates different binding potentials for ∆. For (0, 0), the real part of the self-energy

is the same as in the vacuum without any binding. For rs = 1, ∆ has the same attractive

potential as the nucleon. The vector part tuned by rv provides a repulsive potential. So we

can see that (1, 0.8) has a deeper binding potential than (1, 1). Hence, (0, 0) is less bound

than (1, 1) and (1, 1) less bound than (1, 0.8). In Figs. 4, 5, and 6, the location of ∆ peak in
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first three calculations indeed follows this argument. (We can estimate the location of the ∆

peak in a global fermi gas model 6.) The fourth calculation with (1, 1) and constant width

does not give correct peak position in the three figures: It underestimates (overestimates)

∆’s contribution on the left (right) side of the peak, because the constant width assumption

overestimates (underestimates) ∆’s width on the left (right) side. The fifth calculation by

using ∆ modification calculated in [63, 84] gives correct location of the peak. Comparing the

second with the sixth calculation, we can see the significance of nonresonant contributions

(they use same set of parameters and ∆’s width).

However, the pion production channel could not explain the full strength of the ∆ peak.

Meanwhile in the so-called “dip” region between the quasi-elastic scattering and the ∆ peak,

the calculations also miss strength. This indicates we miss other channels from dip region

to the ∆ peak. Missing strength at the peak position can be qualitatively explained by

considering the fourth calculation in the upper panels, whose simple treatment of the ∆

width makes analysis transparent. According to Eqs. (9) and (11), we estimate 0.04 GeV 6

Γsp 6 0.08 GeV in the sense of averaging over 12C, and hence 0.08 GeV 6 Γπ 6 0.12 GeV.

The comparable width of other decay channels shows the importance of them to the inclusive

data. Moreover there are contributions from two-body currents without ∆ as an intermediate

state. In the lower panels of Figs. 4, 5, and 6, we add up three different channels: quasi-

elastic, pion production, and two-body current contributions (labeled as meson-exchange-

current (MEC) in the plots). The label “(1, 1, Γsp = 0)” for pion production assumes

(rs = 1, rv = 1) and that no new channel takes away the flux from the ∆ pion production.

The MEC-contributions are from [70] [85]. Here the total strength matches well with the

inclusive data. However a detailed study of different channels in the QHD EFT framework

is needed to address this issue conclusively.

The difference should be mentioned here, between our calculations and those in [65] where

the QHD model is also applied. Ours are strictly based on the field theory, while in [65]

the ∆ is introduced by hand (they convolute the cross section based on a “stable” ∆ theory

6 Following [64], for 12C, we assume a global Fermi gas, with the nucleon effective mass M∗ = 0.75M ,

gs〈φ〉 ≈ 0.235 GeV, gv〈V 0〉 ≈ 0.75gs〈φ〉 (in lab frame), m∗ = m − rsgs〈φ〉 ≈ 0.995 GeV(rs = 1).

Meanwhile in s channel, the ∆ momentum p∗
∆

= q + p∗
ni

+ (1 − rv)gv〈V 0〉. It is easy to calculate the

q0-location of the peak by setting p∗2
∆

= m∗2. For Ei = 0.62 GeV, θ = 60◦ (see Fig. 4), q0 = 0.43 GeV if

rv = 1, and q0 = 0.39 GeV if rv = 0.8.
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with a Lorentzian weight function). Moreover, we take into account the contribution from

other diagrams, which are not considered in [65]. The two results are different somewhat,

but our choice rs = 1, rv = 1, 0.8 are consistent with the analysis in [65].

Moreover, we can see the difference of cross sections obtained using rs = 1, rv = 1, 0.8

are not significant, which indicates the total cross sections of neutrinoproduction processes

are not sensitive to them either. This will be confirmed by the results in Sec. IIIC.

C. CC and NC pion production

Fig. 10 shows the total cross section averaged over proton or neutron number for CC pion

production in (anti)neutrino–12C scattering. We also compare our result with NUANCE’s

output without FSI. In each figure, our calculations including different diagrams and using

different rs and rv are shown. The “only ∆” calculation only takes into account ∆ diagrams.

In the others, all the diagrams up to ν = 2 are included. Systematically in all the channels,

our “only ∆” calculation is close to the NUANCE output. But other diagrams contained

in “ν = 2” calculations are not negligible in all the channels around the resonance region,

especially when the s-channel ∆ contribution is suppressed by the small Clebsch-Gordan

coefficients (for example νµ + n −→ µ− + p + π0). In the very low energy region away

from the resonance, the nonresonant diagrams dominate. See [2] for the power counting of

diagrams. Moreover, we check that the contributions of higher order (ν > 3) diagrams are

tiny. We also can see that below 0.5 GeV, the (rs = 1 , rv = 0.8) results are bigger than the

(1, 1) and the (1, 1) are bigger than (0, 0). Following the discussions in Sec. III B about

the location of the ∆ peak in pion electroproduction, we expect that at a given energy,

∆ excitation occupies more phase space in (1, 0.8) than in (1, 1), and more in (1, 1)

than in (0, 0). So the pattern among the three different calculations is consistent with the

qualitative analysis. Here (0, 0) is presented simply for the purpose of comparison, and its

conflict with the ∆ S-L coupling is presented in Sec. IIIA.

One question needs to be raised: do we have ∆-dominance in the nuclear scattering

around 0.5 GeV ? If we compare the “ν = 2” calculations with “only ∆” calculations in

every channel, the answer is no. It turns out the ∆ contribution is strongly reduced due

to the broadening of its width, compared to its contribution in free nucleon scattering.

Meanwhile the nonresonant contributions are reduced due to the Pauli blocking. To see this
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FIG. 10: (color online) Total cross section per proton or neutron for the incoherent CC pion

production in neutrino– and antineutrino–12C scattering.

qualitatively, compare our results here with the cross sections shown in [2] for production

from free nucleons. In [2], two different calculations can be found, including “only ∆”

and “ν = 2”. We just show the total cross sections at Eν = 0.5 GeV in Tab. I for neutrino

scattering. For example, “p, pπ+” indicates the channel ν+p → µ−+p+π+. “(f)” and “(b)”

correspond to scattering from free nucleons and from bound nucleons in 12C respectively. In

both “only ∆ (b)” and “ν = 2 (b)”, rs = rv = 1 (calculations with only ∆ and rs = rv = 1

are not shown in the figures). The “nonres (b)” is the difference between the two, and can
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σ(10−39cm2) only ∆ (f) ν = 2 (f) nonres (f) only ∆ (b) ν = 2 (b) nonres (b)

p, pπ+ 0.56 0.85 0.29 0.33 0.48 0.15

n, nπ+ 0.088 0.105 0.017 0.056 0.060 0.004

n, pπ0 0.117 0.258 0.141 0.069 0.153 0.084

TABLE I: Total cross sections averaged over number of proton or nucleon for CC pion production

in neutrino–12C scattering at Eν = 0.5 GeV. See the text for detailed explanations. In the nuclear

scattering, rs = rv = 1.

be viewed qualitatively as the contributions of the nonresonant diagrams 7. The labeling for

free nucleon scattering is the same. We can see that the ∆ contribution in nuclear scattering

has been reduced systematically by around 50% in all channels, compared to its contribution

in nucleon scattering; the nonresonant contributions are also strongly reduced. Clearly, the

nonresonant contributions are not negligible in both nucleon and nuclei scattering. The

same situation happens in the antineutrino scattering channels and hence are not shown

explicitly. This points out the importance of including nonresonant contributions in CC

pion production.

In Fig. 11, we show the total cross section for NC pion production from 12C. The

categorization of the different calculations are the same as those for CC scattering. Again

the NUANCE output is close to our “only ∆” calculation. Among the first three calculations

in each channel, at fixed (anti)neutrino energy, (1, 0.8) gives bigger a cross section than (1, 1)

and (1, 1) bigger than (0, 0). This is the same as in the CC production, which has been

explained in terms of kinematics. Moreover, we can see how ∆-dominance is violated in the

NC case, as shown in Tab. II (the labellings are the same as those in Tab. I, and free nucleon

scattering results are from [2]). The same is true for antineutrino–nucleus scattering.

IV. NC PHOTON PRODUCTION

In this section, we study NC photon production from 12C. The calculation is done in the

same way as in pion production, except that the hadronic current in Eq. (5) is changed to

7 In principle, there are interferences between contributions from ∆ and other diagrams. At Eν = 0.5 GeV,

we can assume in most of phase space, the ∆ is “on shell” while contributions from other diagrams are

real, and hence the interferences are small.
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FIG. 11: (color online). Total cross section per proton or neutron for the NC pion production in

neutrino– and antineutrino–12C scattering.
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σ(10−39cm2) only ∆ (f) ν = 2 (f) nonres (f) only ∆ (b) ν = 2 (b) nonres (b)

p, pπ0 0.194 0.230 0.036 0.101 0.121 0.020

n, nπ0 0.194 0.234 0.040 0.101 0.123 0.022

n, pπ− 0.089 0.149 0.060 0.045 0.082 0.037

p, nπ+ 0.089 0.155 0.066 0.045 0.088 0.043

TABLE II: Total cross sections averaged over number of proton or nucleon for NC pion production

in neutrino–12C scattering at Eν = 0.5 GeV. See the text for detailed explanations. In the nuclear

scattering, rs = rv = 1.

the following:

〈J (had)µ〉 ≡ 〈N, γ|J (had)µ|N〉 .

The Feynman diagrams are the same as those in Fig. 8 with the final π line substituted

by the final γ line. See Ref. [2] for detailed discussion about them. Again we need to

implement the change of the baryon spectrum when we apply the formula in [2], as we do

in previous calculations. Because of built in symmetries in our model, conservation of the

vector current is automatically satisfied, which is important for photon production. The

difference in the kinematic analysis, compared to that in pion production, is due to the

zero mass of the photon. Moreover, we apply an energy cut on the photon energy in the

lab frame, Eγ > 0.15 GeV, motivated by the MiniBooNE’s detector efficiency. This also

eliminates the infrared singularity and simplifies the calculation.

In Fig. 12, the total cross sections averaged over proton or neutron number are shown.

Four different calculations are compared. The first “only ∆” is the same as before. “ν = 3”

calculations include all the ν 6 3 diagrams. It turns out no ν = 2 contact diagrams

contribute, and there are only two ν = 3 contact vertices contributing (See Ref. [2] for

details):
c1
M2

NγµN Tr
(
ãνF

(+)

µν

)
,

e1
M2

NγµãνNf sµν .

As we have checked, the contributions of these two are small compared to those of the ∆ and

existing nonresonant diagrams, which should be expected according to the power-counting.

Here, we have assumed their strength are due to both the ω and ρ meson anomalous inter-

action vertices (c1 = 1.5 and e1 = 0.8) [2, 27]. Moreover for these calculations, changing
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FIG. 12: (color online). Total cross section per proton or neutron for the NC photon production

in the neutrino– and antineutrino–12C scatterings. Our calculation is done with a photon energy

cut Eγ > 0.15GeV.

rs and rv does not change the total cross section significantly, which is also observed in

the differential cross section for pion electroproduction. In the three ν = 3 calculations for

different channels, (1, 0.8) gives a bigger cross section than (1, 1) and (1, 1) is bigger than

(0, 0). This pattern has been explained in pion production. We also see that the NUANCE

output is close to the “only ∆” calculation and smaller than the full calculations, which

should be expected from the comparison in pion production.

In addition, in Tab. III we show how the ∆ significance changes from neutrino–nucleon

scattering to neutrino–nuclus scattering (free nucleon scattering results are from [2] with a

change on photon energy cut: Eγ > 0.15 GeV): the ∆ contribution is strongly reduced, and

the nonresonant contribution is reduced less significantly. Since we have put a constraint on

the minimum photon energy, the lower energy events are not included in the results and the

Pauli blocking effect is not significant. That explains why the nonresonant contribution is not

quite suppressed. And the reduction of the ∆ contribution is mainly due to the broadening
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σ(10−42cm2) only ∆ (f) ν = 1 (f) nonres (f) only ∆ (b) ν = 1 (b) nonres (b)

p, pγ 1.89 2.49 0.60 0.98 1.50 0.52

n, nγ 1.89 2.25 0.36 0.97 1.24 0.24

TABLE III: Total cross sections averaged over number of proton or nucleon for NC photon produc-

tion in neutrino–12C scattering at Eν = 0.5 GeV. Here Eγ > 0.15 GeV for both types of scattering.

In the nuclear scattering, rs = rv=1.

of its width. We also expect the Pauli blocking effect to be less significant with higher energy

neutrinos. Furthermore, the same pattern about the reduction of cross sections happens in

antineutrino scattering. Based on Tab. III, we need to include nonresonant contributions in

photon production, as emphasized in pion production.

V. SUMMARY

Neutrinoproduction of photons and pions from nuclei provides an important background

in neutrino-oscillation experiment and must be understood quantitatively. Especially, we

are interested in the possible role of NC photon production in the excess events seen in the

MiniBooNE experiment at low reconstructed neutrino energy. In Ref. [2], we have calibrated

our theory—QHD EFT with ∆ introduced—by calculating photon and pion production from

free nucleons up to Eν = 0.5 GeV. In this work, the theory is applied to study the produc-

tion from nuclei. Here we make use of the LFG approximation and Impulse Approximation,

and include only one-body current contributions. In the mean-field approximation of the

nuclear ground state, the change of the baryon spectrum is represented by introducing an

effective mass for baryons, which leads to the change of one-body currents in this calculation.

The calculation for electron quasi-elastic scattering and electroproduction of pion serves as

a benchmark for our approximation schemes. We then proceed to calculate the neutrino-

production of pion and photon from 12C, and show the plots for total cross section in every

channel. First, we present calculations for pion production up to next-to-leading-order with

different rs and rv parameters as constrained by the phenomenological study. It turns out

that total cross sections are not very sensitive to changes of these parameters. Then in NC

production of photon, although we show the result up to ν = 3 order, there are no ν = 2

contributions from contact terms, and as we have checked already the ν = 3 contributions
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due to c1 and e1, related to the so-called anomalous interactions, are tiny (the same has been

shown for nucleon scattering in [2]). Again, the total cross section of photon production is

not sensitive to choice of different rs and rv. In all the plots, the ∆ contributions are singled

out and compared with the full calculations. Moreover, we also compare our results with

the output from NUANCE, and find that the NUANCE output is close to our “only ∆”

calculation with (rs = 0, rv = 0) for both pion and photon production, which should be

expected since the ∆ dominates in NUANCE.

In the calculation, the ∆ dynamics in nuclei is a key component. The dynamics has been

investigated in a nonrelativistic framework and also initiated in the QHD model. Parallel

to the modification of nucleon’s spectrum, the ∆-meson couplings (related with rs and rv)

introduced in our theory dictates the real part of the ∆ self-energy. The couplings are used to

explain the S-L coupling of ∆. Meanwhile the phenomenological result about S-L coupling

based on nonrelativsic isobar-hole models puts an interesting constraint on the ∆-meson

coupling strengths, which is complementary to the constraints based on EOS consideration.

The ∆ width is treated in a simplified way, as we take the advantage of the existing result

that shows an increase of the width due to the opening of other decay channels. In pion

electroproduction, the pion-production (without FSI) result gives a correct prediction for

the location of the ∆-peak. We argue that this deficit is due to the missing of other channels.

By adding contributions from two-body currents (from other relativistic study) to our quasi-

elastic and pion production (turning off ∆ broadening), we can explain the inclusive electron

scattering strength. The investigation on ∆ dynamics and two-body currents certainly needs

to be pursued further in QHD EFT, which plays an important role in nuclear response and

other problems.

Moreover, because of the broadening of the ∆ width, we expect that in both pion and

photon productions, the ∆ contribution is much less in nuclear scattering than in nucleon

scattering. But the reduction of nonresonant contributions would be less at higher energies

(beyond 0.5 GeV), because the Pauli blocking effect should be less important. In Tabs. I, II,

and III, we have shown explicitly the cross sections at Eν = 0.5 GeV due to ∆ and nonreso-

nant contributions in both neutrino–nucleon and neutrino–nucleus scattering. Although we

see the reduction of nonresonant contributions for pion production in Tabs. I and II, we see

a smaller reduction for photon production in Tab. III. This is consistent with the picture

that the nonresonant contribution is reduced because of Pauli blocking. The same situation
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happens in antineutrino scattering. This conclusion is important for future investigations

of higher energy neutrino scattering, which may be relevant to MiniBooNE’s excess event

problem.

Since our calculation is based on a QHD EFT Lagrangian with all the relevant symmetries

built in, the conservation of vector current is manifest. This is crucial for photon production.

Also partial conservation of the axial current is a necessary constraint in the problem. By

using the mean-field approximation and the LFG model, these constraints are satisfied in a

transparent way.

We are currently working on coherent pion and photon production from nuclei by applying

this QHD EFT, which may also be relevant to the MiniBooNE low energy excess event

problem.
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Appendix A: kinematics for quasi-elastic scattering

The analysis of the kinematics is for scattering from nuclear matter, and can be easily

generalized in the LFG model. The kinematic variables are shown in Fig. 3, and discussed

following Eq. (2). From the mean-field theory in QHD EFT, we know that the leading

order Hamiltonian gives rise to the nucleon spectrum in nuclear matter as p0n = gv〈V 0〉 +
√

M∗2 + ~p2n, M
∗ ≡ M − gs〈φ〉. Then we can define p∗n

0 ≡ p0n − gv〈V 0〉 =
√
M∗2 + ~p2n =

√
M∗2 + ( ~pn

∗)2. This can be generalized from the lab frame to an arbitrary frame. In the

LFG model, we consider each neighborhood inside the nucleus as a homogeneous system;

the field expectations, 〈φ(x)〉 and 〈V µ(x)〉, are space-time dependent (in the lab frame, they

only depend on the space coordinate). In the following, we always work in the nuclear lab

frame. The covariance of our calculation is more transparent with the p∗n
µ variables than
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with pµn. For example energy momentum conservation is q + p∗ni = p∗nf .

Next we derive the formula for the total cross section. Suppose Mfi is the covariant

interaction amplitude between the probe and each individual nucleon with specific initial

and final states. We have

σ =

∫
dV

1

2p0li

∫
d3~p∗nf

(2π)32p∗0nf

d3~plf
(2π)32p0lf

d3~p∗ni
(2π)32p∗0ni

(2π)4δ4(q + p∗ni − p∗nf)
∑

sf ,si

|Mfi|2 . (A1)

Pauli blocking leads to constraints on the integration of p∗ni and p∗nf , i.e. |~p∗ni| 6 pF and

|~p∗nf | > pF . Here pF is the Fermi momentum related with the local density. The two

constraints can be expressed by using factors θ(p2F +p∗ni
2−(p∗ni ·V )2/V 2) and θ(−p2F −p∗nf

2+

(p∗nf · V )2/V 2). In the following, we will not include them explicitly. We know that
∫

d3~p∗ni
2p∗0ni

d3~p∗nf
2p∗0nf

δ4(q + p∗ni − p∗nf) =

∫
dφ~p∗ni

dp∗0ni
1

4|~q| |cos(∡q̂p̂∗ni)=(2q0p∗0ni+q2)/(2|~q||~p∗ni|)
.

By using this, we have the total cross section as

σ =

∫
dV

1

2p0li

∫
d3~plf

(2π)32p0lf

dp∗0ni
|~q|

dφ~p∗ni

16π2

∑

sf ,si

|Mfi|2 . (A2)

Meanwhile to make our phase space analysis simple, we can integrate over d|~q| and dq0:

σ =

∫
dV

(2π)4
dφ~p∗ni

dp∗0nidq
0d|~q| 1

16p0li|~pli|
∑

sf ,si

|Mfi|2 . (A3)

Now, we need to calculate the boundary of the phase space in Eq. (A3). From the lepton

kinematics, we can determine the boundary of |~q| (p0li ≡ Eli):

|~q|max = |~pli|+
√

E2
li −M2

lf , (A4)

|~q|min = |~pli| −
√
E2

li −M2
lf . (A5)

For a given |~q|, we have the following constraints based on the lepton kinematics:

q0 6 Eli − (Elf)min = Eli −
√
(|~pli| − |~q|)2 +M2

lf , (A6)

q0 > Eli − (Elf)max = 0 . (A7)

However, there are further constraints on q0 for a given |~q| due to the hadron kinematics.

For given set of q0, |~q|, cos(∡q̂p̂∗ni) = (2q0p∗0ni+q2)/(2|~q||~p∗ni|) has to be physical. This requires

| cos(∡q̂p̂∗ni)| 6 1

⇐= |~p∗ni| >

∣∣∣∣∣∣
|~q|
2

− q0

2

√

1− 4M∗2

q2

∣∣∣∣∣∣
≡ p− . (A8)

25



Eq. (A8) gives a lower bound of |~p∗ni| which is also required to be below the Fermi surface:

|~p∗ni| 6 pF . Combining pF > p− and the constraints in Eqs. (A6) and (A7), we find

q0min = max(

√
(|~q| − pF )2 +M∗2 − EF , 0) , (A9)

q0max = min(

√
(|~q|+ pF )2 +M∗2 − EF , Eli −

√
(|~pli| − |~q|)2 +M2

lf ) . (A10)

Moreover, the constraint |~p∗nf | > pF is not present in the former discussion, but is taken care

of in the numerical calculation.

Appendix B: kinematics for pion production

The kinematic variables are defined in Fig. 7 in the lab frame. Except for the π momentum

kπ, all the others are defined in the Appendix A. The variables defined in other frames will

be mentioned explicitly. First we have

σ =

∫
dV

1

2p0li

∫
d3~p∗nf

(2π)32p∗0nf

d3~kπ
(2π)32k0

π

d3~plf
(2π)32p0lf

d3~p∗ni
(2π)32p∗0ni

×(2π)4δ4(q + p∗ni − p∗nf − kπ)
∑

sf ,si

|Mfi|2 .

The constraints on ~p∗ni and ~p∗nf , i. e. |~p∗ni| 6 pF and |~p∗nf | > pF , are always implicit in the

formula.

One way to think about the phase space is that: given specific values for q and p∗ni, the

final pion and nucleon invariant mass Mπn are fixed, and then the degrees of freedom in

Isobaric frame (final pion and nucleon’s center mass frame) is the angle of ~kIπ, i.e. Ω~kIπ
. So

we have
∫

d3~p∗nf
(2π)32p∗0nf

d3~kπ
(2π)32k0

π

(2π)4δ4(q + p∗ni − p∗nf − kπ)

=

∫
dMnπdΩ~kIπ

1

(2π)2
|~kIπ|
2

δ((q + p∗ni)
2 −M2

πn) .

In the above, we have made use of the following identities:

Mπn ≡
√
M∗2 + |~kIπ|2 +

√
Mπ

2 + |~kIπ|2 ,

EIπ =
M2

πn −M∗2 +M2
π

2Mπn

EInf = Mπn −EIπ ,

dEIπ

dMπn
=

EInf

Mπn
.
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Then analogous to the analysis in the quasi-elastic scattering case, we have
∫

d3~p∗ni
(2π)32p∗0ni

δ((q + p∗ni)
2 −M2

πn)

=

∫
dp∗0nidφ~p∗ni

4|~q|(2π)3 |cos(∠q̂p̂∗ni)=(2q0p∗0ni+q2+M∗2−M2
πn)/2|~q||~p

∗

ni|
.

So finally:

σ =

∫
dV

1

2p0li

∫
d3~plf

(2π)32p0lf

∫
dMnπdΩ~kIπ

dp∗0nidφ~p∗ni

1

(2π)5
|~kIπ|
8|~q|

∑

sf ,si

|Mfi|2

=

∫
dV dq0d|~q|dMπndp

∗0
nidφ~p∗ni

dΩ~kIπ

1

(2π)7
|~kIπ|

32(p0li)
2

∑

sf ,si

|Mfi|2 .

Next, we need to determine the boundary of phase space in terms of these variables.

First, it is clear that no constraint needs to be applied to Ω~kIπ
and φ~p∗ni

. Second, for a given

set of ~q, q0, and Mπn, to make sure | cos(∠q̂p̂∗ni)| 6 1, there is a constraint on p∗0ni besides

p∗0ni 6 EF :

−2|~q||~p∗ni| − q2 6 2q0p∗0ni +M∗2 −M2
πn 6 2|~q||~p∗ni| − q2 ,

⇐⇒





(|~p∗ni|+ λ+1
2
|~q|)2 + M∗2(q0)2

q2
− (λ+1)2

4
(q0)2 > 0 , λ ≡ M2

πn−M∗2

−q2
;

q0
√
|~p∗ni|2 +M∗2 + |~q||~p∗ni| > − q2

2
+ M2

πn−M∗2

2
,

⇐⇒ |~p∗ni| > p− ≡

∣∣∣∣∣∣
λ+ 1

2
|~q| − q0

2

√

(λ+ 1)2 − 4M∗2

q2

∣∣∣∣∣∣
. (B1)

Third, for a given set of ~q, q0, there is a constraint on Mπn, such that p− 6 pF . From

M2
πn ≡ q2 +M∗2 + 2q0p∗0ni − 2|~q||~p∗ni| cos(∠q̂p̂∗ni), we have

q2 +M∗2 + 2q0EF − 2|~q|pF 6 M2
πn 6 q2 +M∗2 + 2q0EF + 2|~q|pF .

And to open the pion production threshold, we need

(Mπ +M∗)2 6 M2
πn ,

So, we have

max((Mπ +M∗)2, q2 +M∗2 + 2q0EF − 2|~q|pF )

6 M2
πn 6 q2 + M∗2 + 2q0EF + 2|~q|pF . (B2)
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Fourth, for a given |~q|, there is a constraint on q0 such that (Mπn)min 6 (Mπn)max. We have

q2 +M∗2 + 2q0EF + 2|~q|pF > (Mπ +M∗)2

⇐⇒ q0 > max(
√
(Mπ +M∗)2 + (|~q| − pF )2 − EF , 0) . (B3)

However, there are further constraints on q0 due to the lepton kinematics, which has been

shown in Eqs. (A6) and (A7). Together with Eq. (B3), we have the boundary of q0:

q0max = Eli −
√
(|~pli| − |~q|)2 +M2

lf , (B4)

q0min = max(
√

(Mπ +M∗)2 + (|~q| − pF )2 −EF , 0) . (B5)

Eqs. (A4) and (A5) give constraints on |~q|. And there are further constraints due to hadron

kinematics. We have to make sure that q0max > q0min. But it is complicated to obtain an

analytic expression for |~q| based on this constraint. In the numerical calculations, we made

use of another boundary assuming a static nucleon in the vacuum. Then, we can say the

allowed region of |~q| is always inside the previous region. Solving q0max > q0min with pF = 0

and M∗ = M gives us:

|~q| 6
βA

M2

A
+(Mπ+M)2−M2

lf

Eli+M
+
√
∆

2(1− β2
A)

, (B6)

|~q| >
βA

M2

A
+(Mπ+M)2−M2

lf

Eli+M
−
√
∆

2(1− β2
A)

. (B7)

In the above,

βA =
Eli

Eli +M
,

MA =
√

(Eli +M)2 − E2
li ,

∆ =
(M2

A + (Mπ +M)2 −M2
lf )

2

(Eli +M)2
− 4(1− β2

A)(Mπ +M)2 .

So, Eqs. (A4), (A5), (B6) and (B7) are the bounds used in the numerical calculations. And

to map out the physical region, we simply try and check. It is also complicated to determine

an analytic expression for the threshold value of Eli in the LFG model. However, it is simpler

to work out the value for pion production off a static nucleon, which is

Eli >
(Mπ +M +Mlf )

2 −M2

2M
.
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So, the difference between the true threshold and the value calculated above is essentially

the binding energy.

[1] B. D. Serot and X. Zhang, Advances in Quantum Field Theory, Sergey Ketov, ed. (InTech,

Croatia, 2012), ch. 4.

[2] B. D. Serot and X. Zhang, Phys. Rev. C in press [arXiv:1206.3812].

[3] B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16, (1986) 1.

[4] B. D. Serot and J. D. Walecka, Int. J. Mod. Phys. E 6, (1997) 515.

[5] R. J. Furnstahl, B. D. Serot, and H.-B. Tang, Nucl. Phys. A 615, (1997) 441; 640, (1998) 505

(E).

[6] R. J. Furnstahl and B. D. Serot, Nucl. Phys. A 671, (2000) 447.

[7] R. J. Furnstahl and B. D. Serot, Nucl. Phys. A 673, (2000) 298.

[8] R. J. Furnstahl and B. D. Serot, Comments Mod. Phys. 2, (2000) A23.

[9] B. D. Serot, Lecture Notes in Physics 641, G. A. Lalazissis, P. Ring, and D. Vretenar, eds.

(Springer, Berlin Heidelberg, 2004), p. 31.

[10] B. D. Serot, Ann. of Phys. 322, (2007) 2811.

[11] M. A. Huertas, Phys. Rev. C 66, 024318 (2002); 67, (2003) 019901 (E).

[12] M. A. Huertas, Acta Phys. Polon. B 34, (2003) 4269.

[13] M. A. Huertas, Acta Phys. Polon. B 35, (2004) 837.

[14] J. McIntire, Acta Phys. Polon. B 35, (2004) 2261.

[15] J. McIntire, arXiv:nucl-th/0507006.

[16] J. D. Walecka, Theoretical Nuclear and Subnuclear Physics, second ed. (World Scientific,

Singapore, 2004), ch. 24.

[17] J. McIntire, Y. Hu, and B. D. Serot, Nucl. Phys. A 794, (2007) 166.

[18] Y. Hu, J. McIntire, and B. D. Serot, Nucl. Phys. A 794, (2007) 187.

[19] J. McIntire, Ann. of Phys. 323, (2008) 1460.

[20] B. D. Serot, Phys. Rev. C 81, (2010) 034305.

[21] A. A. Aguilar-Arevalo et al., (MiniBooNE Collaboration), Phys. Rev. Lett. 98, (2007) 231801.

[22] A. A. Aguilar-Arevalo et al., (MiniBooNE Collaboration), Phys. Rev. Lett. 102, (2009)

101802.

29



[23] A. A. Aguilar-Arevalo et al., (MiniBooNE Collaboration), Phys. Rev. Lett. 105, (2010)

181801.

[24] T. Katori (for the MicroBooNE collaboration), AIP Conf. Proc. 1405, (2011) 250.

[25] J. A. Harvey, C. T. Hill, and R. J. Hill, Phys. Rev. Lett. 99, (2007) 261601.

[26] J. A. Harvey, C. T. Hill, and R. J. Hill, Phys. Rev. D 77, (2008) 085017.

[27] Richard J. Hill, Phys. Rev. D 81, (2010) 013008.

[28] S. S. Gershtein, Yu. Ya. Komachenko, and M. Yu. Khlopov, Sov. J. Nucl. Phys. 33, (1981)

860.

[29] M. Martini, M. Ericson, G. Chanfray and J. Marteau, Phys. Rev. D 80, (2009) 065501.

[30] S. Nakayama et al., (K2K Collaboration), Phys. Lett. B 619, (2005) 255.

[31] M. Hasegawa et al., (K2K Collaboration), Phys. Rev. Lett. 95, (2005) 252301.

[32] R. Gran et al., (K2K Collaboration), Phys. Rev. D 74, (2006) 052002.

[33] A. Rodriguez et al., (K2K Collaboration), Phys. Rev. D 78, (2008) 032003.

[34] K. Hiraide et al., (SciBooNE Collaboration), Phys. Rev. D 78, (2008) 112004.

[35] A. A. Aguilar-Arevalo et al., (MiniBooNE Collaboration), Phys. Rev. Lett. 100, (2008)

032301.

[36] A. A. Aguilar-Arevalo et al., (MiniBooNE Collaboration), Phys. Lett. B 664, (2008) 41.

[37] A. A. Aguilar-Arevalo et al., (MiniBooNE Collaboration), Phys. Rev. Lett. 103, (2009)

081801.

[38] A. V. Butkevich, Phys. Rev. C 78, (2008) 015501.

[39] A. V. Butkevich, Phys. Rev. C 80, (2009) 014610.

[40] S. K. Singh and E. Oset, Nucl. Phys. A 542, (1992) 587.

[41] S. K. Singh and E. Oset, Phys. Rev. C 48, (1993) 1246.

[42] A. Meucci, C. Giusti, and F. D. Pacati, Nucl. Phys. A 739, (2004) 277.

[43] A. Meucci, C. Giusti, and F. D. Pacati, Nucl. Phys. A 744, (2004) 307.

[44] J. Nieves, J. E. Amaro, and M. Valverde, Phys. Rev. C 70, (2004) 055503; 72, (2005) 019902

(E).

[45] M. C. Martinez et al., Phys. Rev. C 73, (2006) 024607.

[46] T. Leitner, L. Alvarez-Ruso, and U. Mosel, Phys. Rev. C 73, (2006) 065502.

[47] T. Leitner, L. Alvarez-Ruso, and U. Mosel, Phys. Rev. C 74, (2006) 065502.

[48] T. Leitner, O. Buss, L. Alvarez-Ruso, and U. Mosel, Phys. Rev. C 79, (2009) 034601.

30



[49] A. Kartavtsev, E. A. Paschos, and G. J. Gounaris, Phys. Rev. D 74, (2006) 054007.

[50] C. Praet, O. Lalakulich, N. Jachowicz, and J. Ryckebusch, Phys. Rev. C 79, (2009) 044603.

[51] T. Leitner, U. Mosel and S. Winkelmann, Phys. Rev. C 79, (2009) 057601.

[52] S. K. Singh, M. J. Vicente-Vacas, and E. Oset, Phys. Lett. B 416, (1998) 23; 423, (1998) 428

(E).

[53] T. Sato, D. Uno, and T. S. H. Lee, Phys. Rev. C 67, (2003) 065201.

[54] B. Szczerbinska, T. Sato, K. Kubodera, and T. S. Lee, Phys. Lett. B 649, (2007) 132.

[55] J. E. Amaro, M. B. Barbaro, J. A. Caballero, T. W. Donnelly, A. Molinari, and I. Sick, Phys.

Rev. C 71, (2005) 015501.

[56] J. A. Caballero, J. E. Amaro, M. B. Barbaro, T. W. Donnelly, C. Maieron, and J. M. Udias,

Phys. Rev. Lett. 95, (2005) 252502.

[57] J. E. Amaro, M. B. Barbaro, J. A. Caballero, and T. W. Donnelly, Phys. Rev. Lett. 98, (2007)

242501.

[58] M. Martini, G. Co’, M. Anguiano, and A. M. Lallena, Phys. Rev. C 75, (2007) 034604.

[59] J. E. Amaro, M. B. Barbaro, J. A. Caballero, T. W. Donnelly, and J. M. Udias, Phys. Rev.

C 75, (2007) 034613.

[60] M. V. Ivanov, M. B. Barbaro, J. A. Caballero, A. N. Antonov, E. Moya de Guerra, and M.

K. Gaidarov, Phys. Rev. C 77, (2008) 034612.

[61] A. Gil, J. Nieves and E. Oset, Nucl. Phys. A 627, (1997) 543.

[62] W. M. Alberico, M. Ericson, and A. Molinari, Ann. of Phys. 154, (1984) 356.

[63] E. Oset, L.L. Salcedo, Nucl. Phys. A 468, (1987) 631.

[64] R. Rosenfelder, Ann. of Phys. 128, (1980) 188.

[65] K. Wehrgerger, C. Bedau, and F. Beck, Nucl. Phys. A 504, (1989) 797.

[66] K. Wehrgerger, and R. Wittman, Nucl. Phys. A 513, (1990) 603.

[67] T. Herbert, K. Wehrgerger, and F. Beck, Nucl. Phys. A 541, (1992) 699.

[68] K. Wehrgerger, Phys. Rept. 225, (1993) 273.

[69] M. J. Dekker, P. J. Brussaard, and J. A. Tjon, Phys. Rev. C 49, (1994) 2650.

[70] A. De Pace, M. Nardi, W. M. Alberico, T. W. Donnelly, and A. Molinari, Nucl. Phys. A 726,

(2003) 303.

[71] S. X. Nakamura, T. Sato, T.-S. H. Lee, B. Szczerbinska, and K. Kubodera, Phys. Rev. C 81,

(2010) 035502.

31



[72] Y. Horikawa, M. Thies, and F. Lenz, Nucl. Phys. A 345, (1980) 386.

[73] S. L. Adler, S. Nussinov and E. A. Paschos, Phys. Rev. D 9, (1974) 2125.

[74] E.A. Paschos, L. Pasquali and J.Y.Yu, Nucl. Phys. B 588, (2000) 263.

[75] D. Casper, Nucl. Phys. Proc. Suppl. 112, (2002) 161.

[76] A. A. Aguilar-Arevalo et al., (MiniBooNE Collaboration), Phys. Rev. D 81, (2010) 092005.

[77] P. Barreau et al., Nucl. Phys. A 402, (1983) 515.

[78] J. S. O’Connell et al., Phys. Rev. C 35, (1987) 1063.

[79] M. Hirata, J. H. Koch, F. Lenz and E. J. Moniz, Ann. of Phys. 99, (1976) 374.

[80] J. Boguta, Phys. Lett. B, 109, (1982) 251.

[81] D. S. Kosov, C. Fuchs, B. V. Martemyanov, Amand Faessler, Phys. Lett. B 421, (1998) 37.

[82] R. J. Furnstahl, John J. Rusnaka and B. D. Serot, Nucl. Phys. A 632, (1998) 607.

[83] I. J. D. MacGregor et al., Phys. Rev. Lett. 80, (1998) 245.

[84] J. Nieves, E. Oset, and C. Garcia-Recio, Nucl. Phys. A 554, (1993) 554.

[85] Private communication with T. W. Donnelly.

32


