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Parameterization Dependence of T -matrix Poles and Eigenphases
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We have studied the form-dependence of fits to πN elastic scattering data, based on a Chew-
Mandelstam K-matrix formalism. Extracted partial-wave amplitudes, and resonances characterized
by T -matrix poles, are compared in fits generated with and without explicit Chew-Mandelstam
K-matrix poles. Diagonalization of the S-matrix yields the eigenphase representation. While the
eigenphases can vary significantly for the different parameterizations, the locations of most T -matrix
poles are relatively stable. We also find the partial-wave amplitudes for πN elastic scattering to be
quite stable. By turning the on and off the explicit Chew-Mandelstam pole contributions, we are
able to determine how the T -matrix poles are generated in this approach.

PACS numbers: PACS numbers: 11.55.Bq, 11.80.Et, 11.80.Gw

I. INTRODUCTION

The excited states of the nucleon [1] have been studied
in a wide array of reactions initiated mainly by pion and
photon beams. Other approaches have involved an ex-
amination of the invariant mass distribution of products
from, for example, nucleon-nucleon reactions [2] and J/Ψ
decays [3]. Most non-strange states listed by the PDG [1]
were identified from fits to πN elastic scattering and re-
action data. Photo-decay amplitudes were determined
mostly through analyses of single-pion photoproduction
data.

Recent measurements of cross section and polarization
quantities, related to the photo- and electroproduction
of states other than πN , have been analyzed separately
and in multi-channel approaches. These studies have pro-
vided stronger evidence for states seen only weakly in πN
elastic scattering, and have suggested new states, cou-
pling more strongly to other channels [4].

Among the most extensive πN scattering analyses [5–
7], the parametrization of Ref. [7] based on the SAID
interactive fitting and database codes [8] (the SAID-GW
fit), utilizing the most recent data, has found the fewest
number of N and ∆ resonances. In the fit of Ref. [9], a
search for weaker structures was carried out. There, the
existing solution was modified using a simple product S-
matrix approach, to include the effect of an added Breit-
Wigner resonance in each partial wave. Chi-squared was
mapped for various combinations of masses, widths and
branching fraction. Two marginally significant candi-
dates were found in the S11 and F15 partial waves, with
pole positions: 1689− i96 MeV (for S11) and 1793− i94
(for F15). Of these, the F15 has been reported in subse-
quent fits, while the S11 has not.
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Here we have considered another approach. As de-

tailed further below, existing GW-SAID fits to πN elas-
tic scattering data have utilized a fit form based on the
Chew-Mandelstam (CM) K-matrix. This approach is
capable of generating T -matrix poles without the as-
sumption of explicit CM K-matrix poles. Previous
fits [7] have only included an explicit CM K-matrix pole
for the ∆(1232). In the present study, an alternative
parametrization with one explicit CM K-matrix pole in
each partial wave was used to generate a fit independent
of the usual CM parametrization.
A third form, based on a product S-matrix, con-

structed from pieces containing either CM K-matrix pole
or non-pole terms, was also attempted. There, the goal
was a separation of resonant and non-resonant contribu-
tions. Ultimately, this was not successful. As a result,
we detail only the second approach, but comment on the
product form in our conclusions.
The motivation for these new fits is twofold. By chang-

ing the parameterization, we are able to gauge the sta-
bility of the amplitudes and resonance positions. We
are also able to see if the addition of new explicit CM
K-matrix poles translates into additional resonance sig-
nals. Each fit was fully constrained by forward and fixed-
t dispersion relations, and extrapolated into the complex
energy plane to find T -matrix poles. As a result, this
project constitutes the most extensive analysis of πN
elastic scattering data since our first incorporation of dis-
persion relation constraints.

Below, in Sec. II, we briefly review the CM K-matrix
formalism used in this and previous fits. The eigenphase
representation, and some numerical details, are reviewed
in Sec. III. Results for the partial wave fits and resonance
spectrum are compared in Sec. IV. Finally, in Sec. V, we
consider the implications of this and future work.

II. CHEW-MANDELSTAM FORMALISM

The Chew-Mandelstam (CM) approach, for the
parametrization of multichannel hadronic πN elastic
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scattering and reactions to other hadronic channels, has
been described in detail in Refs. [7, 9–12]. The χ2-fits
to data have been additionally constrained using the for-
ward C± dispersion relations and fixed-t dispersion rela-
tions for the invariant B amplitudes.
As a point of reference, we note that the standard CM

parametrization can be expressed in terms of the on-shell
Heitler partial wave K-matrix, K as

K−1(E) = K
−1

(E)− ReC(E), (1)

where E is the (complex) scattering energy, K is the CM
K-matrix and C is a diagonal matrix, whose matrix el-
ements are termed the CM functions [13]. The Heitler
K-matrix is related to the partial wave transition ampli-
tude matrix, T as

T−1(E) = K−1(E)− iρ(E). (2)

Here, ρ(E) = δ(E−H0), whereH0 is the (model indepen-
dent) relativistic free-particle Hamiltonian with physical
(stable) particle masses. It determines the CM functions,
C(E) via the relation ImC(E) = ρ(E). 1

The standard form used in the GW fits is defined by
the choice for the CM K-matrix elements

K(E) =
∑

n

cnz
n(E), (3)

where cn are a set of constants and z is a linear function
of the scattering energy, E. The integer, n is typically
between 2 and 5, and depends on the matrix element in
question.
Note that K defines an entire function of the complex

parameterE for finite values. This form is used for all but
the P33 partial wave, which includes an explicit pole inK.
For partial waves other than the P33, we see that the CM
K-matrix, K, is without poles (or other singularities).
The Heitler K-matrix, K,

K =
1

1−K[ReC]
K (4)

has a pole whenever det[1 − ReC(E)K(E)] = 0. The
matrices K and K are free of branch point singulari-
ties [12, 14].
The alternate form of the CM K-matrix is similar to

the form used in the P33 partial wave of the standard K
parametrization, described above. This form is given by

Kij =
γiγj

E − Ep

+ β(E)ij . (5)

Here, γi(E) is a polynomial without a zero at the pole
position, Ep, and the index labels the channel (πN , π∆,
ρN , and ηN), β(E) is an entire function of the complex
energy, E.

1 The included quasi-two-body channels, such as π∆, are con-

strained by a subtracted dispersion relation to be zero at the

stable three-body threshold.

III. EIGENPHASE REPRESENTATION

The fit produces a unitary S-matrix of amplitudes for
all contributing channels. While those channels not fitted
to data are unlikely to give a quantitative representation
of the reaction (for example, πN → π∆), they can be
used to construct a set of eigenphases, which provide an
interesting characterization of resonance behavior.
The unitarity of the S-matrix implies that its eigen-

values are phase factors. The matrix, U , of eigenvectors
diagonalizes the S-matrix as

U †SU = λ, (6)

where

λ =











λ1 0 · · · 0
0 λ2 · · · 0

0 0
. . . 0

0 0 · · · λn











. (7)

Exploiting |λi| = 1, we write

λi = e2iφi (8)

with φi real.
Our objective is the numerical evaluation of the eigen-

phases given the T -matrix elements from various fits.
This is straightforward at a given energy, using a stan-
dard routine to diagonalize the unitary S-matrix. The
only complicating issue is correlating a given eigenphase,
φi(E) with the appropriate eigenchannel when two (or
more) eigenphases converge as the energy changes. In
other words, once an eigenchannel i is determined, we
must track it for all energies. The no-crossing theo-
rem [15] is readily generalized to unitary matrices and
shows that, in a given partial wave, the eigenphases may
not be equal for any energy. This property is exhibited
in the eigenphase plots discussed below.
Given the T -matrix at some energy, T (E), we can form

the S(E)-matrix. We diagonalize this matrix using a
standard routine to obtain the eigenvalues {λi(E)}ni=1

,
where n is the number of channels.
If the eigenvalues are nearly degenerate at some energy,

it is difficult to distinguish which eigenvalue corresponds
to a given eigenchannel, say i, since diagonalization of
S doesn’t preserve the eigenchannel ordering. The set of
eigenvectors, however, must be orthogonal at any energy;
and, for continuous partial wave amplitudes, the change
of the eigenvector for a given eigenchannel is small for
nearby energies.
The eigenchannels are maintained using the following

method. The S-matrix is diagonalized at the initial en-
ergy, say E1 = 1150 MeV. We obtain n eigenphases
(where n is the number of channels included for the given
partial wave), λ1(E1), . . . , λn(E1) and their correspond-
ing eigenvectors v1(E1), . . . , vn(E1). We wish to correlate
the eigenvalues and eigenvectors with a given eigenchan-
nel throughout the evaluation of the eigenvalues at higher
energies, E > E1.
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FIG. 1. (Color online) Selected partial-wave amplitudes (L2I,2J ). Solid (dashed) curves give the real (imaginary) parts of
amplitudes corresponding to the WI08 [8] solution. Dash-dotted (dotted) curves give the real (imaginary) parts of amplitudes
corresponding to the XP08 solution. (a) S11, (b) S31, (c) P11, (d) D13, (e) F15, and (f) F37. All amplitudes are dimensionless.
Vertical arrows indicate Breit-Wigner resonance WR values and horizontal bars show full Γ and partial widths for ΓπN associted
with the GW SP06 solution [7].

Increasing the energy a small amount (10−15 MeV) to
E2, we again diagonalize the S-matrix and evaluate the
λ1(E2), . . . , λn(E2) and eigenvectors v1(E2), . . . , vn(E2).
In order to track the eigenchannel, we evaluate the

matrix of overlaps:

Oij(E1, E2) = vi(E1)
†vj(E2). (9)

As E2 → E1, we have

lim
E2→E1

Oij(E1, E2) = δij , (10)

which is just the statement that the eigenvectors are or-
thonormal. For E2 − E1 ≃ 10 MeV, we identify the

eigvenvalues according to the largest overlap in the set

{|Oij(E1, E2)|}
n
j=1. (11)

Suppose, for example, that we have three channels and
at the energy E1, we write the eigenvalues in the order:

λ1, λ2, λ3. (12)

And at energy E2 for i = 1, we find that

|O13(E1, E2)| > |O11(E1, E2)| > |O12(E1, E2)|, (13)

then for energy E2, we order the eigenvalue λ3 first; the
ordering for the other eigenvalues is determined similarly.
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TABLE I. Pole positions in complex energy plane of the K-matrix for the πN → πN reaction. The functional forms (see text)
employed in the SAID fits are compared for selected partial waves. Each K pole position is expressed in terms of its real part.

ℓJT WI08 XP08

S11 1533 1674 1533 1702

S31 1653 1658

P11 − 1517

D13 − 1512 1750

F15 − 1685

F37 − 1869

IV. RESULTS

The fits with (XP08) and without (WI08) explicit CM
K-matrix poles, in waves other than (L2I,2J) P33, are
compared in Fig. 1. Differences in the partial waves are
slight, and the fit quality is comparable over the reso-
nance region, each fit using a similar number of param-
eters. This feature of the πN elastic scattering analysis
seems quite stable.
In Fig. 2, we have calculated the eigenphases corre-

sponding to the full S-matrix. Only the πN → πN and
πN → ηN channels have been constrained by data. We
note that small changes in the partial wave T -matrix el-
ements can result in large changes in the eigenphases.
This is a corollary of the no-crossing theorem and a con-
sequence of the non-linear nature of the diagonalization
of the S-matrix. The behavior of these phases does, how-
ever, provide an interesting perspective on the emergence
of resonance structures in the fits.
In the S11 partial wave, both fits have two eigenphases

crossing 90◦, at 1533 and 1674 MeV for WI08, and at
1533 and 1702 MeV for XP08. If one computes the usual
Heitler K-matrix, as was done in Ref. [16], K-matrix
poles are found at these energies (since the unitary trans-
formation, U [Eq.(6)] diagonalizesK simultaneously with
S and Kii = tanφi). In the S31 partial wave, a 2- and
3-channel fit are compared, yielding identical crossing en-
ergies, again corresponding to a Heitler K-matrix pole
(at about 1655 MeV). Note that in the WI08 plot, two
eigenphase curves nearly touch, but do not cross.
In the P11 plot, only one of the solutions has a 90◦

crossing leading to a Heitler K-matrix pole. Note, how-
ever, that the energy dependence of the eigenphase cross-
ing, and nearly crossing 90◦, is very similar. This feature
determines another measure of resonance behavior, to be
discussed below.
The D13 eigenphases are quite different in the two fits.

In the WI08 fit, there are no 90◦ crossings, while in XP08,
we see two crossings. This hints at a different resonance
structure, though the πN T matrices are nearly identical.
In the F15 and F37 eigenphase plots, the XP08 solution

has a single crossing, whereas the WI08 solution does not.
Here also, a comparison of the eigenphases which cross,
or come close to crossing, 90◦ have a similar energy de-
pendence. Values of the Heitler K-matrix poles, derived

from the two solutions WI08 and XP08, for the consid-
ered partial waves, are listed in Table I.

As has been noted previously [17], resonances may be
associated with a single eigenphase crossing 90◦, and this
will result in a Heitler K-matrix pole. However, a more
robust measure (if a set of amplitudes is available) is
given by the time-delay matrix [18], which is propor-
tional to the sum of energy derivatives of all eigenphases.
Other factors, such as threshold openings can also pro-
duce rapid energy dependence. Certainly the correct
method of resonance identification requires the location
of poles in the complex energy plane on unphysical sheets
close to the physical region, which we demonstrate below.
Our employment of the eigenphase approach illustrates
the fact that the resonance structure may vary without
significantly altering the shape of the πN elastic ampli-
tude. It is usually the case, however, that such resonances
are deep in the complex plane having large widths. In-
tervening zeros can also diminish the effect of poles on
the physical axis.

In Fig. 3, for illustration, we plot the sum of eigenphase
energy derivatives for the P11 andD13. The peaks for P11

are nearly identical and occur at about 1350 MeV, which
(we will see) corresponds with the real part of the pole
position. For the D13, peaks corresponding the PDG
4-star state, near 1500 MeV, are closely aligned. The
second peak has almost no evidence in the πN elastic
amplitude. However, a large contribution to the (unfitted
and therefore unconstrained) π∆ or ρN channel produces
the second peak.

In Table II, we compare the pole positions associated
with resonance behavior in the plotted amplitudes. The
third S11 pole in XP08 closely resembles the structure
found in Ref. [9], at (1689, 96) MeV, by scanning all par-
tial waves with an added Breit-Wigner contribution. The
very broad (1646, 290) MeV P11 state is similarly close
to one found in the SM90 fit [19], at (1636, 272) MeV.
Two extra poles were found in the D13 partial wave
for the XP08 solution compared to WI08. We do not
intend to report the (1716, 370) MeV pole as a reso-
nance but merely mention it here in connection with
the present sensitivity study. Interestingly, the pole at
(1740, 66) MeV has its effect masked by a zero interven-
ing between the pole and real energy axis and therefore
makes little impact in the physical region.
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FIG. 2. (Color online) Eigenphases. (a) S11, (b) S31, (c) P11, (d) D13, (e) F15, and (f) F37. Upper plots correspond to WI08
solution; lower plots correspond to XP08.

As mentioned in the Introduction, a third parame-
terization was attempted in order to see if resonance
and background contributions could be isolated using
a product S-matrix approach. The form tested was
S = SBSRSB. Here SB was constructed using the CM
K-matrix method, with no pole term (polynomial only),
while SR contained only a pole (no polynomial) term. Af-
ter fitting the data, the pole piece was examined but did
not result in resonance parameters consistent with pre-
vious determinations. In hindsight, this could have been

anticipated, as the polynomial form of the CM K-matrix
is capable of generating T -matrix poles, and therefore is
not really a “background” in this approach.

V. CONCLUSIONS

We have reported an extensive study of the parame-
terization dependence of our πN elastic amplitudes and
resonance spectrum, using very different forms for the
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FIG. 3. (Color online) Derivatives of eigenphases. (a) P11 and (b) D13. Upper plots correspond to WI08 solution; lower plots
correspond to XP08.

TABLE II. Pole positions in complex energy plane of the T -matrix for the πN → πN reaction. The functional forms (see text)
employed in the SAID fits are compared for selected partial waves. Each T pole position is expressed in terms of its real and
imaginary parts (MR,−ΓR/2) in MeV. The second sheet pole is labeled by a †.

ℓJT WI08 XP08

S11 (1499, 49) (1647, 42) (1666, 260) (1538, 65) (1675, 58) (1690, 121)

S31 (1594, 68) (1592, 66)

P11 (1358, 80) (1388, 82)† (1358, 80) (1387, 80)† (1646, 290)

D13 (1515, 55) (1513, 53) (1740, 66) (1716, 370)

F15 (1674, 57) (1779, 138) (1672, 70) (1734, 61)

F37 (1883, 115) (1874, 119)

CM K-matrix, with explicit poles in each partial wave.
The partial-wave amplitudes were found to be very stable
under this change.

The eigenphase representation was introduced as it
gives an interesting visualization of both T -matrix and
Heitler K-matrix poles in a single figure, and because it
provides a more concrete example of properties discussed
in older works. This discussion also provides a continua-
tion of the study started in Ref. [16].

The more formally correct extraction of pole positions
has revealed structures mainly found in earlier fits to the
πN elastic scattering data. As the partial wave ampli-
tudes have not changed significantly, the effects of new
resonances must be minimized through large widths, in-
tervening zeros, or small coupling to the πN channel.
The added CM K-matrix poles have in most cases be-
come the generators of the dominant T -matrix poles, pre-
viously generated via the polynomial form, rather than
producing further resonances. This could be determined
by turning off either the CMK-matrix pole or polynomial
terms and seeing the effect on the extracted T -matrix
poles.

In the SM90 fit, a study of the resonance spectrum was
tried where, in addition to experimental data, the ampli-
tudes from the KH [5] and CMB [6] analyses were added
as soft constraints. A possible extension to the present

work would be a re-examination of the resonance spec-
trum from a fit, with explicit CM K-matrix poles, con-
strained to more closely follow either the KH and CMB
PWA results, or a multi-channel analysis.
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