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We propose that flow fluctuations have the same origin as transverse momentum fluctuations.
The common source of these fluctuations is the spatially inhomogeneous initial state that drives
hydrodynamic flow. Longitudinal correlations from an early Glasma stage followed by hydrodynamic
flow quantitatively account for many features of multiplicity and pt fluctuation data. We develop
a framework for studying flow and its fluctuations in this picture. We then compute elliptic and
triangular flow fluctuations, and study their connections to the ridge.
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I. INTRODUCTION

Fluctuations in the early stages of nuclear collisions
contribute to the anisotropic flow measured in RHIC and
LHC experiments, particularly the odd harmonics. In
Ref. [1] we find that this early-time variation can also
account for the multiplicity and transverse momentum
fluctuations measured in the same experiments. Never-
theless, flow and fluctuation observables reveal different
aspects of the initial state. Harmonic flow is generated
largely by the global spatial anisotropy of the initial state.
In contrast, fluctuation observables probe local spatial
correlations that are largely independent of the overall
geometry [1].

In this paper we argue that the fluctuations of the har-
monic flow coefficients are driven by the very same local
correlations that give rise to pt and multiplicity fluctu-
ations. Moreover, if early time correlations are the only
source of these fluctuations, then the two measurements
are related with no free parameters.

Experimenters define flow fluctuations by studying the
difference of the flow coefficients vn{2} and vn{4} mea-
sured using two and four particle correlations, respec-
tively [2–5]. Jets, resonance decays, and HBT effects also
contribute to that difference. Measurements using parti-
cles separated in rapidity by more than 1− 2 units elim-
inate these short range effects. Significantly, a difference
between vn{2} and vn{4} remains [6], suggesting that
flow fluctuations are a long range phenomenon. Causal-
ity dictates that such long range correlations originate in
the early stages of the collision [7, 8].

To compute flow fluctuations we build on an approach
started in Refs. [8, 9] in which long range correlations
result from the fragmentation of Glasma flux tubes. In
this formulation local spatial correlations emerge from
fluctuations in the number and distribution of flux tubes.
These spatial correlations are then modified by transverse
expansion, giving rise to azimuthal correlations. A simi-
lar physical picture motivates studies using a wide range
of different techniques [10–17].

This paper is organized as follows. In Sec.II, we be-
gin with a general description of multi-particle correla-

tions and flow coefficients. We relate the intrinsic correla-
tions in the multi-particle system to flow and its fluctua-
tions. To begin, we write expressions for vn{2} and vn{4}
in terms of correlation functions, adapting the tools in-
vented in Refs. [18, 19] to our framework. Further results
are in the appendix. We next define flow fluctuations in
terms of vn{2} and vn{4}, and turn to discuss the phys-
ical interpretation of this definition.

We discuss the common influence of local correlations
on flow and pt fluctuations in Sec.III. This relationship
is the heart of our work. The fluctuations of these quan-
tities are both consequences the spatially inhomogeneous
collision environment modified by hydrodynamic flow.
The general arguments in Secs. II and III set the stage
for the more phenomenological analysis that follows.

In Sec.IV we describe initial state fluctuations in a
CGC-Glasma picture. The number and distribution of
Glasma flux tubes relative to the geometrical shape of the
system ultimately determine the energy, projectile-mass,
and centrality dependence of flow fluctuations. Next, we
explain how collective flow and the correlation to the re-
action plane modify local correlations.

We calculate the contribution of long range correla-
tions to the flow coefficients and their fluctuations in
Sec.IV. Our results are in good agreement with the lat-
est LHC and RHIC data. In Sec.V, we argue that these
same flow fluctuations are also responsible for the ridge.
The same factors that influence flow fluctuations also de-
termine the multiplicity and momentum fluctuations cal-
culated in [1]. We emphasize that no new parameters are
introduced here, so that results can be compared directly
with [1].

In Sec.VI we discuss the extent to which the flow co-
efficients determine the angular distribution of the ridge.
We also discuss the possible factorization of the Fourier
coefficients of the pair distribution into products of flow
coefficients [20–23]. We show that flow fluctuations can
violate factorization at low pt, depending on how the flow
coefficients are defined. We then speculate that factor-
ization holds for momenta > 1− 2 GeV regardless of the
source of anisotropy.

Lastly, we summarize and discuss the broader implica-
tions of our results in Sec.VII.
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II. FLOW AND ITS FLUCTUATIONS

Nuclear collisions at non-zero impact parameter b pro-
duce anisotropic flow [24, 25]. This anisotropy derives
from the change in the shape of the collision volume with
respect to the reaction plane, i.e., the plane spanned by
b and the beam direction. If the reaction plane is known,
this anisotropy is characterized by the moments

〈vn〉 = 〈cosn(φ− ψ
RP

)〉, (1)

where φ is the azimuthal angle, ψ
RP

is the angle of the
reaction plane, and the brackets denote an average over
particles and events. While the reaction plane cannot
be observed directly, its influence can be deduced from
multi-particle correlation measurements. Many strate-
gies have been employed for measuring these flow coeffi-
cients, and they all have strengths and weaknesses.

Experimenters often deduce the flow from the two-
particle cumulant

vn{2}2 = 〈cosn(φ1 − φ2)〉, (2)

exploiting the reaction plane information implicit in the
relative distribution of particle pairs. Specifically, they
measure the relative azimuthal angle for each particle
pair in each event, and then average over events to obtain

vn{2}2 =
〈
∑
i 6=j cosn(φi − φj)〉
〈N(N − 1)〉

(3)

[26]. The cumulant method was developed in Ref. [18, 19]
and has seen extensive use [24, 25].

In this section we apply the framework of [18, 19] to
the computation of event-wise flow fluctuations. To fa-
cilitate work in the later sections we cast this framework
in terms of our treatment of correlations in [1]. We start
by writing (3) as

vn{2}2 =

∫
ρ2(p1,p2)

〈N(N − 1)〉
cosn(φ1 − φ2) dp1dp2, (4)

where the integrals are over the momenta of particles pi
for i = 1, 2 and the distribution of particle pairs is

ρ2(p1,p2) =
dN

dp1dp2
. (5)

In the absence of correlations, ρ2(p1,p2) →
ρ1(p1)ρ1(p2), where the single particle distribution
is ρ1(p) = dN/dp. We stress that the densities ρ1

and ρ2 are event-averaged quantities that respect the
reaction plane. The factorization of ρ2 then allows for
factorization of (4) such that vn{2}2 → 〈vn〉2.

Including two-particle correlations, the pair distribu-
tion does not factorize. To identify the contributions of
the mean anisotropic flow (1) and genuine two-particle
correlations to vn{2}, we follow [18] and write (5) in
terms of a cumulant expansion,

ρ2(p1,p2) = ρ1(p1)ρ1(p2) + r(p1,p2), (6)

where r is the two-particle correlation function. We then
use (1), (4), and (6) to write

vn{2}2 = 〈vn〉2 + 2σ2
n. (7)

This result is standard, and the factor of two in σ is
conventional [27]. The contribution to (7) from two-body
correlations is

σ2
n =

∫
dp1dp2

r(p1,p2)

2〈N(N − 1)〉
cosn∆φ, (8)

where ∆φ = φ1 − φ2 is the relative azimuthal angle of
the correlated particles.

Strictly speaking, this quantity measures the event-
wise fluctuations of anisotropic flow due to geometry and
dynamics together with non-flow correlations from reso-
nance decays, the HBT effect, and jets. We will not
address non-flow effects here. Observe that all such cor-
relation effects are of order 1/N , where N is the number
of particles in the system. We focus on contributions to
fluctuations at leading order in N . Accordingly, we omit
a factor 〈N〉2/〈N(N −1)〉 ≈ 1 that multiplies 〈vn〉2 term
in (7); see appendix A for exact formulae.

To reduce the effect of fluctuations on the flow signal,
experimenters also measure the four particle cumulant
vn{4} defined by the relation

vn{4}4 = 2vn{2}4 − 〈cosn(φ1 + φ2 − φ3 − φ4)〉 (9)

[18, 19]. The four-angle term depends of the four particle
correlation function ρ4(1, 2, 3, 4) ≡ ρ4(p1,p2,p3,p4). In
systems with large numbers of particles, multi-particle
correlations are dominated by two-particle correlations.
We therefore write

ρ4(1, 2, 3, 4) = ρ1(1)ρ1(2)ρ1(3)ρ1(4)

+ ρ1(1)ρ1(2)r(3, 4) + . . .

+ r(1, 2)r(3, 4) + . . . (10)

where ρ1(1) ≡ ρ1(p1), etc., and the ellipses represents
the distinct permutations of the momenta. Computing
〈cosn(φ1 + φ2 − φ3 − φ4)〉, one finds that the second and
third lines in (10) contribute respectively terms of order
〈vn〉2σ2

n and σ4
n that precisely cancel the σn contributions

from vn{2}4. This cancellation is by design – it dictates
the form of (9) proposed in Ref. [18, 19]. One finds

vn{4} ≈ 〈vn〉, (11)

plus corrections that are in practice very small. The
fact that vn{4} receives no contribution from σn is usu-
ally thought of as a consequence of the Bessel-Gaussian
approximation [27], but we see that it is true whenever
two-body correlations are dominant. However, note that
definitions of 〈vn〉 other than (1) would yield different
results.

As an aside, we briefly discuss the corrections to (11).
Strictly speaking, calculation of (9) using (10) yields

vn{4}2 ≈ 〈vn〉2 − 2Σ2
n, (12)
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FIG. 1. Measured v2{2} and v2{4} from STAR [2] compared
to calculations. Computed v2{2} (solid) uses (7) and (8),
while v2{4} (dashed) uses (1) and (11). The difference be-
tween the calculated curves is due to flow fluctuations.

where

Σ2
n =

∫
dp1dp2

r(p1,p2)

〈N(N − 1)〉
cos 2n(Φ− ψ

RP
) (13)

for Φ = (φ1 + φ2)/2 the average angle of the correlated
pairs. Further corrections of higher order in 1/N are
discussed in appendix A. Both Σn and σn are of the
same order in 1/N , but one expects Σn to be smaller
than σn because it effectively is a higher harmonic, of
order 2n rather than n. Indeed, we find the contribution
of Σn to vn{4} smaller than 1.2% for n = 2 for peripheral
collisions in our model. Note that Σn = 0 in central
collisions. We comment that Σn represents fluctuations
of harmonics of Φ, which are important in studying the
Chiral Magnetic Effect [28].

Our aim is to understand the contribution of two-
particle correlations to flow fluctuation measurements. If
the only correlations are due to the reaction plane then
vn{2} = vn{4}. This requires that no other sources of
correlation exist, i.e., r(p1,p2) = 0, allowing ρ2(p1,p2)
to factorize. However, experiments measure differences
between vn{2} and vn{4} for several harmonic orders,
n [2–5]. For example, Fig.1 shows v2{2} and v2{4} as
measured by the STAR experiment in 200 GeV Au+Au
collisions [2]. One can quantify this difference in terms of
σn by substituting the square of (11) into (7), to obtain

σ2
n =

vn{2}2 − vn{4}2

2
. (14)

Measurements with rapidity separations should suppress
contributions to σn from jets, resonance decays, and
other short range non-flow correlations, but do not ex-
plain the difference between vn{2} and vn{4}, suggesting
that 〈v2

n〉-factorization is not a signature of flow or flow
fluctuations.

An alternative measure of flow fluctuations can be con-
structed using event-by-event harmonics [27, 29, 30]. If
each event produces a set of harmonics {v̂n}, then one

can compute the variance σ̂2
n = 〈v̂2

n〉−〈v̂n〉2 for an ensem-
ble of such events. It is then reasonable to ask how our
σn compares to this variance. Taking the mean square of
v̂n to be 〈v̂2

n〉 = 〈(
∑
i cosn(φi −Ψ

RP
))2〉/〈N〉2, we find

σ̂2
n = σ̂2

stat + σ2
n + Σ2

n/2, (15)

where σn and Σn are given by (8) and (13), and we keep
only leading order in N . We define the statistical vari-
ance

σ̂2
stat =

1 + 〈v2n〉
2〈N〉

. (16)

These fluctuations arise because a finite number of parti-
cles are sampled in each event. In contrast, the dynamical
fluctuations σn and Σn are caused by the correlations be-
tween particles [31]. To an excellent approximation the
v2n contribution to (16) and the Σ2

n contribution to (15)
can be neglected.

We see that the event-wise variance of v̂n is very dif-
ferent from the quantity (14) that characterizes the dif-
ference between vn{2} and vn{4}. The statistical contri-
bution σ̂stat can be comparable in magnitude to σn. We
point out that the quantity σ̂n may be measured directly
from event-by-event harmonic coefficients.

It is instructive to compare our results to the model of
Ref. [27, 30] in which flow fluctuations are exclusively due
to the event-wise variation of the global geometry. In the
purely geometric interpretation, one defines an eccentric-
ity for each event ε̂n. If one assumes that the relation be-
tween ε̂n and the resulting anisotropy of the fluid flow v̂n
is approximately deterministic, then fluctuations of the
ratio v̂n/ε̂n are negligible. The geometric contribution
to the variance is then σ̂2

n/〈vn〉2 = (〈ε̂2n〉 − 〈ε̂n〉2)/〈ε̂n〉2.
We mention that Glauber model estimates of the relevant
eccentricities are consistent with data for n = 2, where
the correlation of v̂n with an event-wise eccentricity is
highly plausible and well established [32]. However, the
applicability of such an approach for n 6= 2 is less clear
[33, 34].

We comment that the purely geometrical description
of flow fluctuations in Ref. [30] requires 〈v̂n〉 � σ̂n in ad-
dition to v̂n ∝ ε̂n. Neither our general discussion here nor
our specific calculations in Sec. IV require these assump-
tions. In Sec. IV, we include geometric fluctuations in our
estimates of flow fluctuations through the distribution of
flux tube sources ρ

FT
. Correlations are then modified by

the local transverse expansion of the system.

III. LOCAL CORRELATIONS

To understand the source of flow fluctuations, we recall
some lessons from general fluctuation studies [31, 35–37].
Such studies typically focus on the variation of bulk ob-
servables such as multiplicity or transverse momentum
within an ensemble of collisions. We draw most heavily
from the study of pt fluctuations in Ref. [1], to which the
present work is essentially a sequel.
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We measure pt fluctuations using the covariance
〈δpt1δpt2〉, where δpti = pti − 〈pt〉 is the deviation of
each pt from the average. Pairs in which both particles
have higher than average momentum add to 〈δpt1δpt2〉.
Lower-than-average pairs also add to the covariance,
while high/low pairs subtract from it. In global equi-
librium 〈δpt1δpt2〉 ≡ 0. The presence of hot spots makes
〈δpt1δpt2〉 > 0 (as would cold spots) [38]. Motion of the
sources further enhances this quantity [10]. It follows
that both jets and flow add to the pt covariance.

Moving hot spots in the fluctuating system are sources
of local correlations. We distinguish such correlations
from those due to the global event-wise variation of the
shape and size of the collision volume. We write the pt
covariance as

〈δpt1δpt2〉 =

∫
dp1dp2

r(p1,p2)

〈N(N − 1)〉
δpt1δpt2. (17)

In [1] we demonstrate that the pt covariance is indepen-
dent of the global spatial anisotropy, because (17) is in-
tegrated over azimuthal angle. It is also independent of
size fluctuations by construction [39].

To see that flow fluctuations are also primarily driven
by local correlations, observe that (17) has the same form
as (8) with δpt1δpt2 replaced by cosn∆φ. As the pt co-
variance probes correlations in momentum, so σn mea-
sures correlations of the angular separation ∆φ of pairs.

This analogy makes physical sense because of the com-
mon influence of hot spots on ∆φ and pt. Flow pushes
particles from a source into a particular opening angle,
depending on the source position and the local fluid ve-
locity. The same flow velocity boosts the pt of these
particles. Therefore multiple random hot spots give rise
to both flow and pt fluctuations. Based on this analogy,
we expect σn in central collisions to be non-zero for all
orders n, while 〈vn〉 defined by (1) vanishes. Further-
more, it is not likely that σn is as strongly influenced by
the global geometry as the mean 〈vn〉.

In the next sections we discuss flow fluctuations due
to early time local spatial correlations contributing to
r(p1,p2). We employ a Glasma-flux tube model in which
particles are initially correlated at the point of produc-
tion and modified by later stage transverse expansion.
These flux tubes produce our ‘hot spots’. Transverse
expansion is modeled with a blast wave scenario which
inherits anisotropy from the average eccentricity 〈ε

RP
〉.

IV. FLOW FLUCTUATIONS FROM GLASMA

Flow transforms early-time spatial correlations into ob-
servable momentum correlations. In this section we cal-
culate the contribution of such correlations to flow fluc-
tuations using the model developed in [1]. For the sake of
brevity, we refer to [1] for detailed derivations, and only
motivate those features needed to explain our assump-
tions and results.

We describe early time correlations using the correla-
tion function c(x1,x2), which is the difference between
the density of pairs and the product of the single particle
densities. This function describes local pair correlations
in configuration space as well as global correlations due to
fluctuating event eccentricities, shapes, and orientations
(with respect to the reaction plane). Local correlations
arise because the position and number of the colliding nu-
cleons fluctuates in individual events. In general, these
fluctuations result in high-density ‘hot spots’ distributed
throughout the collision volume. It is more likely to find
pairs of particles near hot spots.

Key to our analysis is the correlation strengthR, which
we define using the integral of the correlation function
over the collision volume. In Ref.[1] we construct a cor-
relation function c(x1,x2) that describes a specific early-
time scenario based on Glasma theory. The correlation
strength satisfies the scaling relation

RdN/dy = κα−1
s (Q2

s), (18)

which relates the product of the correlation strength R
times the rapidity density to the saturation scale Qs.
This relation is a rigorous consequence of Glasma theory
[7]; our value of κ is consistent with ridge measurements
[8, 9] and first-principles calculations [40]. The satura-
tion scale depends on many collision variables including
the density of participant nucleons and the collision en-
ergy [41, 42]. Any experimental indication of this scaling
would support the underlying theory.

To relate the early-time spatial distribution to final-
state momentum correlations, we write the two-particle
correlation function r(p1,p2) in (6) as the convolution

r(p1,p2) =

∫
c(x1,x2)f(x1,p1)f(x2,p2)dΓ1dΓ2, (19)

where c(x1,x2) is the spatial correlation function,
f(xi,pi) is the local equilibrium Boltzmann distribution,
and dΓi are elements of the Cooper-Frye freeze out sur-
face. We then describe the average anisotropic expan-
sion of the system with a blast wave model [8, 9, 43–45].
In this formulation, particles passing through the freeze
out surface have a velocity that is assumed to have a
Hubble-like correlation with the position at which they
were produced [1].

To compute flow fluctuations using this correlation
function, we combine (8) and (19). We then use
(7)and (11) to calculate v2{2} and v2{4}, where the
flow coefficient relative to the reaction plane is 〈vn〉 =∫
ρ1(p) cosn(φ−Ψ

RP
)dp. Figure 1 compares v2{2} and

v2{4} to STAR data from Au-Au at 200 GeV [2]. The
v2{4} data is essentially an input to our model, as we
use it to determine the mean eccentricity ε [1]. On the
other hand, the fluctuation contribution to v2{2} is com-
puted from the model and is in that sense a ‘prediction’.
It is significant that this contribution satisfies σ2

n ∝ R;
this is also true for the long range contribution to other
fluctuation quantities [1].
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FIG. 2. (Color online) (a) Measured v2{2} from STAR [2]
and ALICE [4, 5] compared to calculations using (7) and (8).
(b) Same for v2{4} computed from (1) and (11)

.

The influence of event shapes and eccentricities en-
ters (19) in two ways. First, the correlation function
c(x1,x2) is proportional to the probability distribution
of flux-tube sources ρ

FT
[1]. This distribution implicitly

accounts for event-wise variation of the volume and ec-
centricity. Second, the azimuthal distribution of particles
from each source is modified by flow. A pair emerging
from a source that experiences a greater push will have
a narrower opening angle. The magnitude of the push
follows ρ

FT
as the velocity depends on initial position.

The long range behavior introduced by Glasma corre-
lations provides key centrality and collision energy de-
pendence on the saturation scale Q2

s through R in (18).
The blast wave parameters provide significant central-
ity dependence, but their change with collision energy is
minimal, as discussed in [1].

In Fig.2 we show comparisons of our calculated v2{2}
and v2{4} to measured data [2, 4, 5] and find the agree-
ment concerning change in collision energy is quite good.
Similarly in Fig.3 we calculate v4{2} and v4{4}, repre-
sented as the solid and dashed lines, respectively. Com-
parisons to vn{4} in both figures show how the eccentric-
ity ε affects the results. The effect of eccentricity is to
reduce the even harmonics as the collision area becomes
circular and ε → 0. The non-zero vn{2} in central colli-
sions are due to fluctuations (14), which in our case are
due to Glasma correlations (19). The effect of the change
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FIG. 3. (Color online) Same calculation as in Fig.2 but for the
fourth order flow coefficients v4{2} (solid) and v4{4} (dashed).
Data is from the ALICE collaboration [4].

in blast wave parameters with collision energy is appar-
ent from the separation of the solid lines in the bottom
panel of Fig.2 and the dashed lines in Fig. 3. The impor-
tance of the Glasma contribution is similarly evident by
the change is separation between vn{4} and vn{2} with
collision energy. The increase in growth of flow fluctua-
tions (8) is coupled to the growth in the saturation scale.

As a caveat we emphasize our neglect of the non-flow
contribution to flow fluctuations. Given that omission, it
is perhaps surprising that our results agree with data as
well as they do. Related concerns were discussed in Ref.
[1], where we treated different observables. Experiments
can reduce non-flow by measuring vn{2} and vn{4} with
rapidity separations and comparing them to harmonic
extractions from ridge measurements; see Secs. V and
VI. However, further experimental and theoretical work
is needed to pin down the non-flow contribution in the
broad context we consider here and in [1].

STAR has also measured v2 fluctuations in the form of

σvn
〈vn〉

=

√
vn{2}2 − vn{4}2
vn{2}2 + vn{4}2

(20)

resembling the so-called “coefficient of variation” defined
as the standard deviation divided by the mean. Care
should be taken here since the definition of σ2

n, Eq.(14),
is not strictly the variance. In Fig.4 we compare our cal-
culation of (20) to measurement. Calculations at RHIC
energies seem to agree reasonably well and we include the
calculation for Pb+Pb 2.76 GeV as a prediction.

Observe that local correlations that contribute to σn
lead to fluctuations of all harmonic orders in n including
v3. As a result, Glasma correlations generate a measur-
able v3{2} even in the absence of v3{4} or any triangular
flow. In Fig.5 we show v3 fluctuations from Glasma. We
further emphasize that the energy dependence in Fig.5 is
in good accord with data, supporting the Glasma scaling
with Q2

s. The shape with centrality reflects contributions
not only from Glasma, but also our parameterizations of
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rations [3, 4].

the average reaction plane eccentricity ε and our choice
the flux tube distribution ρ

FT
.

To use (8) and (14) to calculate v3{2}, we must come
to grips with the fact that our blast wave parametrization
assumes v3{4} = 0. While this seems to be the case for
the STAR measurements, ALICE has measured a non-
zero v3{4} for Pb+Pb collisions at 2.76 TeV. To correct
for this possible discrepancy, we can provide an ad-hoc
parameterization of v3{4} and use (8) and (14) to calcu-
late v3{2}. Agreement shown in Fig.6 is reasonable. As
a preferable alternative, we compare our calculated σn to
fluctuations extracted from ALICE and STAR measure-
ments in Fig.5.

V. THE RIDGE

Early analyses of the soft or untriggered ridge, includ-
ing our own, focus on the idea that the ridge is com-
posed of correlations in excess of momentum conserva-
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FIG. 6. (Color online) The triangular flow coefficient, v3{2}
compared to STAR and ALICE data [3, 4].

tion and elliptic flow. The novel observation of Alver and
Roland that correlations resulting from geometrical fluc-
tuations result in odd flow harmonics such as triangular
flow, v3, suggests that v3, together with flow harmon-
ics of all higher orders, explains this excess [46]. In this
paper we have studied how angular correlations tied to
common production points influence two-particle correla-
tion measurements of flow harmonics vn{2} through flow
fluctuations σ2

n. Most notably, as discussed in Sec.IV, we
find significant contributions to v3{2} even in the absence
of triangular flow. In fact, the same correlations con-
tributing to flow fluctuations were initially proposed as
explanations of the ridge [7–12, 14–17, 47, 48], although
their role in reproducing the full ∆φ azimuthal structure
was not understood.

Flow and its fluctuations both contribute to the two-
particle correlation landscape. The pair distribution is

ρ2(∆φ) = ρref

(
1 + 2

∞∑
n=1

〈vn〉2 cosn∆φ

)
+ r(∆φ), (21)

where ρref is the experimental mixed-event background.
Observe that the Fourier coefficients of (21) reproduce
(7). We take ρref = 1

2π

∫
ρ1

∫
ρ1 where the overbar indi-

cates an event plane average, to mimick the experimental
mixed event technique for constructing ρref . The quan-
tity ∆ρ(∆φ) = ρ2(∆φ) − ρref characterizes the angular
correlations. STAR measures the ratio

∆ρ(∆φ)
√
ρref

=
1

2π

dN

dη

(
2

∞∑
n=1

〈vn〉2 cosn∆φ+
r(∆φ)

ρref

)
,

(22)
where the 〈vn〉 terms follow from (1).

STAR performs a multi-parameter fit to this distribu-
tion to separate the ridge peak from the elliptic flow con-
tributions (along with momentum conservation and HBT
contributions , which we omit for clarity). They report a
flow-subtracted ridge amplitude (∆ρ(∆φ,∆η)/

√
ρref)|FS

on the near side, centered at ∆φ = ∆η = 0 [49–51]. We
use (18) and (19) to calculate the flow-subtracted ridge
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FIG. 7. (Color online) Near side ridge amplitude calculation
from Glasma source correlations. Experimental data is from
(STAR) [49–51] and (ALICE) [52]

amplitude

∆ρ
√
ρref

∣∣∣∣
FS

= RdN
dy

F (∆φ), (23)

where F (∆φ) ∝ r(∆φ) is the angular correlation function
normalized so that

∫
F (∆φ)d∆φ = 1. The energy and

centrality independent scale constant κ in (18) is fixed
by Au-Au 200 GeV data as in [8, 9].

The blast wave parameters have little energy depen-
dence and the Glasma factor (18) allows for strong agree-
ment with the 62 GeV data without adjustment of κ. Ad-
ditionally, the ALICE collaboration has measured (23)
in Pb+Pb collisions at

√
s =2.76 TeV [52], providing

a further test of the CGC-Glasma energy dependence.
We confront the ALICE data in the same way, without
adjusting κ, however the ALICE [52] measurement pro-
cedure differs slightly than that from STAR [51]. This
difference in fitting procedures is mostly insignificant, es-
pecially in central collisions, but not necessarily so in pe-
ripheral collisions to which we normalize our calculation
(at 200 GeV). To adjust for this possible effect, we mul-
tiply (23) by an additional scale factor of ∼ 1.5 to return
agreement in peripheral collisions; see note [53]. In Fig.7
we compare calculated ridge amplitudes from (23) with
measured data for 200 and 62.4 GeV Au+Au collisions
from STAR as well as 2.76 TeV Pb+Pb collisions from
ALICE. In this paper we only compare to measurements
from which elliptic flow has been subtracted, because we
find that fluctuations dominate v3 at STAR.

The characterization of the ridge in terms of Fourier
coefficients can prove a valuable tool for analysis of such
discrepancies as well as relate the magnitude its effect
with respect to other phenomena. Viewing (14) in terms
of (8) and (23), one can write

2
dN

dy
σ2
n ≈

∫
∆ρ(∆φ)
√
ρref

cos(n∆φ) d∆φ. (24)

A similar equation was pointed out by Sorensen et. al.

[54, 55], and discussed in terms of event plane eccentricity
fluctuations.

We stress, that (24) is a general result that is model
independent. Direct measurement of this quantity can
isolate the effects of flow fluctuations on the ridge by com-
paring the results to independent flow fluctuation mea-
surements. Furthermore, flow fluctuation measurements
can be an effective way to quantify the ridge. Devia-
tions from (24) at large ∆η. can indicate the degree at
which other phenomena contribute to long range corre-
lation measurements. At smaller ∆η shorter range phe-
nomenon such as jets or diffusion also come into play.
Combined flow fluctuation and ridge studies analyzed
with increasing lower pt limits as done in [56] can reveal
the emergence of jets and their influence. For example,
one could test contributions to vn{2} from correlations
induced by jet quenching as suggested in [9, 57].

VI. FACTORIZATION

We now ask whether the azimuthal dependence of the
pair distribution is entirely determined by the flow co-
efficients. This is somewhat of a circular question, be-
cause flow coefficients are themselves derived from cor-
relation analyses. A meaningful answer depends on how
the flow coefficients are defined. Experimentalists expand
the transverse-momentum-dependent pair distribution as

ρ2 ∝ 1 + 2
∑
n

Vn∆(pt1, pt2) cos(n∆φ). (25)

The term “factorization” is often applied when one can
express the Fourier coefficients Vn∆(pt1, pt2) as a product
of flow coefficients vn(pti). Authors often cite factoriza-
tion as a signature of collective flow [20–22, 58]; see also
[23] for a theoretical perspective. Problems stem from
the fact that Vn∆ ≡ vn{2}2 as an exact consequence of
the definition (4). In other words, Vn∆ always factorizes
as vn{2} × vn{2}, regardless of the source of anisotropy.

To define factorization in a useful way, one must com-
pare Vn∆ to the coefficients 〈vn(pti)〉 defined by the reac-
tion plane as in (1). Proxies like vn{4} can also be used.
To see why this is true, we define rn to be the Fourier
coefficient of the two particle correlation function r(∆φ)
in (6). We then compare (25) to (21) to find

Vn∆(pt1, pt2) = 〈vn(pt1)〉〈vn(pt2)〉+
rn(pt1, pt2)

ρref(pt1, pt2)
, (26)

where, for simplicity, we keep only the leading order in
the number of particles in the relevant pt ranges. The
first term in (26) measures the effect of global geometric
anisotropy, while the second term is due to local fluc-
tuations. Integrating over momenta and using (7), we
indeed find

Vn∆ = 〈vn〉2 + 2σ2
n ≡ vn{2}2, (27)
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as noted above. However, (26) shows that the Fourier
coefficients of the correlation function rn(pt1, pt2) break
factorization in terms of 〈vn(pt2)〉.

We see that hydrodynamic flow does not generally im-
ply factorization, as follows from (19) and (26). Specifi-
cally, (24) shows that flow fluctuations violate factoriza-
tion. In addition, jets, HBT, and resonances contribute
to rn along with the long range correlations we have con-
sidered here.

Flow coefficients at the LHC are found to factorize for
pairs of high pt particles, but not when high and low pt
particles are mixed [58]. This may seem puzzling if you
view factorization as a hydrodynamic signature. To un-
derstand this result, observe that the contribution rn/ρref

in (26) can be large compared to anisotropy only when
a substantial fraction of pairs in the selected momentum
range are correlated. RHIC energy measurements show
that the overall magnitude of the correlation function
drops precipitously relative to mixed-event pairs when a
lower pt cutoff is increased above ∼ 1 GeV [56]. Our cal-
culations in [9], which include both flow and jet-medium
interactions, agree with that trend; see, e.g., fig. 9 of
[9]. We therefore do not expect significant violations of
factorization from the components rn due to long range
correlations from flow or jets above pti > 1− 2 GeV. An
analogous trend at higher beam energy may explain the
LHC results.

VII. DISCUSSION

In this paper we study the connection between flow
fluctuations and initial state correlations. Flow fluctua-
tions are defined by (14) using two and four-particle cor-
relation measurements of the harmonic flow coefficients.
Section II provides a general discussion of the calculation
of flow observables from multiparticle momentum space
distributions. Following the cumulant expansion method
introduced in [18, 19], multiparticle distributions can be
expanded into factorized and correlated parts, e.g. (5)
and (10). We derive explicit expressions relating the cor-
related parts to the fluctuation observables σn and Σn.
Such genuine correlations were neglected in Refs. [18, 19],
which were primarily aimed at isolating non-flow effects
from flow measurements.

We are the first to calculate the contribution of genuine
correlations to flow fluctuations. Treating such fluctua-
tions on the same footing as pt and multiplicity fluctu-
ations, we obtain eqs. (8) and (13) for σn and Σn. In
view of the approximation (11), we cast (7) to superfi-
cially resemble the Bessel-Gaussian approximation from
Voloshin et al. [27]. Nevertheless, we stress that our local
picture of the origin of fluctuations is more general from
the global geometrical view in [27]. The relation between
these works is discussed in Sec. II in the paragraphs sur-
rounding eqs. (15) and (16).

We study the contribution of local long range corre-
lations to σn based on parton production at common

transverse positions. Section IV presents calculations of
σn in our Glasma flux tube model. We mention that our
model incorporates much of the same physics as used by
event-by-event hydro in [17, 59–63]. Those authors ob-
tain the initial state in individual events by sampling a
probability distribution analogous to the ρ

FT
described

in [1]. In all cases, Cooper Fry freeze out is used. We
use a blast wave constrained by data to approximate the
velocity distribution and the freeze-out surface. The key
differences are that 1) our correlated regions are point-
like in the transverse plane, while theirs may be larger
and 2) they evolve their initial distributions using deter-
ministic hydrodynamics in each event. We expect that
they will eventually achieve a better description of the vn
at each energy. Our complementary aim is to study the
big picture by exploring the energy range with a variety
of variables.

The Glasma formulation provides key collision sys-
tem, energy, and centrality dependences resulting in rea-
sonable agreement with experimental measurements of
vn{2} from 62.4 GeV Au+Au to 2.76 TeV Pb+Pb colli-
sions for n=2, 3, and 4. The presence of σn provides two
key results: non-zero values of even harmonics in central
(circular) collisions, and the existence of v3{2} without
global triangular flow.

In Sec.V we turn to discuss two particle correlations
and, in particular, the ridge. We see that flow fluctua-
tions and the ridge are facets of the same phenomenon,
related by a Fourier transform (24). The computed peak
ridge amplitude in Fig. 7 is in reasonable agreement with
calculations from 62.4 GeV Au+Au to 2.76 TeV Pb+Pb,
consistent with our flow results. Further investigation is
needed to understand the full correlation landscape. In
particular, we did not discuss the n = 1 harmonic, in
which momentum conservation plays an important role.
Characterization of the ridge in terms of flow fluctuations
(i.e., harmonics) combined with earlier fit procedures as
in Ref. [51] will surely prove a useful tool.

We discuss the question of whether the Fourier coef-
ficients of the correlation function factorize into a prod-
uct of flow coefficients in Sec.VI. In general, irreducible
two-particle correlations from any mechanism violate this
factorization [20–22]. In particular, the long range corre-
lations that we compute violate factorization at low pt,
as would jets, resonance decays, and HBT effects. We ex-
pect any such correlations to become negligible for pairs
above pt ∼ 1 − 2 GeV, due to the rapid decrease of the
number of correlated pairs relative to the mixed-event
background that is observed experimentally [56].

In summary, we observe that early-time fluctuations
have broad implications beyond the flow fluctuations and
azimuthal correlations studied here. In Ref. [1] we stud-
ied the impact of these correlations on multiplicity and
pt fluctuations. We argued in Sec. III that pt and flow
fluctuations are intimately related because they are both
driven by local hydrodynamic fluctuations. While the
average flow coefficients are primarily determined by the
global event shape, the fluctuations of these coefficients
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have more in common with other fluctuation observables.
Importantly, the overall magnitude of the contribution
from long range correlations to all of these fluctuations –
flow, multiplicity, and pt – is set by a single scale factorR.
In Glasma theory, the dependence of R on energy, cen-
trality, and projectile mass are fixed its variation with the
saturation scale Qs. Results here and in Ref. [1] provide
a survey of the ridge, and multiplicity, momentum and
flow fluctuations that reveals a common energy and cen-
trality dependence that we attribute to the production
mechanism. Glasma calculations are consistent with this
dependence.

This broad agreement is somewhat puzzling, because
resonances, HBT, and jets must also contribute to two
particle correlations. We refer to these effects as ‘short
range’, since they only modify correlations for ∆η ∼ 1−2
units or less [1]. Short range correlations are responsible
for the non-flow contribution to quantities like vn{2}.
These effects can be reduced by measuring flow, correla-
tions, and fluctuations only for pairs with a large ∆η sep-
aration. This is already being done in flow measurements
[58]. Measurements of all quantities over a range of en-
ergies with ∆η cuts can eventually allow us to refine our
extraction of early-time behavior. However, it is impru-
dent to remove non-flow without understanding its cause,
because the QCD phase transition also contributes to
short range correlations. To gain further information on
the sources of short-range correlations, observe that long
range effects are charge independent. Net-charge corre-
lations are therefore sensitive primarily to short range
effects [64].
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Appendix A: Four-Particle Flow Coefficients

In this appendix we calculate corrections to the four-
particle flow coefficient measurement vn{4} from two-
particle correlation sources. Trying to keep the notation
as general as possible we follow [18] using the cumulant
expansion method to write

〈eın(φ1−φ2)〉 =

∫
ρ2(p1,p2)eın(φ1−φ2)dp1dp2∫

ρ2(p1,p2)dp1dp2
(A1)

=
〈N〉2〈vn〉2

〈N(N − 1)〉
+

∫
r(p1,p2)eın∆φdp1dp2

〈N(N − 1)〉
, (A2)

where vn{2}2 = 〈eın(φ1−φ2)〉. Notice that since sin(n∆φ)
is odd, the second term in (A2) is equivalent to (8) when
the pair distribution is symmetric about the normal to
the reaction plane. The factor 〈N〉2/〈N(N − 1)〉 in the
first term of (A2) contributes a correction of 1/(1+R) ≈
1 as long as the multiplicity, N , is large. For example, in
central 200 GeV Au+Au collision we calculate R ≈ 0.003
[1].

Our goal is to calculate the four-particle flow coefficient

vn{4}4 = 2〈eın(φ1−φ2)〉2 − 〈eın(φ1+φ2−φ3−φ4)〉, (A3)

where the final term is calculated analogously to (A1) but
from the four-particle cumulant expansion (10). Keeping
only contributions from two-particle correlations we have

〈N(N − 1)(N − 2)(N − 3)〉〈eın(φ1+φ2−φ3−φ4)〉 = (A4a)

= 〈N〉4〈vn〉4 (A4b)

+ 〈N〉2〈vn〉2 · 2Re

{∫
r(p1,p2)eı2n(Φ−ψ

RP
)dp1dp2

}
(A4c)

+ 4〈N〉2〈vn〉2
∫
r(p1,p2)eın∆φdp1dp2 (A4d)

+

∣∣∣∣∫ r(p1,p2)eı2n(Φ−ψ
RP

)dp1dp2

∣∣∣∣2 (A4e)

+ 2

∣∣∣∣∫ r(p1,p2)eın∆φdp1dp2

∣∣∣∣2 . (A4f)

where ∆φ = φ1−φ2 and Φ = (φ1 +φ2)/2 are the relative
and average coordinates. To reduce the equations further
it is necessary to make the approximation that 〈N(N −
1)(N − 2)(N − 3)〉 ≈ 〈N(N − 1)〉2 then the terms (A4d)
and (A4f) will cancel with corresponding terms emerging
from the twice the square of (A2), leaving the corrections

vn{4}4 = 〈vn〉4 − 〈vn〉2 · 2Re
{

Σ2
n

}
−
∣∣Σ2
n

∣∣2 , (A5)

where

Σ2
n =

∫
r(p1,p2)eı2n(Φ−ψ

RP
)dp1dp2

〈N(N − 1)〉
(A6)

which is equivalent to (13). Notice that these corrections
are effectively of order 2n and depend on the reaction
plane. As discussed in the text, the corrections in (A5)
maximally modify (11) by 1.2% in our model.
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