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Background: The nucleon-nucleus dispersive optical model (DOM) has been successful in pro-
viding good fits to scattering data and in making valuable predictions for bound-state properties
in single- and double-closed shell nuclei. However, the generalizability of the DOM remains an on-
going issue. Purpose: We investigate the DOM in the continuum and bound-state regions of the
open-shell, self conjugate nuclei 28Si and 32S. We collect new differential cross section and analyz-
ing power data for elastic scattering at incident neutron energies between 8.0 MeV and 18.9 MeV.
Methods: The measurements were conducted using a pulsed deuteron beam, the 2He(d,n)3He
source reaction, and time-of-flight techniques. All data were corrected for finite-geometry effects.
Phenomenological DOM potentials were tailored to fit the differential and total cross section data,
and then extrapolated to the bound-state regions. The DOM bound-state predictions were then
compared to experimental data available for single-particle energies, occupation probabilities, root-
mean-square radii, and spectroscopic factors. Results: The DOM bound-state predictions are in
only fair agreement with experimental data and with USD shell-model predictions. Similar results
are found after converting our neutron DOMs into proton DOMs. We investigate the separate
effects of the dispersive surface and volume potential components on occupation probability and
find that the volume component leads to a uniform depletion of the hole states, while the surface
component acts mainly to deplete the valence orbitals. We compare these results to those of a
variational multi-particle multi-hole configuration mixing (mp-mh CM) calculation using the Gogny
D1S effective force. Conclusions: We find that the phenomenological DOM, which was originally
designed for spherical nuclei, show certain deficiencies when applied to open-shell nuclei and sug-
gest possible avenues of improvement. We also find that the predictions of occupation probability
by the DOM using the dispersive surface component are similar to those by the mp-mh CM. This
lends support to the interpretation that the surface absorption in the optical model originates from
particle-vibration couplings, that is, long-range correlations.

PACS numbers: 24.10.Ht, 25.40.Dn, 24.70.+s, 27.30.+t

I. INTRODUCTION

For over 60 years, the nuclear optical model (OM) has
provided a means of analyzing nuclear scattering data,
both to characterize the nucleon-nucleus interaction and
to represent nuclear data for applications in other re-
search and in engineering [1]. Some of the most chal-
langing nuclei to model have been those, such as 28Si and
32S, with relatively low atomic number and non-spherical
properties. The Triangle Universities Nuclear Labora-
tory (TUNL) has made a dedicated study of neutron
scattering from light nuclei, in order to determine the
limits of the OM approach. The present high-precision
measurements of differential cross section, σ(θ), and an-
alyzing power, Ay(θ), for elastic scattering complement
data previously taken by TUNL. For 28Si(n,n), we report
on σ(θ) at En = 15.4 MeV and 18.9 MeV and Ay(θ) at
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15.4 MeV and 18.6 MeV. For 32S(n,n), we report on σ(θ)
at seven energies from 8.0 MeV to 18.9 MeV and Ay(θ)
at four energies from 9.9 to 16.9 MeV.

Our study investigates the limits of a specific type of
OM, the dispersive optical model (DOM) of Mahaux and
Sartor [2]. One benefit of the DOM is that it uses a
dispersion relation linking the imaginary and real parts of
the OM potential, which introduces a non-linear energy
dependence to the real strengths that is more detailed
and physical than those of traditional OMs. Another
is that the DOM simultaneously describes the positive-
energy scattering regime and the negative-energy bound-
state regime with a single, unified potential.

In recent years DOM studies have experienced a new
impetus, with a focus placed on the asymmetry depen-
dence of nucleon correlations in stable single- and double-
closed shell nuclei spanning the 40 < A < 208 mass re-
gion [3–5]. By using many-body Green’s function meth-
ods, these recent DOM studies conclude that the surface-
imaginary potential is associated with long-range corre-
lations (LRCs), while the volume-imaginary potential is
associated with short-range correlations (SRCs). Corre-
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lations have specific effects on the bound-state quanti-
ties, particularly on the occupation probabilities, Nnlj ,
and spectroscopic factors, Snlj , of the nucleon orbitals.
LRCs originate from coupling between the nucleons of
the independent particle model and the collective excita-
tions of a nucleus [6, 7], namely vibrations in spherical
nuclei and collective excitations in open-shell nuclei (ro-
tational and vibrational). Theory and DOM calculations
for spherical nuclei indicate that LRCs smear out the
Fermi sea and lead to significant quenching of the Snlj

for valence orbitals [6]. SRCs stem from the short-range
nature and tensor component of the bare nucleon-nucleon
force, and manifest through the presence of strongly cor-
related pairs in nuclei [8]. Evidence for SRC effects in
DOM calculations is rooted in the 1s1/2 proton occu-
pation probabilities of Ca isotopes, which take on values
close to Nnlj = 0.90 [5]. The fact that similar Nnlj values
have been calculated for 1s1/2 neutron orbitals through
the same isotopic chain, and also for the 1s1/2 proton

level in 208Pb, suggests that SRC effects on the Nnlj of
the deepest nucleon orbitals of spherical nuclei do not
significantly depend upon nuclear mass.

The present study explores the predictive power of the
DOM in the continuum and bound-state regions, for the
open-shell nuclei 28Si and 32S. Of course, we do not ex-
pect perfect agreement between the DOM predictions
and data. Both nuclei are deformed in their ground states
(displaying oblate and prolate shapes, respectively, in the
intrinsic reference frame) and feature rotational states
in their excitation spectra. Our DOM analyses neglect
the coupling between the ground states and the collec-
tive states. From previous scattering studies, it is known
that the phenomenological OM does not account for cer-
tain effects of channel coupling onto the modulus of the
matrix elements, especially for low partial waves [9].

After establishing our two DOMs by fitting separately
the 28Si and 32S scattering databases (including our new
data), we extrapolate the DOM predictions to the bound-
state region, following the standard method exemplified
by Ref. [10]. Because the reliability of DOM predic-
tions for the bound-state properties of open-shell nuclei is
terra incognita, we perform comparisons with measured
bound-state quantites and with the predictions of the
universal s-d (USD) shell model [11], obtained using the
ANTOINE computer code [12]. It is well known that
the USD shell model is successful in the interpretation
of Nnlj and Snlj measured for a number of s-d shell nu-
clei [13, 14]. We also extend our DOMs to make similar
comparisons for proton bound states, by using an ap-
proximation useful for self-conjugate nuclei [15].

To help disentangle the interplay between LRC and
SRC effects in the DOM, we complement our study with
two specific tests of the prediction of Nnlj . For the first,
we generate a series of DOM varients, in which different
parts of the potential are turned off. For the second,
we use the multi-particle multi-hole configuration mixing
(mp-mh CM) calculations of Pillet and coworkers [16,
17], a microscopic model that is implemented with the

finite-range, density-dependent Gogny D1S effective force
[18]. The model is used to calculate the Nnlj for nucleons
in 28Si and 32S, to estimate the hole-orbital depletions
originating from LRC effects.
The present paper is organized as follows. Section II

reviews our experimental setup and data analysis for the
σ(θ) and Ay(θ) data. Section III presents our database
and standard OM analyses, elements of the DOM for-
malism, and DOM scattering predictions. Section IV
presents our study of the bound-state region, including
discussions of the DOM and mp-mh CM calculations and
results, and the roles played by short- and long-range
correlations. Finally, Sec. V provides a summary of the
present work and makes several suggestions for extending
DOM formalism to deformed, open-shell nuclei.

II. EXPERIMENTAL TECHNIQUES

A. Differential cross sections

Our measurement of σ(θ) was performed for En = 15.4
and 18.9 MeV using the 28Si target and En = 8.0, 9.9,
11.9, 13.9, 15.4, 16.9, and 18.9 MeV using the 32S tar-
get. TUNL’s beam handling, placement of detectors,
and TOF target room have been described in earlier
publications [19] and only a brief review will be given
here. A deuteron beam was produced by TUNL’s Direct-
Extraction Negative Ion Source and then pulsed at 2.5
MHz. After exiting a FN Tandem Van de Graaff acceler-
ator, the beam was bent by an analyzing magnet through
38◦ and transported to the time-of-flight (TOF) exper-
imental area,where it entered a gas cell containing deu-
terium to produce neutrons via the 2H(d, n)3He reaction
at 0◦. The gas cell is a cylindrical tube of stainless steel
(0.80 cm in diameter and 3.16 cm long) and lined with
tantalum. On the beam-entrance side, the gas was con-
tained with a 6.35-µm thick Havar foil. The gas pressures
depended on the incident neutron energy. As a typical
example, for En = 15.4 MeV, we used a pressure of 4.0
atm, resulting in a beam energy spread of 160 keV.
Four cylindrical scattering samples were used. The

28Si sample (92.55% natural abundance) had a radius of
1.176 cm, and a height of 2.528 cm, while the 32S sam-
ple (95.28%) had a radius of 1.230 cm, and a height of
2.540 cm. In addition, a polyethylene (CH2) and a 12C
scatterer were used for the purpose of absolute normal-
ization. All four samples were mounted on a vertical steel
wire, at a center-to-center distance from the gas cell of
typically 12 cm.
The scattered neutrons were detected using the TUNL

TOF spectrometer, which includes four cylindrical de-
tectors (either NE-213 or NE-218 liquid organic scintil-
lators coupled to photomultiplier tubes). Two side de-
tectors were located in the horizontal plane, to the right
and left of the incident beam axis. The Right Detector
has a diameter of 8.88 cm, a thickness of 5.08 cm, and
was set at distances from the target ranging from 2.5 to
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3.9 m. The Left Detector has a diameter of 12.7 cm, a
thickness of 5.08 cm, and was set at distances ranging
from 3.8 to 5.7 m. Both are heavily shielded with paraf-
fin and lithium carbonate and use tungsten shadow bars
to shield against the direct neutron flux. The third de-
tector, the Ceiling Monitor, monitored the neutron flux
from the gas cell. It was 5.1 cm in diameter, 5.1 cm in
thickness, and was mounted at a distance of 1.8 m above
the reaction plane at an angle of about 50◦, housed in a
50 kg copper cylinder. The location and collimation of
this detector serve to reduce its illumination by neutrons
scattered from the scattering samples and the shielding in
the reaction plane. We drew a linear background in the
Ceiling Monitor’s TOF spectrum, by fitting regions on
either side of the mono-energetic neutron peak. A fourth
detector, the Zero-Degree Monitor, located about 4 m in
front of the gas cell, was used to monitor the beam’s time
characteristics; full width at half maximum of the beam
bursts was kept under 2 ns.

For the Right, Left, and Ceiling detectors, a thresh-
old was set on the recoil pulse-height (at a level of 1 x
137Cs) to reject low-energy events. In addition, pulse-
shape discrimination was used to differentiate between
gamma and neutron pulses. The neutron TOF was based
on two signals, a start signal from the neutron detector
and a delayed stop signal from the capacitive pick-off, lo-
cated just upstream from the gas cell. Using this method,
no dead-time corrections were required.

Data were accumulated with the Left and Right detec-
tors at angles from 18◦ to 160◦ in steps of about 4◦. At
each angle, two TOF spectra were collected: the “sample-
in” condition, in which either the 28Si or 32S samples were
placed in the neutron beam; and the “sample-out” con-
dition, in which the sample was removed and replaced by
a bare wire. To normalize the sample-out spectra, we set
a window on the neutron peak of the Ceiling Monitor’s
TOF spectrum and then found its yields for sample-in
(Y in

mon) and sample-out (Y out
mon). The sample-out spectra

of the Right and Left detectors were then normalized by
multiplying them by the ratio Y in

mon/Y
out
mon.

To extract the neutron yields at each angle, “differ-
ence spectra” were generated by subtracting the sample-
out spectra from the associated sample-in spectra. The
difference spectra exhibited small residual backgrounds,
which were well described by a linear fit. The “neutron
yields per monitor,” YS(θ), was found by subtracting the
linear background from the difference spectrum and then
dividing by the sample-in monitor yield, Y in

mon. Period-
ically, normalization measurements were taken with the
CH2 and 12C scatterers at scattering angle θH . The θH
depended on the incident neutron energy; for the 15.4
MeV measurement, we used θH = 27◦. The yield per
monitor for n-p scattering, YH(θH), was found by sub-
tracting the 12C spectrum from the CH2 spectrum.

The measured differential cross sections, σ(θ, En), for
the 28Si and 32S samples at the lab angle θ and neutron

energy En were found using the equation

σ(θ, En) = YS(θ)
σ(θH , En)

YH(θH)

NH

NS

1

F (θH , En)
, (1)

where σ(θH , En) is the n-p cross section and NH/NS is
the number of hydrogen nuclei in the CH2 sample divided
by the number of nuclei in the scattering sample. The
F (θH , En), a correction factor accounting for detector-
efficiency and finite-geometry effects associated with n-p
scattering, was found with a Monte-Carlo simulation; at
En = 15.4 MeV, it was 1.205.
Our data contained three finite-geometry effects: at-

tenuation of the neutron flux in the target, multiple scat-
tering in the target (double and triple), and variation of
σ(θ) for the source reaction and for neutron-nucleus elas-
tic scattering across the face of the scattering elements.
All three effects were removed from the σ(θ) data using a
standard iterative procedure and the Monte-Carlo code
EFFIGY [20]. This procedure entailed angle shifts of less
than 1◦, except on the steep slopes of the angular distri-
bution were it reached up to 2.3◦. The simulation also
calculated the mean neutron energies.
The uncertainties for the σ(θ) data include seven

sources. Three are relative uncertainties, added in
quadrature, due to the counting statistics and back-
ground determination (ranging from 1.5 to 6.0%), the rel-
ative detector efficiency (2.5%), and the finite-geometry
corrections (from 0.8 to 1%). Four more are scale un-
certainties, due to the n-p yield (0.5 to 1.0%), the n-p
cross section (2.0%), the NH/NS factor (0.8 to 1%) and
the F (θH , En) factor (2.2%). Figures 1 and 2 display our
final σ(θ) data as the red solid squares. The final uncer-
tainties are typically 2% or lower, except in the minimum
of the cross section, where they are as high as 6%.

B. Analyzing power

The Ay(θ) measurements proceeded similarly to those
for σ(θ) but used a polarized ion source to produce a
beam of polarized deuterons. Four of the measurements,
28Si at En = 18.6 MeV and 32S at 9.9, 13.9, and 16.9
MeV, used TUNL’s Lamb-shift source, which monitored
the beam polarization with a quench-ratio method. The
other two Ay(θ) distributions at En = 15.4 MeV used
TUNL’s Atomic Beam Polarized Ion Source (ABPIS).
After the deuteron beam was pulsed and accelerated,

it was bent through 38◦ and transported to the NTOF
target area, where polarized neutrons were produced via

the 2H(~d, ~n)3He reaction, using the same gas cell as that
for the σ(θ) measurements. Because the polarized ion
sources produce relatively low deuteron currents (about
450 nA with the ABPIS), we ran the gas cell at higher
pressures in order to improve the counting rate. As a
result, the energy spreads were higher, varying from 200
keV to 460 keV, depending on the measurement. The
neutrons were detected by the Right and Left detec-
tors, which were now positioned symmetrically about the
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beam axis. To cancel instrumental asymmetries (due to
the detectors and their associated electronics) the data
were accumulated using the spin-flip method, in which
the vector polarization of the incident neutron beam was
periodically flipped up and down. For each angle, eight
TOF spectra were accumulated, for Right and Left, for
sample-in and sample-out, and for spin up and spin down.
The neutron flux was no longer monitored with the Ceil-
ing Monitor but with a beam-current integrator.

As with the σ(θ) measurements, difference spectra
were generated by subtracting the sample-out spectra
from the sample-in spectra. Again, a small residual back-
ground remained. Within statistical uncertainties, this
background had the same level for both the spin-up and
spin-down spectra and was well represented by a lin-
ear function; no evidence of a polarized background was
found.

After the determination of the background, three win-
dows were set on the elastic neutron peaks at 10%, 20%
and 50% of the peak height. For each case, yields were
generated for RU , RD, LU , and LD, where R and L des-
ignate the Right and Left detectors, respectively, and U
and D designate spin up and spin down, respectively.

After defining the quantity α =
√

LURD

RULD

, the analyzing

power is

Ay(θ) =
1

Pn

α− 1

α+ 1
. (2)

For the 15.4 MeV measurements, the neutron beam
polarization, Pn, was monitored by using the 12C(n,n)
reaction. Approximately every eight hours during the
experiment, the Right and Left detectors were positioned
at θlab = 50◦, with the 12C scatterer used for the sample-
in position. Using the known 12C(n,n) Ay(θ) value from
Ref. [21], Eq. (2) was inverted to find Pn (typically 55%).

We found that the Ay(θ) results were consistent within
uncertainties for all three choices of gates (10%, 20%
and 50%), indicating that the background was defined
reliably. The 20% gates were used for the final data,
since they represented a good tradeoff between maximiz-
ing the neutron yields and eliminating unwanted counts.
We corrected the Ay(θ) data for effects of finite geom-
etry, flux attenuation and multiple scattering using the
Monte-Carlo code JANE [22], which also calculated the
mean neutron energies.

The 28Si and 32S Ay(θ) data have relative uncertain-
ties ranging between 2% (at the forward angles) to 7%
(near the minima). These relative uncertainties include
the statistical uncertainties, the uncertainties associated
with background subtraction, and those due to the finite-
geometry corrections, all added in quadrature. In addi-
tion, we folded in two scale uncertainties: a 2% uncer-
tainty in the determination of the deutron beam polar-
ization and a 5% uncertainty assigned to the analyzing
power of 12C(n,n). Figure 3 displays our final Ay(θ) data
as the red solid squares.

III. SCATTERING MODEL ANALYSES

A. Database and standard OM analysis

The 28Si database, listed in Table I, included 40 data
points for total cross section based on Refs. [23, 24].
We used 17 σ(θ) angular distributions from Refs. [25–31]
along with the present data at 15.4 and 18.9 MeV. We
also used three Ay(θ) distributions from Ref. [27] and
the present data at 15.4 and 18.6 MeV. The 32S(n,n)
database, listed in Table II, included 40 data points of
total cross section based on Refs. [23, 32]. It also used 13
σ(θ) angular distributions from Refs. [28, 29, 33–37] and
the present σ(θ) data at 8.0, 9.9, 11.9, 13.9, 15.4, 16.9,
and 18.9 MeV. Finally, it included the present Ay(θ) data
at 9.9, 13.9, 15.4, and 16.9 MeV. Traditionally, TUNL
OM studies went up to 80 MeV. However, due to im-
provements in the nuclear database, particularly for total
cross section, the present study goes up to 160 MeV.

As a preliminary step, we compared our data to the
predictions of the Koning-Delaroche (KD) global opti-
cal model [38], which covers many target nuclides in the
mass range from A = 24 to 209 for incident neutrons and
protons up to 200 MeV. The KD OM uses a standard
form for the potential

U(r, E) = − [VV (E) + iWV (E)] f(r, RV , aV )

−4aD [VD(E) + iWD(E)]
d

dr
f(r, RD, aD)

−λ2
π [VSO(E) + iWSO(E)]

1

r

d

dr
f(r, RSO, aSO)(l · σ), (3)

where the successive complex-valued terms are the
volume-central, surface-central and spin-orbit potentials.
The f(r, Ri, ai) is the Woods-Saxon form factor. The
predictions of this global OM are confirmed nicely by
our data, as shown by the blue-dashed curves in Figs. 1
to 4.

The silicon database includes σ(θ) data at 65 MeV [31].
These measurements were performed with an energy res-
olution of ∆E = 2.7 MeV [39], making it impossible to
seperate scattering from the ground state and from the
first 2+ excited states at Ex = 1.779 MeV. Therefore, we
made an estimate of the inelastic scattering angular dis-
tribution at this incident energy, performing a DWBA
calculation (using the KD potential) and a quadrupole
deformation parameter inferred from a neutron inelas-
tic scattering analysis for 28Si [40]. The same method,
using ECIS94 [41], was used with success in Ref. [42].
The DWBA results were summed with those for elas-
tic scattering using the KD and DOM potentials. The
two curves for 65 MeV in panel (c) of Fig. 1 are for this
sum. At the forward angles, the inelastic contribution is
smaller than the uncertainties on the data. In the 30◦ -
50◦ range it raises the predictions slightly closer to the
measurements.
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B. Dispersive optical model formalism

The DOM potential strengths include a real-valued
Hartree-Fock mean field (VHF ), an imaginary potential
with both volume and surface terms (WV and WD, re-
spectively), volume and surface dispersive corrections to
the real potential (∆VV and ∆VD, respectively), and a
real spin-orbit term (VSO). With the radial dependen-
cies, the general form of the DOM potential is

U(r, E) = − [VHF (E) + iWV (E)

+∆VV (E)] f(r, RV , aV )

−4aD [iWD(E) + ∆VD(E)]
d

dr
f(r, RD, aD)

−λ2
πVSO(E)

1

r

d

dr
f(r, RSO, aSO)(l · σ). (4)

The volume and surface dispersive terms are computed
with the integral

∆Vi(r, E) =
1

π
P

∫ +∞

−∞

Wi(r, E
′)

E′ − E
dE′, (5)

where P stands for the principal value, W stands for the
absorptive parts of Eq. (4), and the subscript “i” is for
either volume (V) or surface (D) components. We did not
use an imaginary spin-orbit term for our DOM analyses,
since a number of earlier TUNL studies did not show a
need for a WSO, especially at low energies [43].
The energy dependence of the volume imaginary po-

tential depth is assumed to be of the form

WV (E) =
w1(E − EF )

2

(E − EF )2 + (w2)2
, (6)

while that for the surface imaginary potential is

WD(E) =
d1(E − EF )

2

(E − EF )2 + (d3)2
exp [−d2(E − EF )] . (7)

The WV and WD terms are assumed to be symmetric
around the Fermi energy, EF , which is evaluated in terms
of neutron separation energies, Sn, as EF = 1

2
[Sn(N) +

Sn(N + 1)]. For 28Si, EF = -12.83 MeV and for 32S, EF

= -11.84 MeV. We did not follow Refs. [4, 5] in using a
form of WV that is asymmetric about EF .
We considered two forms for the energy dependence of

the Hartree-Fock potential, VHF . The first is the tradi-
tional single-exponential energy dependence

VHF (E) = vhf1 exp [−vhf2(E − EF )] . (8)

The second is used by Ref. [4] and employs two exponen-
tial terms

VHF (E) = vhf1 exp [−vhf2(E − EF )]

+vhf3 exp [−vhf4(E − EF )] . (9)

Both forms comply with the usual assumption introduced
by Mahaux and Sartor [2], according to which the HF

potential uses an energy dependence that is smooth and
monotonic, and an energy-independent radial form fac-
tor. Equation (8) provides a simple on-shell represen-
tation of the Perey-Buck nonlocal potential, where the
nonlocality profile is of the Gaussian type [2, 44, 45].

C. DOM scattering results

The strength and geometry parameters for the present
28Si(n,n) and 32S(n,n) DOMs are displayed in Table III.
In building our DOMs we started with the volume- and
surface-imaginary potentials (WV and WD, respectively)
of the “best” models of Ref. [38] and then calculated
the volume and surface dispersive corrections, ∆VV and
∆VD, respectively, using Eq. (5). We made small adjust-
ments to the WV and WD parameters, but found that
large changes spoiled the fits to the differential data. For
the real spin-orbit potential, we used the form of Ref.
[38],

VSO(E) = vSO1 exp [−vSO2(E − EF )] . (10)

We then determined the Hartree-Fock term, VHF (E).
After first finding VHF values that reproduced σT at each
En, we fit these values using the single-exponential form
Eq. (8). Local stepping of the strength, slope, and ge-
ometry resulted in a fairly good representation of σT , as
shown by the red curves in Fig. 4.
The DOM faced a tradeoff between the low- and high-

energy regimes of σT . Because our database included
high-precision data between 25 and 160 MeV from Refs.
[24, 32], we gave special attention to this region, achiev-
ing as good or better fits (red curves) as those of Ref.
[38] (blue-dashed). As a result, our DOM fits are not as
good in the low-energy regime (from En = 0 to 25 MeV),
where they are somewhat higher than the data. Use of
the double-exponential form of Eq. (9) did not cure this
weakness but, on the contrary, exacerbated the problem
since it features higher VHF (E) slopes at low energies,
whereas the σT data call for lower slopes. In separate
tests, we found that the low-energy fits could be greatly
improved by using an energy-dependent rV . For the

28Si
DOM, rV changed value linearly from 1.18 to 1.23 fm
between 0 to 25 MeV, after which it was constant at 1.23
fm. Similarly, for the 32S DOM, rV rose from 1.21 to 1.26
fm between 0 and 25 MeV, and then was constant at 1.26
fm. Although this exercise confirmed that the DOM po-
tentials were too strong at low energy, we rejected the
modification because it introduced two new parameters.
Comparisons are shown between the predictions of the

DOMs (red curves) and data for σ(θ) in Figs. 1 and 2
and for Ay(θ) in Fig. 3. All of our scattering calcula-
tions included the Mott-Schwinger interaction and rela-
tivistic kinematics. We accounted for compound nucleus
(CN) processes below 12 MeV for both targets, using the
TALYS computer code [46]. All open channels (n, p,
d, t, α) were treated and width fluctuation factors were
calculated according to Ref. [47]. In displaying the OM
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predictions of differential observables, we added the CN
contributions to each σ(θ) prediction below 12 MeV and
applied the appropriate ratio to the 9.9 MeV Ay(θ) pre-
dictions.
In the higher-energy regime where our models give

good predictions for σT , they also give good predictions
for differential scattering quantities. In the low-energy
regime, the present fits to σ(θ) are too high (especially
at forward scattering angles), reflecting the fact that the
predictions for σT are too high. The predictions of the
traditional global OM of Ref. [38] (blue-dashed curves)
do not have this deficiency. It appears that the additional
potential strength introduced by the DOM formalism at
low energies has made it difficult to find a VHF (E) rep-
resentation that satisfies both the low- and high-energy
regimes. Note that our fit to the 28Si Ay(θ) data at 13.9
MeV misses for angles less than 90◦ and does not do as
well as the predictions of Ref. [38]. This does not indicate
a problem with the spin-orbit interaction but rather is re-
lated to the difficulty we had in fitting the σT minimum
in the 0 to 25 MeV regime.
The tradeoff between the low- and high-energy regimes

affected the low-energy predictions of σT and σ(θ) and
other low-energy parameters as well. The s- and p-wave
strength functions, S0 and S1, respectively, are deter-
mined in Ref. [48] by averaging resonance parameters
over a few hundred keV. For n + 32S, Ref. [48] gives
S0 = (0.73 ± 0.23) x 10−4 and S1 = (0.57 ± 0.14) x
10−4, while our DOM yields S0 = 1.14 x 10−4 and S1 =
1.85 x 10−4. Also, Ref. [48] gives the potential scattering
radius as R’ = 3.92 ± 0.02 fm, while our DOM yields
3.41 fm.
Our scattering fits show deficiencies in certain energy

and angle regimes, as do our prediction of the s- and p-
wave strengths. In these regards, the DOM shares many
deficiencies (and possible ways of rectifying them) with
the standard OM. A number of earlier studies have indi-
cated that the predictions of phenomenological OMs can
be improved by using l- and parity-dependent potential
terms [49]. Another possibility is that similar effects can
be accounted for with coupled channel calculations. For
example, OM studies of neutron scattering from 32S and
related targets by MacKellar and coworkers found that
deficiencies in the s- and p-wave strength function calcu-
lations based on a spherical OM could be cured dynam-
ically when deformations of the target nuclei are intro-
duced [50].

IV. BOUND-STATE MODEL ANALYSES

A. DOM at negative energies

After establishing best fits to the continuum database,
a crucial test of the DOM is to see how well it predicts
the bound-state centroid energy, Enlj , occupation prob-
ability, Nnlj , root-mean-square radius, Rrms

nlj , and spec-
troscopic factor, Snlj . The Enlj are the eigenvalues of

the wave equation
[

−
~
2

2m
∇2 + V(r;Enlj)

]

Φnlj = EnljΦnlj , (11)

with quantum numbers n, l, and j. For neutron bound
states, the nuclear potential, V(r;Enlj), includes contri-
butions from the Hartree-Fock potential (VHF ), the two
dispersive corrections (∆VV and ∆VD), and the spin-
orbit interaction (VSO). Following the prescription of
Ref. [44], for E < EF , the VHF , was extrapolated lin-
early, using the slope of Eq. (8) at E = EF . Using this
potential, we calculated the bound-state quantities with
software originally written by C.H. Johnson [51].
It is convenient to define two effective masses, the

first being the momentum-dependent effective mass (or
k-mass)

m∗
HF (r, E)

m
= 1−

dVHF (r, E)

dE
, (12)

and the second the energy-dependent effective mass (or
E-mass)

m(r, E)

m
= 1−

m

m∗
HF (r, E)

d∆V(r, E)

dE
. (13)

The Rrms
nlj were computed using the equation

Rrms
nlj =

√

∫ +∞

0

u2
nlj(r)r

2dr. (14)

The unlj(r) are the radial parts of the Φnlj wave func-
tions, which have been corrected for nonlocality accord-
ing to

unlj =

√

m∗
HF (r, E)

m
unlj , (15)

and which have been normalized. The Nnlj were com-
puted for hole states using

Nnlj =

∫ +∞

0

u2
nlj(r)

[

1 +
m

m∗
HF (r, Enlj)

×
1

π

∫ +∞

EF

Wi(r, E
′)

(E′ − Enlj)2
dE′

]

dr, (16)

and for particle states using

Nnlj = −

∫ +∞

0

u2
nlj(r)

[

m

m∗
HF (r, Enlj)

×
1

π

∫ EF

−∞

Wi(r, E
′)

(E′ − Enlj)2
dE′

]

dr. (17)

Finally, the Snlj , relative to the independent-particle val-
ues, were computed using

Snlj =

∫ +∞

0

u2
nlj(r)

m

m(r, Enlj)
dr. (18)

Equations (16)-(18) rely upon approximations intro-
duced in Ref. [2] and discussed in Ref. [5]. The results of
our bound-state calculations are listed in Tables IV and
V, and are discussed in subsection C.
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B. Multi-particle multi-hole configuration mixing

calculations

We use a beyond mean-field method based on mp-

mh configuration mixing to estimate the orbital deple-
tions arising from LRCs. This microscopic approach aims
to unify nuclear long-range correlations in a symmetry-
preserving framework [16, 17]. The trial wave function,
|Ψ〉, is built as a superposition of Slater determinants

|Ψ〉 =
∑

αν ,απ

Aαν ,απ
[ |Φαν

〉 ⊗ |Φαπ
〉 ] , (19)

where the Aαν ,απ
represent a set of mixing coefficients

and the |Φαπ
〉 and |Φαν

〉 the proton and neutron Slater
determinants, respectively. As seen from Eq. (19),
the proton-proton, proton-neutron, and neutron-neutron
correlations are treated on the same ground.
Both mixing coefficients and single-particle orbitals

|ϕi〉 are unknown quantities. They are determined by
applying a variational principle to the energy functional
F(ρ) defined as

F(ρ) = 〈Ψ|Ĥ(ρ)|Ψ〉 − λ〈Ψ|Ψ〉, (20)

where ρ is the one-body density matrix. The Hamilto-
nian Ĥ(ρ) = T̂ + V̂ (ρ), where V̂ (ρ) represents the two-
body density-dependent Gogny D1S effective force plus
the Coulomb term. Moreover, T̂ and V̂ (ρ) contain 1-
and 2-body center-of-mass corrections, respectively. The
minimization of the energy functional, namely δ[F(ρ)] =
0, leads to

∂F(ρ)

∂A∗
αναπ

= 0 and
∂F(ρ)

∂ϕ∗
i

= 0. (21)

The set of equations Eq. (21) may be re-expressed as a
set of non-linear equations

∑

α′

π
α′

ν

Hαπαν ,α′

π
α′

ν
Aα′

π
α′

ν
= λAαπαν

, (22)

and inhomogeneous Hartree-Fock (HF) equations

[h(ρ, σ), ρ] = G(σ). (23)

In Eq. (22), H contains contributions from Ĥ(ρ) and
rearrangement terms coming from the density-dependent
part of the Gogny D1S effective force. In Eq. (23), h

represents the one-body Hamiltonian deduced from Ĥ(ρ)
and σ the two-body density matrix. Only Eqs. (22) are
solved, in keeping with methodology adopted in a recent
study of excited states in nuclei of the sd-mass region
[17].
In the present work, the numerical procedure is as fol-

lows. The proton and neutron single-particle orbitals are
obtained in HF calculations performed at sphericity. The
HF equations are solved by expanding the solutions onto
a harmonic oscillator basis including eleven major shells,

which is large enough to ensure convergence of the re-
sults. The mp-mh configuration space is built, by con-
sidering up to eight particle-eight hole excitations. The
secular equation, Eq. (22), is solved including neutron
and proton levels 1s1/2, 1p3/2, 1p1/2, 1d5/2, 2s1/2, 1d3/2,
and 1f7/2 as active orbitals. The ground state solution,

with angular and parity Jπ = 0+, i.e., |Ψ0+〉, is obtained
using the Lanczos algorithm to diagonalize the matrices,
which, in this case, included about eight hundred million
elements. Occupation probabilities are determined as Ni

= 〈Ψ0+|a
+
i ai|Ψ0+〉, where a

+
i is a single-particle creation

operator for orbital i with quantum numbers n, l, and j.
The Nnlj values resulting from the mp-mh CM calcula-
tions for 28Si and 32S are displayed in Tables IV and V
as well as Fig. 5. The results are discussed in subsections
C and D.

C. Bound-state results

To evaluate the DOM’s ability to describe the neutron
bound-state region of the deformed nuclei 28Si and 32S,
we compare predictions of Enlj , Nnlj , R

rms
nlj , and Snlj to

available data. As a means of confirming and strength-
ening our conclusions, we translate our neutron DOMs
into proton DOMs, to take advantage of the substantial
proton data that is available.
Results of our neutron DOM bound-state calculations

for Enlj and Nnlj are listed in Table IV, alongside exper-
imental data. Our 28Si DOM predicts Enlj = -51.9 MeV
for the 1s1/2 hole state, in agreement with the experimen-
tal value of -52 ± 15 MeV. We tuned our DOMs slightly
to insure that the 1s1/2 prediction for 32S was somewhat
deeper, at -53.2 MeV. Because the other neutron states
in 28Si are not resolved experimentally in Ref. [52], Ta-
ble IV displays the energies for the combined 1p3/2 and
1p1/2 states and for the combined 1d5/2 and 2s1/2 states.
The agreement between these experimental data and the
DOM predictions is only fair. The DOM prediction for
the energy separation between the 1s1/2 and 1p levels, of
21.4 MeV, easily agrees with the experimental value of 20
± 16 MeV. However, the DOM prediction for the com-
bined 1d5/2 and 2s1/2 levels, of 13.2 MeV, is too shallow
compared to the experimental result of 17 ± 3 MeV.
The DOM predictions of Nnlj agree reasonably with

the experimental data of Refs. [53, 54], which have large
uncertainties (about 30%). The predictions also agree
well with the USD shell model calculations for the 1d5/2,
2s1/2, and 1d3/2 bound states. Experimental informa-
tion for the 1f7/2 orbitals is scanty and, in addition, the
measured Nnlj values are plagued with large uncertain-
ties due to weak excitation and strong fragmentation in
one-nucleon transfer reactions [53]. Note that the DOM
predictions of Nnlj for the 1f7/2 are half of those for the
1d3/2 orbitals.
Our predictions of Nnlj do not compare as well to the

mp-mh CM calculations for the s-d orbitals, since themp-

mh CM calculations do not smear out as much around
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EF . One reason for this is that the secular equation,
Eq. (22), conveys only part of the long-range correla-
tions. A full account for LRCs would result from solving
Eqs. (22)-(23) self-consistently. As a result of particle-
vibration coupling, dressed single-particle orbitals would
be defined and the orbital depletion would increase in the
vicinity of EF . However, the LRC depletion of about 2%
presently calculated for the 1s1/2 deep-hole states is not
expected to change significantly when the full LRCs are
treated. Indeed, the finite-range character of the Gogny
D1S effective force brings a natural cut to the high energy
particle-hole excitations [17].

Our DOM predictions of Rrms
nlj and Snlj for the first

particle and hole states are listed in Table VI (for both
neutrons and protons). In evaluating these predictions,
one must take special care in selecting experimental
data. This is especially true for Snlj data, which often
are affected by normalization and measurement ambigu-
ities that render them incomparable to DOM predictions
(since the DOM predictions are computed relative to the
independent particle value). To test our neutron predic-
tions, we chose the recent consistent analysis of (p,d) and
(d,p) transfer reactions of Ref. [55].

Our DOM predictions of Rrms
nlj for neutron orbitals in

28Si and 32S range from about 2.3 fm, for 1s1/2, to about
4.2 fm, for 1f7/2. For the 2s1/2 neutron particle state

in 28Si, our prediction of 3.83 fm compares well to the
experimental value of 3.73 ± 0.10 fm. For the 1d3/2 neu-

tron particle state in 32S, our prediction of 3.74 fm also
compares well to the experimental value of 3.63 ± 0.10
fm. (We assigned uncertainties to the Rrms

nlj data of Ref.

[55].)

Our prediction of Snlj for the 2s1/2 neutron particle

state in 28Si is 0.603, which is higher than the exper-
imental value of 0.42 ± 0.13 and the USD shell-model
prediction of 0.45. For the 1d3/2 neutron particle state

in 32S, our prediction is 0.550, which is within uncer-
tainties of the experimental result, of 0.70 ± 0.20, and
compares reasonably to the USD prediction, of 0.61.

We next transformed our neutron DOMs into proton
DOMs, in order to estimate the proton single-particle
bound-state properties. We used the prescription of Ref.
[15] for self-conjugate nuclei, in which the Coulomb cor-
rection is appoximated as the difference between the pro-
ton and neutron Fermi energies, EF . For the proton
DOMs, all of the strength and geometry parameters in
Table III were employed. Only two elements of the mod-
els were changed. First, we adopted new EF values,
which were recomputed using proton separation energies,
yielding EF = -7.17 MeV for 28Si and -5.57 MeV for 32S.
Second, the Coulomb radii specified by Ref. [38] were
used, the reduced values being 1.32 fm for 28Si and 1.31
fm for 32S. We checked our p+ 28Si DOM against the pre-
dictions of the “best” p + 28Si OM of Ref. [38] and found
reasonable agreement up to 60 MeV for σ(θ), Ay(θ), and
the reaction cross section.

Results of our proton DOM calculations for Enlj and

Nnlj are displayed in Table V. Note that we organized
the Enlj data, culled from Refs. [56–60], into two columns
labeled ExpA and ExpB. Comparison of our DOM pre-
dictions of Enlj to experimental data shows mixed re-
sults. For 28Si, the DOM prediction for the 1s1/2 state,
of -44.4 MeV, overlaps with the measured value of -47.0±
4.0 MeV, but is too shallow compared to the other datum
of -51 MeV. The DOM prediction of the energy separa-
tion between the 1s1/2 and 1p levels, 21.1 MeV, agrees
reasonably with both sets of experimental data and also
with the data displayed in Fig. 11 of Ref. [61]. The pre-
diction for 1d5/2 is too shallow compared to data, while

the predictions of 2s1/2 and 1d3/2 are too deep. For 32S,
the DOM predictions of Enlj show a greater tendency
to be shallow, although the result for the 2s1/2 orbital,
-6.76 MeV, overlaps with the experimental value of -9 ±
3 MeV.
In comparing the Nnlj predictions in Tables IV and

V, note that, because Coulomb effects play a minor role
in the DOM and the mp-mh CM calculations, the pre-
dictions change only slightly for these models. The USD
predictions are identical. As in the neutron case, the pro-
ton DOM results agree reasonably with the experimental
data and with the USD predictions. Also, the mp-mh

CM calculations yield Nnlj values near EF that are too
low for the particle states and too high for the holes.
We again made a careful review of the available

experimental data for Rrms
nlj and Snlj and chose the

32S(e,e′p)31P measurement of Ref. [62]. Overall, the pro-
ton DOM predictions for Rrms

nlj are slightly higher than
the neutron predictions. However, for the 2s1/2 proton-

hole state in 32S, our DOM prediction of 4.01 fm is much
higher than the experimental result of 3.59 ± 0.10 fm
from Ref. [62]. This discrepancy raises the possibility
that the proton DOMs should have different geometries
than those for the neutron DOMs. We confirmed that the
DOM predictions are sensitive to the geometrical param-
eters, but found that a complete account of the discrep-
ancy would require a full proton DOM analysis (starting
with fits to a proton-continuum database), which is out
of the scope of the present work.
Our DOM predictions of Snlj for the proton-hole va-

lence orbitals, 1d5/2 in 28Si and 2s1/2 in 32S, are 0.571

and 0.590, respectively. The prediction for 2s1/2 in 32S
is lower than both the experimental value of 0.79 ± 0.07
from Ref. [62], and the USD prediction of 0.77. Our DOM
predictions of Snlj for the valence orbitals are slightly be-
low the 60% - 70% quenching of the independent-particle
model value found from quasi-elastic electron scattering
[63] and joint analyses of (e,e’p) and (d,3He) measure-
ments for stable nuclei over the periodic table [64].

D. Long-range versus short-range correlations

Since long-range correlations (LRCs) and short-range
correlations (SRCs) are cast in the OM potential com-
ponents, both of these impact DOM predictions in the
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bound-state region. To help disentangle the interplay be-
tween LRC and SRC effects on Nnlj , we conducted two
tests. Charity and coworkers [4] note that the surface-
imaginary potential is associated with LRCs, while the
volume-imaginary potential is associated with SRCs.
Therefore, in the first test, we created variations of our
DOMs in which one or the other of the dispersive correc-
tions was turned off. The resulting predictions of Nnlj

are shown in Fig. 5, for both 28Si and 32S (and for both
neutron and proton orbitals). The colored symbols de-
pend on whether the Nnlj are calculated using only VHF

+ ∆VD (blue downward triangles), only VHF + ∆VV

(green upward triangles), or the full real potential VHF

+ ∆VV + ∆VD (red squares). The predictions of the full
DOMs are also listed in Tables IV and V.
Each set of symbols (connected by lines to guide the

eye) displays similar patterns on the four panels of Fig. 5,
reflecting the weak impact of the Coulomb field on pre-
dictions for both self-conjugate nuclei. The LRC-variant
DOM (blue downward triangles) shows weak depletion
for the deep hole states, of about 1%. For the higher
states, the LRC depletion grows, reaching approximately
20% for the valence orbitals. In contrast, the SRC-
variant DOM (green upward triangles) gives a depletion
for the deep-hole states of about 10%. This compares well
with the 13% SRC-dominant depletion amount found for
the 1s1/2 and 1p3/2 proton orbitals in another light nu-

cleus, 12C, from (e,e’p) measurements at high missing
energies and momenta [65]. SRC depletion is approxi-
mately uniform over all of the hole states, in good agree-
ment with microscopic model predictions [6, 66]. For the
valence orbitals, a combination of LRC and SRC effects
in the full DOM (red squares) produces an overall or-
bital depletion (and quenching of spectroscopic factors)
of about 30%, in good agreement with experimental re-
sults from quasi-elastic electron scattering [63] and from
Green’s function calculations [7].
Our second test used the mp-mh CM calculations to

estimate the impact of LRC on Nnlj . These results are
listed in Tables IV and V in the column labeled “CM”
and appear as black circles in Fig. 5. The depletion is low
for the deepest hole state, 1s1/2, and then increases for
the valence orbitals. For the 1s1/2 orbitals, the mp-mh

CM calculations give a depletion of about 2%. These bear
a similarity to the DOM LRC varients (the downward-
blue triangles), which give a depletion of about 1%.

V. SUMMARY AND CONCLUSIONS

New neutron scattering measurements performed at
TUNL between 8 and 18.9 MeV, as well as previous scat-
tering and reaction data available for 28Si and 32S, have
been analysed in the present study using the dispersive
optical model, which was established about 25 years ago
by Mahaux and Sartor for closed-shell nuclei. In applying
the DOM to our open sd-shell nuclei, we fit the neutron
DOMs to a large scattering database and extrapolated

them to the bound-state regime. We then compared our
DOM predictions of Enlj , Nnlj , R

rms
nlj , and Snlj , to the

best available experimental data and to predictions of the
USD shell model. We also extended the neutron DOMs
to make predictions for proton bound-state quantities,
taking advantage of a DOM prescription that is straight-
forward to implement for self-conjugate nuclei.

The overall agreement between the DOM predictions
and measurements is only fair. In the scattering contin-
uum, the neutron DOMs faced difficulties in fitting σT

in the low energy regime up to 25 MeV. Below about 15
MeV, the models also had some difficulty with the dif-
ferential observables, especially at forward angles. In the
bound-state region, our results are also mixed. The Enlj

predictions are reasonable for the deep-hole states but,
otherwise, tend to be too shallow. The Nnlj predictions
compare reasonably to the experimental data and to the
USD predictions. The Rrms

nlj predictions compare well
to the neutron data but are too large compared to the
proton data. The neutron Snlj predictions compare rea-
sonably to the data but the proton predictions are low,
close to the lower bound of the 60-70% quenching of the
independent-particle model value.

Both long- and short-range correlations affect the
DOM predictions. We estimated the magnitude of LRC
effects on Nnlj by performing mp-mh CM calculations
for neutron and proton orbitals and also by generating
variations of our DOMs in which one or the other of the
dispersive corrections was turned off. The mp-mh CM
calculations and the LRC variants of the DOM predict
weak depletion for the deep-hole orbitals, while the full
DOM predicts a depletion of the valence orbitals of about
30%. We conclude that SRCs dominate the depletion
of the deep-hole orbitals, and gradually melt into LRCs
when approaching the valence orbitals.

The merely adequate performance of our DOM pa-
rameterizations leads us to suggest a number of ways
that they might be improved. One might be to con-
sider phenomenological components other than central
and spin-orbit potentials. Consideration of l- and parity-
dependent components likely would improve the DOM
fits, to both the scattering and bound state regions [49].
However, such an approach is not much appealing since
it would add phenomenological parameters.

One limitation of our DOM parametrization is the as-
sumption that the imaginary volume potential is sym-
metric with respect to EF . This assumption is unre-
liable at large negative energies, as has been demon-
strated previously in a semiclassical OM approach [67]
and more recently in the Green’s function-based OM of
Ref. [68]. Another limitation of our parameterization is
the assumption that the DOM is local. Implementing a
Gaussian-type of nonlocality in the imaginary potential
(treated as on-shell), would remove the spurious energy
dependence tied with the nonlocality cast in the disper-
sive potentials, to a large extent [69]. Exploratory cal-
culations along these lines show that DOM components
calculated with and without nonlocality display MeV dif-
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ferences in their strengths [70]. More significant improve-
ments are expected by using the nonlocality of the Perey-
Buck type for the Hartree-Fock potential component, as
has been discussed recently [71]. Full microscopic non-
local DOM calculations in the bound-state region would
shed light on the interpretation of spectral distributions
deduced from (e,e’p) measurements [62]. Although such
calculations are highly desirable, their implementation
for open-shell, deformed nuclei probably lie some years
in the future. Implementing the microscopic DOM for-
malism with Gorkov-Green’s functions [72] would be a
step forward.
Finally, we hope that new, high-resolution (p,pn) and

(p,2p) measurements will be performed, similar to those
recently accomplished for 40Ca by Ref. [73]. The determi-
nation of more reliable nucleon centroid energies for 28Si
and 32S would allow us to better assess the reliability of
the DOM. Of course, our calculations rely upon a spher-
ical OM picture which ignores residual interactions origi-
nating from deformations. The DOM could be extended
by including coupling to collective levels. This would re-
quire solving coupled-channel equations, not only for the
continuum but also for the bound-state region. Because

there is current interest in spherical OM potentials for the
study of reactions in which one nucleon is added to or re-
moved from a nucleus, an alternative strategy would be
to evaluate the dynamic polarization potential originat-
ing from channel coupling, which is nonlocal, complex,
and energy dependent [74]. The generalized DOM would
then require the solution of Schroedinger equations im-
plemented with nonlocal complex potentials. Pioneering
efforts along these lines are presented in Refs. [75].

Acknowledgments

The work was supported by the U.S. Department of
Energy, under Grant No. DE-FG02-97ER41033. The au-
thors thank S. Hilaire for his work on the statistical model
calculations, L. Gaudefroy for the USD shell model cal-
culations, and N. Pillet for enlightening discussions and
the new mp-mh CM calculations. M.A.A. A.A.N. and
M.M.N. thank the King Fahd University for its support.
J.P.D. thanks TUNL for its support.

[1] F. Wrobel, Comput. Phys. Commun. 178, 88 (2008), and
references therein; M.B. Chadwick, Int. J. Rad. Bio. 88,
10 (2012), and references therein.

[2] C. Mahaux and R. Sartor, Adv. Nucl. Phys. 20, 1 (1991).
[3] R.J. Charity, L.G. Sobotka, and W.H. Dickhoff, Phys.

Rev. Lett. 97, 162503 (2006).
[4] R.J. Charity, J.M. Mueller, L.G. Sobotka, and W.H.

Dickhoff, Phys. Rev. C 76, 044314 (2007).
[5] J.M. Mueller et al., Phys. Rev. C 83, 064605 (2011).
[6] W.H. Dickhoff and C. Barbieri, Prog. Part. Nucl. Phys.

52, 377 (2004).
[7] C. Barbieri, Phys. Rev. Lett. 103, 202502 (2009).
[8] R. Subedi et al., Science 320, 1476 (2008); D. Higin-

botham, E. Piasetzky, L. Weinstein, and S.A. Wood,
J. Phys.: Conf. Ser. 299, 012010 (2011); J. Arring-
ton, D. W. Higinbotham, G. Rosner, and M. Sargsian,
arXiv:1104.1196v3 [nucl-ex] 26 Mar 2012.

[9] J.P. Delaroche, M.S. Islam, and R.W. Finlay, Phys. Rev.
C 33, 1826 (1986).

[10] J.P. Delaroche, Y. Wang, and J. Rapaport, Phys. Rev.
C 39, 391 (1989).

[11] B.H. Wildenthal, Prog. Part. Nucl. Phys. 11, 5 (1984);
B.A. Brown and B.H. Wildenthal, Ann. Rev. Nucl. Part.
Sci. 38, 29 (1988).

[12] E. Caurier and F. Nowacki, Act. Phys. Pol. B30, 705
(1999).

[13] J. Vernotte, G. Berrier-Ronsin, J. Kalifa, R. Tamisier,
and B.H. Wildenthal, Nucl. Phys. A 571, 1 (1994).

[14] J. Vernotte, G. Berrier-Ronsin, S. Fortier, E. Hourani, A.
Khendriche, J.M. Maison, J.-H. Rosier, G. Rotbard, E.
Caurier, and F. Nowacki, Nucl. Phys. A 655, 415 (1999).

[15] C. Mahaux and R. Sartor, Nucl. Phys. A 484, 205 (1988);
J.-P. Jeukenne, C. Mahaux, and R. Sartor, Phys. Rev. C
43, 2211 (1991).

[16] N. Pillet, J.F. Berger, and E. Caurier, Phys. Rev. C 78,
024305 (2008).

[17] N. Pillet, V.G. Zelevinsky, M. Dupuis, J.-F. Berger, and
J.M. Daugas, Phys. Rev. C 85, 044315 (2012).

[18] J.F. Berger, M.Girod, and D. Gogny, Comput. Phys.
Commun. C63, 385 (1991); J. Decharge and D. Gogny,
Phys. Rev. C 21, 1568 (1980).

[19] S.M. El-Kadi, C.E. Nelson, F.O. Purser, R.L. Walter, A.
Beyerle, C.R. Gould, and L.W. Seagondollar, Nucl. Phys.
A 390, 509 (1982).

[20] H.H. Hogue, TUNL computer code EFFIGY, unpub-
lished.

[21] W. Tornow, C.R. Howell, H.G. Pfutzner, M.L. Roberts,
P.D. Felsher, Z.M. Chen, and R.L. Walter, Phys. Rev. C
35, 1578 (1987).

[22] E. Woye and W. Tornow, TUNL computer code JANE,
unpublished.

[23] S. Cierjacks, P. Forti, D. Kopsch, L. Kropp, J. Febe,
and H. Unseld, Kernforschungszentrum Karlsruhe, Re-
port KFK-1000 (1968).

[24] R.W. Finlay, W.P. Abfalterer, G. Fink, E. Montei, T.
Adami, P.W. Lisowski, G.L. Morgan, and R.C. Haight,
Phys. Rev. C 47 237 (1993).

[25] G.A. Petitt, S.G. Buccino, C.E. Hollandsworth, and P.R.
Bevington, Nucl. Phys. A 79, 231 (1966).

[26] W.E. Kinney and F.G. Perey, Report ORNL-4517 (1970).
[27] C.R. Howell, R.S. Pedroni, G.M. Honore, K. Murphy,

R.C. Byrd, G. Tungate, and R.L. Walter, Phys. Rev. C
38, 1552 (1988).

[28] J. Rapaport, J.D. Carlson, D. Bainum, T.S. Cheema, and
R.W. Finlay, Nucl. Phys. A 286, 232 (1977).

[29] A. Virdis, CEA Report No. CEA-R-5144, 1981.
[30] R.P. DeVito, Sam M. Austin, U.E.P. Berg, R. De Leo,

and W.A. Sterrenburg, Phys. Rev. C 28, 2530 (1983).



11

[31] E.L. Hjort, F.P. Brady, J.L. Romero, J.R. Drummond,
D.S. Sorenson, J.H. Osborne, B. McEachern, and L.F.
Hansen, Phys. Rev. C 50, 275 (1994).

[32] W.P. Abfalterer, F.B. Bateman, F.S. Dietrich, R.W. Fin-
lay, R.C. Haight, and G.L. Morgan, Phys. Rev. C 63,
044608 (2001).

[33] B. Holmqvist, T. Wiedling, and M. Salama, Studsvik En-
ergiteknik AB, Report AE-366,6906 (1969).

[34] F.G. Perey and W.E. Kinney, Oak Ridge National Lab-
oratory, Report ORNL-4539 (1970).

[35] J.C. Ferrer, J.D. Carlson, and J. Rapaport, Nucl. Phys.
A 275, 325 (1977).

[36] Y. Yamanouti and S. Tanaka, Nucl. Phys. A 283, 23
(1977).

[37] J.S. Winfield, Sam M. Austin, R.P. DeVito, U.E.P. Berg,
Ziping Chen, and W. Sterrenburg, Phys. Rev. C 33, 1
(1986).

[38] A.J. Koning and J.P. Delaroche, Nucl. Phys. A 713, 231
(2003).

[39] A. Ohrn et al., Phys. Rev. C 77, 024605 (2008).
[40] G. Haouat, Ch. Lagrange, R. de Swiniarski, F.S. Dietrich,

J.P. Delaroche, and Y. Patin, Phys. Rev. C 30, 1795
(1984).

[41] J. Raynal, Notes on ECIS94, CEA Saclay Report No.
CEA-N-2772, 1994.

[42] Zuying Zhou et al., Phys. Rev. C 82, 024601 (2010).
[43] J.P. Delaroche and W. Tornow, Phys. Lett. B 203, 4

(1988); G.J. Weisel et al., Phys. Rev. C 54, 2410 (1996);
M.M. Nagadi et al., Phys. Rev. C 68, 044610 (2003).

[44] C.H. Johnson and C. Mahaux, Phys. Rev. C 38, 2589
(1988).

[45] C. Mahaux and R. Sartor, Nucl. Phys. A 493, 157 (1989).
[46] A.J. Koning, S. Hilaire, and M.C. Duijvestijn, in Proc.

Int. Conf. Nuclear Data for Science and Technology,

Santa Fe, New Mexico, 26 September - 1 October, 2004,
edited by R.C. Haight, M.B. Chadwick, T. Kawano, and
P. Talou.

[47] P. Moldauer, Phys. Rev. C 14, 764 (1976); P. Moldauer,
Nucl. Phys. A 344, 185 (1980).

[48] S.F. Mughabghab, M. Divadeenam, and N.E. Holden,
Neutron Cross Sections, Volume 1 (New York: Academic
Press, 1981).

[49] C.H. Johnson and R.R. Winters, Phys. Rev. C 27, 416
(1983); R.R. Winters, C.H. Johnson, and A.D. MacKel-
lar, Phys. Rev. C 31, 384 (1985); G.H. Rawitscher and
D. Lukaszek, Phys. Rev. C 69, 044608 (2004).

[50] A.D. MacKellar and B. Castel, Phys. Rev. C 29, 1993
(1984); A.D. MacKellar and B. Castel, Phys. Rev. C 28,
441 (1983).

[51] C.H. Johnson, Oak Ridge National Laboratory, 1990, pri-
vate communication.

[52] J.W. Watson, P.J. Pella, M. Ahmad, B.S. Flanders, N.S.
Chant, P.G. Roos, D.W. Devins, and D.F. Friesel, Jour-
nal de Physique, Colloque C4, suppl. 3, 45, C4-01 (1984).

[53] B. Castel, I.P. Johnstone, B.P. Singh, and J.C. Parikh,
Nucl. Phys. A 157, 137 (1970).

[54] F. Pellegrini, I. Filosofo, F. Gentilin, I. Scotoni, and I.
Gabrielli, Nuo. Cim. 65, 297 (1970).

[55] Jenny Lee, M.B. Tsang, and W.G. Lynch, Phys. Rev. C
75, 064320 (2007).

[56] J. Mougey et al., Nucl. Phys. A 173, 337 (1976).
[57] G. Landand et al., Nucl. Phys. A 173, 337 (1971); S.

Kullander et al., Nucl. Phys. A 173, 357 (1971).
[58] P.D. Cottle, Phys. Rev. C 76, 027301 (2007).

[59] H. Tyren, S. Kullander, O. Sunderg, R. Ramachandran,
P. Isaacson, and T. Berggren, Nucl. Phys. A 79, 321
(1966).

[60] S. Frullani and J. Mougey, Adv. Nucl. Phys., 14, 1
(1984).

[61] G. Jacob and Th.A.J. Maris, Rev. Mod. Phys. 45, 6
(1973).

[62] J. Wesseling, C.W. de Jager, L. Lapikas, H. de Vries,
M.N. Harakeh, N. Kalantar-Nayestanaki, L.W. Fagg,
R.A. Lindgren, and D. Van Neck, Nucl. Phys. A 547,
519 (1992).

[63] L. Lapikas, Nucl. Phys. A 553, 297c (1993).
[64] G.J. Kramer, H.P. Blok, and L. Lapikas, Nucl. Phys. A

679, 267 (2001).
[65] J.J. Kelly, Phys. Rev. C 71, 064610 (2005), and refer-

ences therein.
[66] A. Rios, W.H. Dickhoff, and A. Polls, J. Phys.: Conf.

Series 312, 022007 (2011); A. Rios, A. Polls, and W.H.
Dickhoff, Phys. Rev. C 79, 064308 (2009).

[67] R.W. Hasse and P. Schuck, Nucl. Phys. A 438, 157
(1985).

[68] S.J. Waldecker, C. Barbieri, and W.H. Dickhoff, Phys.
Rev. C 84, 034616 (2011).

[69] C. Mahaux and R. Sartor, Nucl. Phys. A 458, 25 (1986).
[70] P. Romain and J.P. Delaroche, in Proceedings of a Spe-

cialists Meeting on Nucleon-Nucleus Optical Model up

to 200 MeV, 13-15 November 1996, Bruyeres le Cha-

tel, France, edited by NEA/OECD. Text available at
http:www.oecd-nea.org/science/om200/romain.pdf.

[71] W.H. Dickhoff, D. Van Neck, S.J. Waldecker, R.J. Char-
ity, and L.G. Sobotka, Phys. Rev. C 82, 054306 (2010).

[72] V. Soma, T. Duguet, and C. Barbieri, Phys. Rev. C 84,
064317 (2011).

[73] Y. Yasuda et al., Phys. Rev. C 81, 044315 (2010).
[74] N.K. Glendenning, Direct Nuclear Reactions (New

York: Academic Press, 1983); P. Fraser, K. Amos, S.
Karataglidis, L. Canton, G. Pisent, and J.P. Svenne, Eur.
Phys. J. A 35, 69 (2008).

[75] Raymond S. Mackintosh, Nucl. Phys. A 164, 398 (1971);
G.H. Rawitscher and G. Delic, Phys. Rev. C 29, 1153
(1984); G. Cattapan, L. Canton, and G. Pisent, Phys.
Rev. C 43, 1395 (1991).



12

TABLE I: The silicon database used to develop the DOM.

Parameter Energy (MeV) Reference

σ(θ) 2.45, 4.0 [25]

5.4, 6.4 [26]

8.0, 9.9, 11.9, 14.0, 16.9 [27]

11.0, 20.0, 21.6, 26.0 [28]

14.8 [29]

15.4, 18.9 Present work

30.3, 40.0 [30]

65.0 [31]

Ay(θ) 9.9, 13.9, 16.9 [27]

15.4, 18.6 Present work

σT 0.5 – 5 [23]

5 – 160 [24]

TABLE II: The sulfur database used to develop the DOM.

Parameter Energy (MeV) Reference

σ(θ) 3.0, 4.0 [33]

5.8, 6.4, 7.6 [34]

8.0, 9.9, 11.9, 13.9, 15.4, 16.9, 18.9 Present work

11.0 [35]

14.8 [29]

20.0, 21.5, 26.0 [28]

21.7 [36]

30.3, 40.0 [37]

Ay(θ) 9.9, 13.9, 15.4, 16.9 Present work

σT 0.5 – 5 [23]

5 – 160 [32]

TABLE III: DOM potential parameters for the two scattering
systems. Energies and potential depths are in MeV. Geome-
tries are in fm.

n + 28Si

vhf1 = 56.0; vhf2 = 0.00910; EF = −12.83

w1 = 14.0; w2 = 70.0; rV = 1.23; aV = 0.690

d1 = 13.6; d2 = 11.1

d3 = 0.0216; rD = 1.29; aD = 0.530

vso1 = 6.00; vso2 = 0.0040; rSO = 1.00; aSO = 0.580

n + 32S

vhf1 = 54.0; vhf2 = 0.00950; EF = −11.84

w1 = 14.0; w2 = 70.0; rV = 1.26; aV = 0.690

d1 = 15.2; d2 = 11.1

d3 = 0.0216, rD = 1.34; aD = 0.530

vso1 = 6.00; vso2 = 0.0040; rSO = 1.00; aSO = 0.580

TABLE IV: Neutron bound-state properties. The middle
columns show DOM predictions of binding energy, Enlj , com-
pared to experimental data [52]. Values for pairs of non-
resolved states are shown with a double arrow linking them.
The right columns show DOM predictions of occupation prob-
abilities, Nnlj , compared to experimental data [53, 54] and
predictions of the USD shell model and the mp-mh CM cal-
culations.

-Enlj (MeV) Nnlj

State DOM Exp DOM Exp USD CM

28Si 1f7/2 2.29 – 0.116 0.010 – 0.055

1d3/2 9.67 – 0.228 0.255 0.168 0.074

2s1/2 11.8 0.283 0.400 0.352 0.166

l 17(3)

1d5/2 14.6 0.713 0.717 0.770 0.885

1p1/2 25.6 0.868 – – 0.932

l 32(6)

1p3/2 32.2 0.893 – – 0.954

1s1/2 51.9 52(15) 0.923 – – 0.970

32S 1f7/2 6.09 – 0.186 – – 0.059

1d3/2 11.4 – 0.378 0.175 0.290 0.109

2s1/2 13.1 – 0.699 0.650 0.709 0.922

1d5/2 16.7 – 0.790 1.000 0.903 0.921

1p1/2 28.8 – 0.883 – – 0.939

1p3/2 35.2 – 0.901 – – 0.968

1s1/2 53.2 – 0.924 – – 0.986



13

TABLE V: Proton bound-state properties. The middle
columns show DOM predictions of Enlj compared to exper-
imental data. The data listed in columns ExpA and ExpB
are, for 28Si, from Refs. [56] and [57, 58], respectively, and,
for 32S, from Refs. [59] and [60], respectively. Values for pairs
of non-resolved states are shown with a double arrow linking
them and those marked with square brackets are considered
tentative. The right columns show DOM predictions of Nnlj

compared to experimental data [53, 56, 62] and predictions of
the USD shell model and the mp-mh CM calculations. The
notation “ub” stands for “unbound.”

-Enlj (MeV) Nnlj

State DOM ExpA ExpB DOM Exp USD CM

28Si 1f7/2 ub – – ub – – 0.054

1d3/2 4.04 – 1.36 0.222 0.247 0.168 0.072

2s1/2 6.12 – 2.75 0.270 0.395 0.352 0.163

1d5/2 8.72 16.1(8) 11.8(1) 0.707 0.703 0.770 0.888

1p1/2 18.9 0.863 – – 0.933

l [32] 27(2)

1p3/2 25.5 0.890 – – 0.955

1s1/2 44.4 [51] 47(4) 0.921 0.900 – 0.970

32S 1f7/2 0.22 – – 0.186 0.014 – 0.057

1d3/2 5.12 – – 0.373 0.150 0.290 0.106

2s1/2 6.76 9(3) 0.704 0.750 0.709 0.924

l 15(2)

1d5/2 10.1 16(3) 0.785 0.983 0.903 0.923

1p1/2 21.4 [26.6] 0.879 – – 0.940

l 44(7)

1p3/2 27.8 [32.2] 0.898 – – 0.969

1s1/2 44.9 – 72(9) 0.923 – – 0.986

TABLE VI: Neutron and proton DOM predictions of rms
radii, Rrms

nlj (fm), and spectroscopic factors, Snlj , for the first
particle and hole states.

Rrms
nlj (fm) Snlj

State neutron proton neutron proton

28Si 2s1/2 3.83 4.01 0.603 0.619

1d5/2 3.43 3.52 0.572 0.571

32S 1d3/2 3.74 3.90 0.550 0.554

2s1/2 3.81 4.01 0.581 0.590



14

0 30 60 90 120 150 180
θ

c.m.
 (deg)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

σ(
θ)

 (
m

b/
sr

)
2.45 MeV

4.0

5.4

6.4

8.0

9.9

11.0

Silicon

(a)
0 30 60 90 120 150 180

θ
c.m.

 (deg)
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

σ(
θ)

 (
m

b/
sr

)

11.9 MeV

14.0

14.8

15.4

16.9

18.9

20.0

Silicon

(b)
0 30 60 90 120 150 180

θ
c.m.

 (deg)
10

-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

σ(
θ)

 (
m

b/
sr

)

65.0

40.0

30.3

26.0

21.7 MeV

Silicon

(c)

FIG. 1: (Color online) Differential cross sections, σ(θ), for silicon. The data of the present work are shown in panels (a), (b),
and (c) as the red solid squares. The predictions are the Koning-Delaroche local OMs (blue-dashed curves) and the current
DOM (red curves). In each panel, the curves and data points at the bottom represent the true values, while the others are
offset by factors of 10, 100, and so on.
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FIG. 2: (Color online) Differential cross sections, σ(θ), for sulfur. The data of the present work are shown in panels (a), (b),
and (c) as the red solid squares. The predictions are the Koning-Delaroche local OMs (blue-dashed curves) and the current
DOM (red curves). In each panel, the curves and data points at the bottom represent the true values, while the others are
offset by factors of 10, 100, and so on.



16

0 30 60 90 120 150 180
θ

c.m.
 (deg)

0

2

4

6

8

A
y(θ

)

18.6

16.9

15.4

13.9

9.9 MeV Silicon

(a)
0 30 60 90 120 150 180

θ
c.m. 

(deg)

0

2

4

6

A
y(θ

)

Sulfur
9.9 MeV

13.9

15.4

16.9

(b)

FIG. 3: (Color online) Analyzing powers, Ay(θ), for silicon (panel (a)) and sulfur (panel (b)). The data of the present work
are shown as the red solid squares. The predictions are the Koning-Delaroche local OMs (blue-dashed curves) and the current
DOMs (red curves). In both panels, the curves and data points at the bottom represent the true values, while the others are
offset by factors of 2, 4, and so on.
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FIG. 4: (Color online) Neutron total cross sections, σT , for silicon (panel (a)) and sulfur (panel (b)). Experimental data are
shown as black dots. The predictions are the Koning-Delaroche local OMs (blue-dashed curves) and the current DOMs (red
curves).
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FIG. 5: (Color online) Calculations of occupation probability for (a) neutron orbitals in 28Si, (b) proton orbitals in 28Si, (c)
neutron orbitals in 32S, and (d) proton orbitals in 32S. In each panel, we compare the predictions of the VHF + ∆VD DOM
(blue downward triangles), the VHF + ∆VV DOM (green upward triangles), the full DOM (red squares), and the mp-mh CM
calculations (black circles). The mp-mh CM results are plotted at single-particle energies that are obtained using mean-field
calculations performed with the Gogny D1S effective force (see text for details).


