
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Alternative characterization of the spherical to axially
deformed shape-phase transition in the interacting boson

model
L. R. Dai, F. Pan, L. Liu, L. X. Wang, and J. P. Draayer

Phys. Rev. C 86, 034316 — Published 13 September 2012
DOI: 10.1103/PhysRevC.86.034316

http://dx.doi.org/10.1103/PhysRevC.86.034316


CS10242

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Alternative characterization of the spherical to axially deformed

shape-phase transition in the interacting boson model

L. R. Dai,1, 2 F. Pan∗,1, 3 L. Liu,1 L. X. Wang,1 and J. P. Draayer3

1Department of Physics, Liaoning Normal University, Dalian 116029, China
2Kavli Institute for Theoretical Physics China, CAS, Beijing 100190, China

3Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001, USA

(Dated: September 3, 2012)

The quantum phase transitional behavior of an alternative characterization of the spherical to
axially deformed shape-phase transition in the interacting boson model is explored. Specifically, the
usual SU(3) quadrupole-quadrupole interaction is replaced by an O(6) cubic interaction, and the
transitional behavior of the low-lying energy levels, eigenstates, isomer shifts, E2 transition rates,
and expectation values of shape variables across the entire transitional region are all examined
within this context. A comparison with outcomes of the usual U(5)-SU(3) transitional description
shows that the spherical to axially deformed shape-phase transition can also be described within
this alternative context, especially near the critical point. However, with the O(6) cubic interaction
the transition is considerably smoother than for the U(5)-SU(3) case, but with the nuclear shape
less well defined, even in the axially deformed limit. It is also shown that the new scheme seems
better than the usual U(5)-SU(3) scheme in describing low-lying spectrum of 152Sm with the X(5)
critical point symmetry.
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I. INTRODUCTION

The nature of quantum shape-phase transitions in finite many-body systems is important in understanding their
dynamical behavior [1–4]. In the interacting boson model (IBM) for nuclei, it is now widely accepted that the three
limiting cases [5–7] of the theory correspond to three different geometric shapes of nuclei, referred to as spherical
(vibrational limit with U(5) symmetry), axially deformed (rotational limit with SU(3) symmetry), and γ-soft (triaxial
with O(6) symmetry), respectively. The full range of the model can be parameterized in terms of the Casten triangle [8].
Interesting phenomena occur when a system falls between two limits of the theory, in which case a quantum phase
transition occurs at a critical point [9–11] where the dominance of one of the symmetries yields to the dominance
of the other. And indeed, the U(5)-SU(3) transitional description for Nd, Sm, Gd, and Dy was first reported in
[12]. Later on, the X(5) symmetry at the critical point of this transition was studied [13], in which Iachello proposed
analytical solutions of a Bohr Hamiltonian in the situation appropriate for the description of nuclei near the critical
point of the spherical to axially deformed shape-phase transition. Casten and Zamfir showed in [14] that 152Sm and
other N = 90 isotones demonstrate these characteristics.

Transitional patterns from the spherical, U(5), to the axially deformed, SU(3), limit of the IBM with a schematic
Hamiltonian were studied in [15–17]; in particular, the transitional behavior of some physically relevant quantities
across the entire span of the U(5)-SU(3) transitional region were explored. In present work, the quantum phase
transitional behavior for an alternative characterization of the spherical to axially deformed shape-phase transition is
analyzed, one where the well-known SU(3) quadrupole-quadrupole interaction in the schematic Hamiltonian of the

U(5)-SU(3) description is replaced by the O(6) [Q̂(0) × Q̂(0) × Q̂(0)]0 cubic interaction, where Q̂µ(0) = s†d̃µ + d†µs
are generators of the O(6) algebra. This idea was first suggested by van Isacker [18] and then further studied by
Thiamova and Cejnar [19]. From these investigations one understands that similar results can be realized when the
quadratic scalar formed with the U(5)-SU(3) quadrupole operator is replaced by the cubic scalar formed with the
quadrupole interaction of the O(6) limit. The purpose of the present study is to investigate transitional patterns in
the latter scheme and to compared them with those of the original U(5)-SU(3) description. In the following, the new
scheme will be called the UQ scheme.

To compare the shape-phase transitional behavior in the UQ scheme with those in the U(5)-SU(3) scheme, we
will study transitional patterns of some physical quantities, such as low-lying energy levels, eigenstates, isomer shifts,
E2 transition rates, and some related quantities across the entire transitional region in both schemes. We will show
that many typical quantities in the new scheme indeed display almost the same transitional patterns as found in the
original U(5)-SU(3) description, especially near the critical point. The analysis further confirms that the O(6) cubic
interaction plays a role similar to that of the SU(3) quadrupole-quadrupole interaction in the entire transitional
region. However, there are still some quite noticeable differences between the two schemes, which will be shown in
Sec. II and III.

II. HAMILTONIAN

It is well known that the consistent-Q Hamiltonian [20] can be used to describe the most general situation in the
IBM, which is given by

ĤQ = c1

[
xn̂d +

x− 1

f1(N)
Q̂(χ) · Q̂(χ)

]
, (1)

where N is the total number of bosons, n̂d is the number operator for counting d-bosons, Q̂µ(χ) = (d†s + s†d̃)(2)µ +

χ(d†d̃)(2)µ , x and χ are control parameters, f1(N) is a linear function of N , and c1 is the scaling factor. Therefore,
three limit situations of the model are given by x = 1 for the U(5), x = 0 and χ = 0 for the O(6), and x = 0 and

χ = −
√
7
2 for the SU(3), respectively. On the other hand, van Isacker showed in [18] that a spectrum generated by

the O(6) [Q̂(0) × Q̂(0) × Q̂(0)]0 cubic interaction, in which Q̂µ(0) = s†d̃µ + d†µs are the O(6) quadrupole operators,

has all the features of a deformed nucleus. As shown in [18], the spectrum generated by [Q̂(0) × Q̂(0) × Q̂(0)]0 is
one of γ vibrations (i.e., quadrupole vibrations around a spheroidal equilibrium shape that break axial symmetry)
with rotational bands built on each vibration, which describes an axially deformed situation despite χ = 0 in this
case, though the phenomenological background is still unclear at the moment. Therefore, instead of the consistent-Q
Hamiltonian (1), one may consider the following alternative Hamiltonian to describe the most general situation in the
IBM:
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ĤA = c2

[
yn̂d +

(y − 1)t

f1(N)
Q̂(0) · Q̂(0) +

(1− y)(1− t)

f2(N)
[Q̂(0)× Q̂(0)× Q̂(0)]0

]
, (2)

where the parameter c2 > 0, y and t are the control parameters of the new scheme with 0 ≤ y, t ≤ 1, and f2(N) is a
quadratic function of N . The linear and quadratic nature of f1(N) and f2(N) with N , respectively, ensures that the
two terms in (1) or three terms in (2) scale with number of bosons N in a similar way. It can be clearly seen that not
only the usual one- and two-body interactions, but also the O(6) three-body term used to describe axially deformed

shape phase are included in (2). In the deformed limit, in addition to the three-body [Q̂(0) × Q̂(0) × Q̂(0)]0 term,
other two-body terms constructed from a linear combination of the O(3) Casimir operator and O(3) scalars of the
O(5) generators may also be included as shown in [19], which are not considered in this work for simplicity because

the three-body [Q̂(0)× Q̂(0)× Q̂(0)]0 term in (2) plays the role similar to the two-body Q̂(−
√
7/2) · Q̂(−

√
7/2) term

in the consistent-Q formalism (1), where Q̂µ(−
√
7/2) = (s†d̃µ + d†µs)−

√
7/2(d†d̃)(2)µ are the SU(3) generators.

Thus, in the U(5)-SU(3) scheme [15], the Hamiltonian is given by

Ĥ1 = c1

[
xn̂d +

(x− 1)

f1(N)
Q̂(−

√
7/2) · Q̂(−

√
7/2)

]
, (3)

which is the special case of the consistent-Q formalism (1) suitable to describe the spherical to axially deformed shape
phase transition. As shown in [13, 15, 21], the critical point xc will be different for different choices of the function
f1(N). In the following, we adopt f1(N) = 4N as used in [13, 15, 21].

Alternatively, in the UQ scheme, which is the special situation in the alternative scheme (2) with t = 0, and also
suitable to describe the same shape phase transition in this region, the Hamiltonian is given by

Ĥ2 = c2

[
yn̂d +

(1 − y)

f2(N)
[Q(0)×Q(0)×Q(0)]0

]
. (4)

In this case we use f2(N) = 0.8N2, which puts the critical point yc of the UQ scheme close to xc of the U(5)-SU(3)
scheme.

In order to diagonalize Hamiltonians (3) and (4), we expand the corresponding eigenstates in terms of the
U(6) ⊃ SU(3) ⊃ SO(3) basis vectors |N(λµ)KL〉 as

|NLξ〉 =
∑

(λµ)K

C
Lξ

(λµ)K |N(λµ)KL〉, (5)

where ξ is used to denote the ξ-th level with angular momentum quantum number L, and the C
Lξ

(λµ)K are expansion

coefficients. Since the total number of bosons N is fixed for a given nucleus, the eigenstates given in (5) will also
be denoted as |Lξ; z〉 with z = x for the U(5)-SU(3) scheme or z = y for the UQ scheme in the following, where
the value of the control parameter z is explicitly shown. In our calculations, the orthonormalization process [22, 23]
with respect to the additional quantum number K needed to label the basis vectors of SU(3) ⊃ SO(3) and the
phase convention for the U(6) ⊃ SU(3) basis vectors proposed in [24] are adopted. By using analytic expressions
for U(6) ⊃ SU(3) reduced matrix elements of the d-boson creation or annihilation operator [24] and an algorithm
[22, 23] for generating the SU(3) ⊃ SO(3) Wigner coefficients, the eigenequation that simultaneously determines the

eigenenergy and the corresponding set of the expansion coefficients C
Lξ

(λµ)K can be established, with results that can

then be used to calculate physical quantities in both schemes.

III. RESULTS AND DISCUSSIONS

In order to investigate the shape-phase transitional behavior of both schemes, we fixed the total number of bosons
at N = 10 if not specified and allowed the control parameter x or y to vary in the closed interval x ∈ [0, 1] or y ∈ [0, 1].
In the following, we present the calculated results in both U(5)-SU(3) and UQ schemes, including some low-lying
energy levels and ratios, the SU(3) amplitudes in the ground state and overlap of the ground state and typical overlap
of two excited states, the isomer shifts, E2 transition rates, expectation values of the shape variables, and some other
relevant quantities.
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FIG. 1: (Color online) Some low-lying energy levels as function of the control parameter x for the U(5)-SU(3) scheme and y
for the UQ scheme.

A. Energy levels

In Fig. 1, some low-lying energy levels as functions of the control parameter in both the U(5)-SU(3) and UQ
schemes are shown. One can see that there is a minimum in the excitation energy both in the U(5)-SU(3) scheme
and in the UQ scheme except 2+1 and 4+1 levels. In the U(5)-SU(3) scheme the minimum is around x ∼ 0.41− 0.47,
while in the UQ scheme it is around y ∼ 0.41 − 0.48. The minimum in both schemes is all within the spherical to
axially deformed shape coexistence region referred to as the critical region. It can also be seen that the minima in
different excited levels are not exactly at the same point in the U(5)-SU(3) and UQ schemes, but all fall within the
corresponding critical region of the spherical to axially deformed shape-phase transition. Most importantly, the energy
valley formed on the critical point in the UQ scheme is shallower than that in the U(5)-SU(3) scheme, especially in
higher excited levels, as shown in Fig. 1. Though our calculation was carried out for a single finite N case only, one can
deduce from the results that the quantum phase transition in the UQ scheme is smoothened due to the replacement
of the SU(3) quadrupole-quadrupole interaction by the O(6) cubic interaction, and as shown below, this smoothened
transitional behavior in the UQ scheme also emerges in other quantities.

B. Energy ratios

Two energy ratios, R02 = E0+
2

/E2+
1

and R42 = E4+
1

/E2+
1

for both the U(5)-SU(3) and the UQ schemes are shown

in Fig. 2. With N = 10 shown by the solid line in Fig. 2 for example, the ratio R02 in the U(5)-SU(3) scheme drops
precipitously from the rotational limit R02 ∼ 25 to the vibrational value with R02 ∼ 2 near the critical point, while
the ratio R02 in the UQ scheme gradually drops from the rotational limit with R02 ∼ 18 to the vibrational value
with R02 ∼ 2. The vibrational value, R02 ∼ 2, remains unchanged when x or y is greater than the corresponding
critical point value. The ratio R42 in both the U(5)-SU(3) and the UQ schemes drops dramatically across the critical
region from the rotational limit R42 ∼ 3.3 to the vibrational limit R42 = 2, with the sharpest change around the
critical point with xc ∼ 0.47 in the U(5)-SU(3) scheme or yc ∼ 0.48 in the UQ scheme. Most noticeably, all the ratios
keep to be constant when x ≥ xc in the U(5)-SU(3) scheme or y ≥ yc in the UQ scheme, which confirms that the
quasidynamical U(5) symmetry introduced in [25, 26] emerges in this case.

C. Eigenstates

To show how the transition occurs in the ground state for the U(5)-SU(3) and UQ schemes, the amplitudes
|C(λ,µ)|2 for each are plotted as functions of the control parameter x and y in Fig. 3, which indicate that the most
rapid change in these amplitudes also occurs within the critical region. Differences in the changes of the amplitudes
|C(λ,µ)|2 with a variation of the control parameter x or y in the two schemes are noticeable. Specifically, with
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FIG. 2: Energy ratios R02 and R42 as functions of the control parameter x for the U(5)-SU(3) scheme and y for the UQ scheme,
where the dash-dotted line, solid line, and dashed line show the results of N = 8, 10, 12, respectively.

increasing value of the control parameter, the |C(2N,0)|2 component decreases more drastically in the U(5)-SU(3)

scheme than for the UQ scheme; the |C(2N−6,0)|2 component is less important in the U(5)-SU(3) scheme, while it
becomes non-negligible when y < yc with a sharp change near the critical point in the UQ scheme.

Next, in order to show how the position of the critical point changes with different choices for the function f1(N)
in the U(5)-SU(3) scheme and f2(N) in the UQ scheme, overlaps |〈0+g ; z|0+g ; z0〉| with z0 = 0 or 1 in the two schemes
were calculated. In the upper panel of Fig. 4, the overlaps for different choices of f1(N) with f1(N) = 0.5N, 2N, 4N ,
and 8N , respectively, are shown. It can be clearly seen that the position of the critical (crossing) point changes
with different choices of the function f1(N). The larger the f1(N) value, the smaller the critical point xc. Similar
behavior also emerges in the UQ scheme as shown in the lower panel of Fig. 4 where the overlaps with f2(N) =
0.1N2, 0.5N2, 0.8N2, and 2N2, respectively, are plotted.

It should also be pointed out that the critical point may differ from one excited state to the other for the same
choice of f1(N) or f2(N) in the two schemes. Our results show that the positions of the critical point in 0+g , 2

+
1 , and

4+1 states are almost the same, but they are somewhat different in 2+3 and 3+1 states in the two schemes.
It should also be noted that curves of the overlaps |〈L+

ξ ; z|L+
ξ ; z0〉| with z0 = 0 or 1 even become irregular in the

0+2 , 2
+
2 , 4

+
2 , and 0+3 states in both schemes. Typical examples of these curves for higher excited states are shown in

Fig. 5, which indicate that not only the positions of the critical point in higher excited states may be quite different
from that in the ground state, but also the first derivative of |〈L+

ξ ; z|L+
ξ ; z0〉| with z0 = 0 or 1 may be discontinuous.

For example, the first derivative of |〈L+
ξ ;x|L+

ξ ;x0〉| with x0 = 0 or 1 is discontinuous at x ∼ 0.35 or x ∼ 0.4 in the

U(5)-SU(3) scheme, while |〈L+
ξ ; y|L+

ξ ; y0〉| with y0 = 0 or 1 is discontinuous at y ∼ 0.38 or y ∼ 0.3 in the UQ scheme.
The emerging irregularity manifests that the critical points of the shape phase transition in higher excited states are
different from that in the ground state, which is mainly due to the level crossing-repulsion transition occurring in
these excited states as discussed in [27]. This behavior also emerges in other quantities, such as E2 transition rates
since the critical behavior of the initial or final states may be quite different from that of the ground state.

D. The isomer shift

Another quantity that is sensitive to the transition is the isomer shift defined by

δ〈r2〉 = α0(〈2+1 ; z|n̂d|2+1 ; z〉 − 〈0+g ; z|n̂d|0+g ; z〉), (6)
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FIG. 3: (Color online) Amplitudes |C(λ,µ)|
2 in the ground state as function of the control parameter x for the U(5)-SU(3) case

and y for the UQ scheme.

where α0 is a constant. For the U(5)-SU(3) or the UQ schemes, the isomer shift as a function of transitional parameter
z = x or z = y is shown in Fig. 6. In the U(5)-SU(3) scheme, the isomer shift ascends from 0.05 to 1.16. The largest
absolute value of the derivative occurs around the critical point xc ∼ 0.47. There is a peak in the isomer shift at
x ∼ 0.54 in the U(5)-SU(3) scheme. Similar behavior also emerges in the UQ scheme. The isomer shift ascends rather
precipitously from 0.09 to 1.28, the largest absolute value of the derivative of the isomer shift with respect to y also
occurs around the critical point of yc ∼ 0.48. There is also a peak at y ∼ 0.52 in the UQ scheme.
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FIG. 6: The isomer shift δ(r2)/α0 as a function of the control parameter x in the U(5)-SU(3) scheme or y in the UQ scheme.

E. Some B(E2) transitions

Another quantity that acts as a sensitive signature of the structure is B(E2) transition. The E2 operator in the
U(5)-SU(3) scheme is chosen the same as that used in [15] with

Tµ(E2) = q2Q̂µ(−
√
7/2), (7)

where Q̂µ(−
√
7/2) = (s†d̃µ + d†µs) −

√
7/2(d†d̃)(2)µ are the SU(3) generators, and q2 is the effective charge. While in

the UQ scheme, the E2 operator is chosen as

Tµ(E2) = q2Q̂µ(0), (8)
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2
2 , curve b B(E2; 2+3 → 2+1 )/q

2
2 , and curve c B(E2; 2+3 → 0+2 )/q

2
2 .

where Q̂µ(0) = s†d̃µ + d†µs are the O(6) quadrupole operators.
Various B(E2) values and ratios among the low-lying levels were studied in both schemes. Some B(E2) values

and ratios were found to be sensitive to the shape-phase transition. Three of these B(E2) values are shown in Fig. 7.
There is a small peak around x ∼ 0.45 in the B(E2; 2+3 → 0+g ) and the B(E2; 2+3 → 2+1 ) values in the U(5)-SU(3)

scheme, and there is a small peak around y ∼ 0.43 in the B(E2; 2+3 → 0+g ) and around y ∼ 0.47 in the B(E2; 2+3 → 2+1 )
of the UQ scheme. There is a saddle point around x ∼ 0.42 in the U(5)-SU(3) scheme, and around y ∼ 0.43 in the UQ
scheme, respectively, in B(E2; 2+3 → 0+2 ). The peaks and saddle points in the B(E2) values in both the U(5)-SU(3)
and the UQ schemes are different from the critical point of the ground state. Fig. 8 shows six B(E2) ratios for both
the U(5)-SU(3) and the UQ schemes. And one can see that these ratios all undergo noticeable changes within the

coexistence region. The most distinctive signature is shown by the
B(E2;2+

3
→0+

1
)

B(E2;2+
3
→0+

2
)
curve d which has a giant peak around

x ∼ 0.4 in the U(5)-SU(3) scheme and y ∼ 0.42 in the UQ scheme. This is mainly due to the near vanishing of the
denominator B(E2; 2+3 → 0+2 ) factor as shown by curves c in in Fig. 7. However, the peaks in the B(E2; 2+3 → 0+g )

and B(E2; 2+3 → 2+1 ) are not so sharp, with a larger width in the UQ scheme than in the U(5)-SU(3) scheme; and an
increase in the B(E2; 2+3 → 0+2 ) with increasing z when z ≥ zc is moderate in the UQ scheme, which indicates that
the phase transition in the UQ scheme is smoother than for that of the U(5)-SU(3) scheme.

F. Nuclear shapes

It is well known that the Bohr variables (β, γ) are used to describe nuclear shape in the collective model. Though
(β, γ) are not observable, theoretically, they can be used to estimate what nuclear shape looks like. The one-to-one
relationship between the shape variables (β, γ) of the collective model and the SU(3) irrep (λ, µ) in algebraic models
was established in [28], which is used in this work to elucidate nuclear shape evolution during the transition [15]. In
the SU(3) algebraic approach, the Bohr variables β and γ can be expressed in terms of the second and third order
Casimir operators of SU(3) by

β̂ = β0

√
Ĉ2(SU(3)) + 3 (9)
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FIG. 8: Some B(E2) ratios as functions of the control parameter x in the U(5)-SU(3) scheme or y in the UQ scheme, where

curves a, b, c, d, e, and f represent
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→2+
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)
, and
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1
)
,

respectively.



11

with

β0 =

√
4π

5Ar20
, (10)

where A is the number of like particles and r20 is a dimensionless mean square radius [28], and

γ̂ = tan−1(

√
3(µ̂+ 1)

2λ̂+ µ̂+ 3
), (11)

where λ̂ and µ̂ should be regarded as operators that take on the λ and µ values, respectively, when they act on the
basis vector of SU(3).

We then calculated the expectation value of β̂ and γ̂ in the ground state and the corresponding root mean square
deviations defined by

β̄ =< 0+g ; z|β̂|0+g ; z >, (12)

±∆(β) = ±
√
< 0+g ; z|(β̂ − β̄)2|0+g ; z >, (13)

γ̄ =< 0+g ; z|γ̂|0+g ; z >, (14)

±∆(γ) = ±
√
< 0+g ; z|(γ̂ − γ̄)2|0+g ; z >, (15)

with z = x in the U(5)-SU(3) scheme or z = y in the UQ scheme. The expectation values β̄/β0 and γ̄ of the ground
state, and the corresponding root-mean-square deviations ∆(β)/β0 and ∆(γ) for the both schemes were calculated.
The uncertainty in the shape variables as a function of the control parameter z can be seen in the results shown in
Table I, Table II, and Fig. 9. In the U(5)-SU(3) scheme, it is obvious that ∆(β) and ∆(γ) are zero in the rotational
limit (x = 0) that corresponds to a definite shape. In comparison to the U(5)-SU(3) scheme, one can see that ∆(β)
and ∆(γ) in the UQ scheme are nonzero when y = 0, which should correspond to a superposition of different ellipsoid
shapes. Thus, the shape is less well defined as x or y moves away from 0 either in the U(5)-SU(3) scheme or in the
UQ scheme. The values of ∆(β) and ∆(γ) are all not small in the vibrational limit (x = 1 or y = 1) in the two
schemes due to the quadrupole vibration being non-negligible. The fluctuations in γ remain fairly large and constant
after the critical point in the both schemes may be explained in the following way: When the system is spherical, all γ
values are possible in the sense that the corresponding periodic wave function in γ is not concentrated around a small
interval but covers the full wedge, which means that the fluctuations will be rather large because of γ-instability. As
can be seen from Fig. 9, there are also obvious changes in β̄ and γ̄ in the critical region around xc = 0.47 in the
U(5)-SU(3) scheme or yc = 0.48 in the UQ scheme. Over the whole range, the magnitude of the change in γ̄ is small.
From Table I and Table II, it can be seen that ∆(β) reaches the maximum value at x = 0.5 in the U(5)-SU(3) scheme
or y = 0.45 in the UQ scheme, in which the critical point value deviates only slightly from the critical point xc ∼ 0.47
or yc ∼ 0.48 in the ground state, but is still near the corresponding critical point. This distinctive signature shows
that nucleus is the softest in the critical region. This fact can help us to understand why there is a saddle region in
most excited levels shown in Fig. 1. As a consequence, a nucleus that lies near the critical point can be easily excited,
which results in relatively smaller energy gaps in this soft critical region. The results also indicate that both the
U(5)-SU(3) and the UQ schemes can be used to describe nuclei within the spherical to axially deformed transitional
region, with results near the critical point that are quite similar.

G. E2 transitions in the deformed limit

Besides the transition from the spherical to the deformed shape phase in the UQ scheme is considerably smoother
than that in the U(5)-SU(3) scheme, there are some notable differences between the spectrum in the UQ scheme and
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TABLE I: Expectation values β̄/β0 and γ̄ of the ground state, and the corresponding root-mean-square deviations ∆(β)/β0

and ∆(γ) for some specific values of the control parameter x in the U(5)-SU(3) scheme (left) and y in the UQ scheme (right).

∆(γ) γ̄ ∆(β)/β0 β̄/β0 x(y) β̄/β0 ∆(β)/β0 γ̄ ∆(γ)

0.000 0.040 0.003 21.517 0.0 20.382 2.158 0.060 0.046

0.012 0.042 0.357 21.473 0.1 20.074 2.321 0.067 0.049

0.029 0.049 0.835 21.273 0.2 19.574 2.584 0.077 0.054

0.054 0.068 1.527 20.711 0.3 19.671 3.053 0.096 0.067

0.110 0.123 2.726 19.070 0.4 16.410 4.126 0.151 0.124

0.208 0.283 3.873 14.787 0.5 12.124 4.384 0.298 0.214

0.230 0.390 3.503 12.040 0.6 10.408 3.636 0.381 0.232

0.234 0.428 3.239 10.952 0.7 9.939 3.279 0.417 0.235

0.235 0.445 3.100 10.373 0.8 9.789 3.107 0.437 0.236

0.236 0.454 3.012 10.005 0.9 9.744 3.012 0.450 0.237

0.237 0.460 2.953 9.74 1.0 9.747 2.953 0.460 0.237
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FIG. 9: The ground state expectation values of Bohr variables β̄/β0 and γ̄ and the corresponding root mean square deviations
∆β̄/β0 and ∆γ̄, where the full line indicates the expectation value β̄/β0 or γ̄ , while the dotted lines show the corresponding
root mean square deviations ±∆β̄/β0 or ±∆γ̄. The left (right) panel shows results of the U(5)-SU(3) (UQ) scheme.

that in the U(5)-SU(3) scheme in the deformed limit as shown in [18]. Specifically, in the U(5)-SU(3) scheme with
x = 0, the β and γ bands belong to the same SU(3) representation, are degenerate in energy, and are connected by
strong E2 transitions, while in the UQ scheme, in contrast, the “β” and γ band belong to different O(6) representations.
Thus, E2 transition from the β to the γ band or vice versa in the UQ scheme with y = 0 is forbidden. In addition
to the different E2 selection rules between the β and γ band already shown in [18], we also calculated inter-band
transitions from β or γ band to the ground band for both schemes with N = 10. Some low-lying states in the ground,
the β, and γ bands in the two schemes, together with intra-band transitions and inter-band transitions from the β
or γ band to the ground band, are shown in Fig. 10. It is shown in Fig. 10 that the corresponding intra-band E2
transition rates of the two schemes are almost the same. Since the E2 operator is chosen as the SU(3) generators
according to (7) in the U(5)-SU(3) scheme, the inter-band transitions from the β or γ band to the ground band is
forbidden, while they are allowed in the UQ scheme, though these inter-band E2 transition rates are considerably
smaller than those of the intra-bands.
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FIG. 10: Some Low-lying inter-band and intra-band E2 transitions in the U(5)-SU(3) scheme with x = 0 and in the UQ scheme
with y = 0, where the effective charge is normalized with B(E2, 2+1 → 0+1 ) = 100. The inter-band transitions between β and γ
band discussed in [18] are not shown.

H. Low-lying spectrum of 152Sm

In order to demonstrate that the UQ scheme indeed serves as an alternative description of the spherical to axially
deformed phase transition, in this subsection, the possible X(5) critical point symmetry candidate 152Sm is taken as
an example to be described by the UQ scheme, of which the results are compared with the experimental data and
those obtained from the U(5)-SU(3) scheme. In Table II, the experimental data [29, 31, 32] and the calculated results
from both the U(5)-SU(3) and the UQ scheme, which include low-lying excitation energies E(L+) (in keV) normalized
to the 2+1 state, quadrupole moment Q (in eb) of the 2+1 state and B(E2) values (in W.u.) normalized to the 2+1 → 0+1

transition, and the corresponding mean-square deviation σ(E) (in keV) defined by σ(E) =
√∑N

i |Ei
exp − Ei

th|2/N

for excitation energies or σ(BE2) (in W.u) by σ(BE2) =
√∑N

i |BE(2)iexp −BE(2)ith|2/N for B(E2) values, where

N is the total number of excitation energies in σ(E) (or transitions in σ(BE2)) fitted. B(E2) results calculated from
other models, such as X(5) model [13], the (Bohr) collective model [30], and X∗(5) model [31], are also shown. It
shows from Table II that the overall fitting quality of the UQ scheme for both the excitation energies and the BE(2)
values is better than that of the U(5)-SU(3) scheme. As far as E2 transition rates are concerned, the modified X∗(5)
model [31] seems better.

Fig. 11 shows some typical B(E2) values calculated from the U(5)-SU(3) and the UQ schemes and the corre-
sponding experimental results of 152Sm, where (a), (b), (c), and (d) represent B(E2; 4+1 → 2+1 ), B(E2; 0+2 → 2+1 ),
B(E2; 4+2 → 6+1 ), and B(E2; 2+3 → 4+1 ), respectively. It is clearly shown in Fig. 11 that the transition rate within the
ground band, B(E2; 4+1 → 2+1 ), calculated from the both schemes is almost the same, while the inter band transitions
between the β or γ band and the ground band calculated from the two schemes are quite different, in which the three
transition rates, B(E2; 0+2 → 2+1 ), B(E2; 4+2 → 6+1 ), and B(E2; 2+3 → 4+1 ), calculated from the U(5)-SU(3) scheme
are too large in comparison to the corresponding experimental results. The results show that the UQ scheme is better
than the U(5)-SU(3) scheme in fitting both the inter-band and the intra-band E2 transitions.
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TABLE II: The experimental data (Exp.) [29, 31, 32] and calculated results from both the U(5)-SU(3) and the UQ schemes for
152Sm, including low-lying excitation energies E(L+) (in keV) normalized to the 2+1 state, quadrupole moment Q(2+1 ) (in eb)
and B(E2) values (in W.u.) normalized to the 2+1 → 0+1 transition, and B(E2) values calculated from the X(5) [13], Bohr [30],
and X∗(5) [31]. The corresponding mean-square deviations are also provided. “-” denotes the corresponding value was not
calculated previously, which is not included in the corresponding mean-square deviation σ(BE2).

E(L+) 2+1 4+1 6+1 8+1 10+1 0+2
Exp. 122 366 707 1125 1609 685

U(5)-SU(3) 122 316 575 893 1267 379

UQ 122 340 645 1020 1445 369

2+2 4+2 6+2 8+2 2+3 3+1
Exp. 810 1023 1311 1666 1086 1234

U(5)-SU(3) 580 857 1179 1549 739 898

UQ 676 1011 1374 1758 931 1076

4+3 5+1 6+3 7+1 σ(E) Q(2+1 )

Exp. 1372 1560 1728 1946 -1.702

U(5)-SU(3) 1062 1203 1416 1556 255 -1.680

UQ 1224 1354 1568 1686 149 -1.713

L+
i → L+

f B(E2)

Exp. U(5)-SU(3) UQ X(5) Bohr X∗(5)

2+1 → 0+1 144 144 144 144 144 144

4+1 → 2+1 209 235.64 225.57 230.40 230 216

6+1 → 4+1 245 273.93 254.49 285.12 285 249.12

8+1 → 6+1 285 287.78 264.04 328.32 328 267.84

10+1 → 8+1 320 284.33 261.21 361.44 361 279.36

2+2 → 0+2 111 92.91 73.80 115.2 114 109.44

4+2 → 2+2 204 147.18 122.85 172.8 173 161.28

0+2 → 2+1 32.7 128.99 66.53 90.72 83 36

2+2 → 0+1 0.92 0.36 0.46 3.02 3 0.004

2+2 → 2+1 3 24.23 11.86 11.95 11 2.02

2+2 → 4+1 19 31.35 14.69 53.28 49 20.74

4+2 → 2+1 1.20 0 0.038 1.44 1 1

4+2 → 4+1 5 16.07 13.80 9.07 8 0.86

4+2 → 6+1 4 20.41 5.61 40.32 37 12.82

2+3 → 0+1 3.62 3.13 15.32 14.69 - 8.93

2+3 → 2+1 9.30 2.98 18.33 22.32 - 13.39

2+3 → 4+1 0.78 14.60 5.88 1.17 - 0.66

4+3 → 6+1 1.20 11.52 10.60 - - -

4+3 → 2+1 0.59 0.85 5.78 9.79 - 5.62

4+3 → 4+1 5.50 1.95 15.24 31.25 - 17.42

4+3 → 2+2 0.18 1.35 2.39 1.20 - 0.29

4+3 → 2+3 50 85.12 70.51 95.04 - 89.28

σ(BE2) 28.79 25.62 27.33 28.21 16.48

IV. CONCLUSION

The quantum phase transitional behavior of a new scheme for the description of the spherical to axially deformed
shape-phase transition in the interacting boson model has been analyzed, where the SU(3) quadrupole-quadrupole
interaction is replaced by the O(6) cubic interaction. In order to compare the quantum phase transitional behavior of
the new scheme with that of the U(5)-SU(3) transitional description, the low-lying energy levels, eigenstates, ampli-
tudes |C(λ,µ)|2 in the ground state and overlap of the ground state, overlaps of two typical excited states, the isomer
shifts, E2 transition rates, and expectation values of the ground state shape variables across the entire transitional
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FIG. 11: B(E2) values calculated from the U(5)-SU(3) and the UQ schemes and the corresponding experimental data of 152Sm,
where (a), (b), (c), and (d) represent B(E2; 4+1 → 2+1 ), B(E2; 0+2 → 2+1 ), B(E2; 4+2 → 6+1 ), and B(E2; 2+3 → 4+1 ), respectively.

region as functions of the control parameter for a finite N case has been analyzed. Although the transitional behavior
of the two schemes was found to be quite similar, there are some quite distinctive differences for some quantities across
the entire transitional region, such as energy levels and ratios, eigenstates, B(E2) values and ratios, and expectation
values of the shape variables. Generally speaking, the transition is smoother in the new scheme with a replacement
of the SU(3) quadrupole-quadrupole interaction by the O(6) cubic interaction, a results that a similar analysis in the
large-N limit is expected to confirm.

In addition, we found that, in contrast to the situation in the U(5)-SU(3) description, the nuclear shape in
the new scheme is less well defined even in the “axially deformed” limit. As widely accepted, nuclei in the axially
deformed limit should be quite rigid. But nuclei described in the new scheme are not so rigid with non-negligible
∆(β) and ∆(γ) even in the “axially deformed” limit. This is due in the main to the replacement of the SU(3)
quadrupole-quadrupole interaction by the O(6) cubic interaction. As is well known, the O(6) symmetry is suitable
to describe γ-unstable motion, which may come into play when the O(6) cubic interaction is adopted, though the
fluctuation ∆(γ) is small in this case. With increasing value of the control parameter, namely near the critical point
of the spherical to axially deformed shape-phase transition, the transitional behavior of the two schemes seems quite
similar, though the transition is smoother in the new scheme. And indeed, as shown in the application of the two
schemes to the critical point symmetry candidate, 152Sm, together with our recent application of the new scheme in
a description of the 150Nd and 154Gd nuclei, which are all near the X(5) critical point [33], there is little difference
in excitation energies for the two schemes, but the overall fitting quality of the UQ scheme is better than that of the
U(5)-SU(3) scheme, especially for the inter-band E2 transitions in 152Sm. As has been stated in [18], whether the
cubic interaction in place of the usual quadrupole-quadrupole interaction is required in the deformed limit is not clear
at the moment since comprehensive phenomenological studies of this question are lacking. Nevertheless, the spectrum
generated by the cubic interaction has many of the properties that are typical of deformed nuclei. More importantly,
as shown in this work, the overall fitting quality of the new scheme is better than that of the usual U(5) − SU(3)
scheme when they are applied to describe nuclei near the critical point.
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