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Introduction – The oscillator basis is widely used in nu-
clear structure computations because it allows the prac-
titioner to exploit and implement all symmetries of the
nuclear many-body problem, and because its localized
nature corresponds well to the structure of the self-bound
atomic nucleus. After all, the nuclear shell model is based
on the harmonic oscillator with a strong spin-orbit split-
ting [1]. Several computational implementations of ab
initio methods [2, 3] and nuclear density functional the-
ory [4] essentially start from the oscillator basis. Ba-
sic observables sought in such computations include the
binding energies and radii. Ideally, the computed ob-
servables should be independent of the parameters of the
employed oscillator space, i.e., the maximum number of
oscillator quanta N and the frequency Ω of the oscillator
wave functions. This ideal is often difficult to reach in
practice, so various empirical extrapolation schemes [5–9]
have been applied, but all lack a firm theoretical founda-
tion.

The proper accounting for corrections to nuclear ener-
gies and radii that arise in finite oscillator spaces is an
important problem for several reasons. First, a theoreti-
cal foundation of such corrections would enable the prac-
titioner to extrapolate reliably from smaller model spaces
and thus extend the reach of some computational meth-
ods. This is particularly important for weakly bound
nuclei where the Gaussian falloff of the oscillator ba-
sis can capture a halo state often only in unachievable
large model spaces [6]. Second, uncertainty quantifica-
tion of results – standard in experimental research – is
increasingly taking place in nuclear structure theory [10].
Here, the quantification of theoretical uncertainties due
to the nuclear interaction is possible for interactions from
effective field theory (EFT), but the robust quantifica-
tion of errors due to finite oscillator spaces is lacking.
Finally, important steps towards an harmonic-oscillator
based EFT for the nuclear shell model have been made
recently [11–13]. Such a theory should also control and
exploit the limitations of the finite model space.

In this Rapid Communication, we derive corrections of
nuclear energies and radii that are due to finite oscillator
spaces. We build on the insights of Coon et al. [11], who
focus on the infrared and ultraviolet cutoffs induced by
a truncated basis. Our derivations are based on simple
arguments and verified in a one-dimensional model. We
apply the results to 16O and demonstrate that the the-

oretical corrections agree well with the numerical data.
Calculations for the 6He ground-state energy and neu-
tron radius show that predictions are feasible even for
halo nuclei.
Theoretical derivation – For a particle in a box with

periodic boundary conditions, Lüscher derived the cor-
rections to bound states due to the finite size of the
box [14]. Our derivation is analogous, except that the
size of the box is now given in terms of the spatial exten-
sion of the oscillator basis and we deal essentially with
Dirichlet boundary conditions. Let us consider a model
space of oscillator wave functions with maximum oscil-
lator energy E = ~Ω(N + 3/2). In practice, one has to
choose ~Ω and N such that the momentum cutoff λ of
the employed interaction is smaller than the ultraviolet
(UV) momentum

ΛUV ≡
√

2(N + 3/2)~/b , (1)

and that the radius r of the nucleus is smaller than the
radial extent

L0 ≡
√

2(N + 3/2)b (2)

of the employed oscillator space. Here, b ≡
√
~/(mΩ)

is the oscillator length of our basis, and m denotes the
nucleon mass. The definitions (1) and (2) are indeed the
maximum momentum and displacement, respectively, of
a particle in a harmonic oscillator at energy E = ~Ω(N+
3/2). They differ from previous scaling relations [15, 16]

by factors of
√

2.
In practice, satisfying the UV condition λ < ΛUV and

the infrared (IR) condition r < L0 does not guarantee
converged nuclear structure results in the oscillator ba-
sis because the momentum cutoff λ is usually not sharp,
and the nuclear wave function extends beyond the nuclear
radius r. However, nuclear interactions from chiral EFT
and from renormalization group transformations exhibit
a super-Gaussian falloff in momentum space, whereas the
nuclear wave function only falls off exponentially in co-
ordinate space. Thus, once λ < ΛUV holds, the UV
convergence in momentum space will be rapid, and one
is dominated by corrections from the slower falloff in co-
ordinate space. Practitioners of nuclear structure com-
putations know this very well (see, e.g., Fig. 6 below):
When energies are plotted as a function of ~Ω, the min-
imum initially shifts toward larger values of ~Ω as N
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is increased. However, once UV convergence has been
reached, further increasing N shifts the minimum back
to lower values of ~Ω to capture the coordinate-space tail
of the wave function. In what follows, we will assume UV
convergence and compute the correction from incomplete
IR convergence.

The finite extent of the oscillator basis up to a radius L
in coordinate space essentially requires the wave function
to vanish at r ≈ L. The maximum radius L0 from Eq. (2)
is only a leading-order (or asymptotically valid) estimate
because the oscillator wave function decays rapidly be-
yond the classical turning point. An improved estimate
for L using the intercept of the tangent at r = L0 is [17]

L ≈ L0 + 0.54437 b (L0/b)
−1/3 , (3)

which we use with the analogous expression for ΛUV in
numerical examples below. For our derivation of IR cor-
rections, we adapt the discussion in Ref. [18]. Given a
boundary condition at r = L beyond the range of the
nuclear potential, we write the energy compared to that
for L =∞ as

EL = E∞ + ∆EL , (4)

and we seek an estimate for ∆EL, which is assumed to
be small.

Let uE(r) be the radial solution with regular boundary
condition at the origin and energy E. We denote the par-
ticular solutions uEL(r) ≡ uL(r) and uE∞(r) ≡ u∞(r).
Then the linear energy approximation is (for r ≤ L) [18]

uL(r) ≈ u∞(r) + ∆EL
duE(r)

dE

∣∣∣∣
E∞

, (5)

assuming a smooth expansion of uE about E = E∞ at
fixed r. Evaluating Eq. (5) at r = L with the boundary
condition uL(L) = 0, we find

∆EL ≈ −u∞(L)

(
duE(L)

dE

∣∣∣∣
E∞

)−1

, (6)

which is the estimate we seek. For general E, the asymp-
totic form of the radial wave function for r greater than
the range R of the potential is

uE(r)
r�R−→ AE(e−kEr + αEe

+kEr) , (7)

with the known case u∞(r)
r�R−→ A∞e

−k∞r for E = E∞.
Here, k∞ is determined by the nucleon separation energy

S =
~2k2
∞

2m
. (8)

We take the derivative of Eq. (7) with respect to energy,
evaluate at E = E∞ using αE∞ = 0 and dkE/dE =
−m/(~2kE) to find

duE(r)

dE

∣∣∣∣
E∞

= +A∞
dαE
dE

∣∣∣∣
E∞

e+k∞r +O
(
e−k∞r

)
. (9)

Substituting Eq. (9) at r = L into Eq. (6), we obtain

∆EL ≈ −

[
dαE
dE

∣∣∣∣
E∞

]−1

e−2k∞L +O(e−4k∞L) .(10)

The prefactor in the square brackets depends on details of
the interaction (but not on L), and will be fit to numerical
data when Eq. (10) is used together with Eq. (4). Thus,
the main result is

EL = E∞ + a0e
−2k∞L , (11)

and in practical applications one can treat E∞, a0 and
k∞ (in cases where the separation energy is not known)
as fit parameters. Note that our result (11) explains the
exponential decay observed empirically in Ref. [11]. In
contrast to the Lüscher result in which the energy is al-
ways lowered by periodic images of the potential [14],
the energy from Eq. (11) is always increased by the shift
of a node from r = ∞ to r = L, consistent with the
variational nature of the truncated basis expansion.

Let us next turn to radii. It is convenient to express
the radius squared as the infinite-model-space result plus
a correction term

〈r2〉L = 〈r2〉∞ + ∆〈r2〉L , (12)

where

∆〈r2〉L =

∫ L
0
|uL(r)|2 r2 dr∫ L

0
|uL(r)|2 dr

−
∫∞

0
|u∞(r)|2 r2 dr∫∞

0
|u∞(r)|2 dr

. (13)

Because the dependence on L of uL(r) in Eq.(5) is con-
fined to ∆EL, when uL is substituted into Eq. (13) the
L dependence of each separate integrand comes entirely
from the upper integration limit. Therefore we can use
the asymptotic expressions u∞(r) −→ A∞e

−k∞r and

duE(r)

dE

∣∣∣∣
E∞

≈ − A∞
∆EL

e−2k∞Le+k∞r (14)

to identify the leading-order expression ∆〈r2〉L ∝
〈r2〉∞(2k∞L)3e−2k∞L. (Note that any L-independent
terms are guaranteed to cancel by the definition
Eq. (13).) The next-to-leading-order expression scales as
(2k∞L) exp (−2k∞L) because the condition uL(L) = 0
ensures there is no quadratic term in 2k∞L. Thus, the L
dependence of the squared radius is (with β ≡ 2k∞L) [17]

〈r2〉L ≈ 〈r2〉∞[1− (c0β
3 + c1β)e−β ] . (15)

Here, 〈r2〉∞, c0, and c1 are fit parameters while k∞
should be determined in fitting the energy (11). The ap-
proximation (15) is valid in the asymptotic regime β � 1.
In practice, one needs β & 3 because the leading-order
correction has its maximum at β = 3, and the next-to-
leading order corrections is approximately suppressed by
one order of magnitude for β & 3 (with c0 and c1 of order
unity).
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Equations (11) and (15) are the main results of this
Rapid Communication. A few comments are in order be-
fore we turn to applications of these results. Note that we
derived these results in the laboratory system. For the
nuclear A-body problem, we could also have exploited
the separation of the center-of-mass coordinate in the os-
cillator basis and followed a similar derivation for the
Ath particle with respect to the center of mass of the re-
maining (A− 1) particles. This would rescale L and the
momentum of the Ath particle accordingly, but the final
results are unchanged when re-expressed in laboratory
coordinates. In situations where the relevant threshold
involves two clusters of nucleons (multiple clusters of nu-
cleons), a similar reasoning applies to the relative coor-
dinate between the two clusters (the hyperradius). Due
to these comments, and in light of the approximations
involved in defining L and the corrections to the energy
and radius, in actual fits to numerical results one might
want to treat k∞ as a fit parameter even when the corre-
sponding separation energy or breakup energy is known.

Applications – As a first check, we consider a toy
model in one dimension with the Hamiltonian H =
p2/2 − v0 exp (−x2). Here, x is given in units of the os-
cillator length b. In one dimension, the constant 3/2 in
Eqs. (1) and (2) has to be replaced by 1/2. We com-
pute the ground-state energy and the squared radius for
v0 = 0.5 in large oscillator spaces to obtain fully con-
verged results for the ground-state energy and the radius.
In this simple case, the ground-state energy is given in
terms of the separation energy (8) as E∞ = −S. Fig-
ure 1 shows the correction ∆〈r2〉 as a function of L. The
dashed line results from a leading-order fit to Eq. (15),
and the agreement between numerical data and the the-
oretical prediction extends over ten orders of magnitude.
The inset shows that the L-dependent energy correction
also agrees with the prediction (11).

Let us turn to the nuclear many-body problem. We
employ the nucleon-nucleon interaction from chiral EFT
by Entem and Machleidt [19], and compute the ground-
state energy and radius of the nucleus 16O with the
coupled-cluster method in its singles and doubles ap-
proximation with triples corrections [15, 20]. In our
computation of energies and radii we used the intrin-
sic Hamiltonian and intrinsic radius squared operator in
model spaces with frequencies 42 ≤ ~Ω/MeV ≤ 76 and
with N = 12, 14. To ensure that the computed results
are practically UV converged, we only use those oscilla-
tor spaces for which ΛUV is sufficiently large. Figure 2
shows the results for the ground-state energy as a func-
tion of L. The circles, up triangles, and down triangles
denote points with ΛUV > 1100 MeV, ΛUV > 1200 MeV,
and ΛUV > 1300 MeV, respectively. The points all fall
on a line because UV convergence has practically been
achieved. Thus, we can apply our theory. The lines show
fits to Eq. (11) with fit parameters E∞, a0 and k∞. Note
that the result E∞ ≈ −122.6 MeV of the fit depends very
weakly on ΛUV , the difference being about 0.2 MeV. In
the fits, we obtain k∞ ≈ 0.95 fm−1, and this agrees well
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FIG. 1: (color online) Finite-basis-size correction of the
squared radius (crosses) compared to Eq. (15) (dashed line)
for a toy model. The squared radius is r2∞/b2 ≈ 1.736, and
k∞b ≈ 0.595. Inset: Finite-basis-size correction of the energy
(data points) compared to Eq. (10) (dashed line).

with the decay of the p1/2 orbital that contributes to the
density [21].
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FIG. 2: (color online) Open symbols: Ground-state energy of
16O as a function of L. Lines: Fits to Eq. (11) yield E∞ ≈
−122.6 MeV and k∞ ≈ 0.95 fm−1. ΛUV from Eq. (1).

Next we consider the radius. We use Eq. (15) including
the next-to-leading order correction and fit the parame-
ters 〈r2〉∞, c0, and c1 to data, with k∞ taken from the
fit of the ground-state energy. The result is shown in
Fig. 3. The circles, up triangles, and down triangles de-
note points with ΛUV > 1100 MeV, ΛUV > 1200 MeV,
and ΛUV > 1300 MeV, respectively. The lines show the
corresponding fits and asymptotes, and the extrapolated
radius is r ≈ 2.34 fm. It is particularly satisfying that
the extrapolation also works well for the few data points
with ΛUV > 1300 MeV.
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FIG. 3: (color online) Open symbols: Squared radius as a
function of L for 16O. Lines: Fits of Eq. (15) with k∞ fixed
from the energy fit. ΛUV from Eq. (1).

We also consider the challenging case of a halo nucleus.
The isotope 6He is only bound by about 0.97 MeV with
respect to 4He, and thus exhibits a two-neutron halo.
Note that 5He is not a bound nucleus, and that the neu-
tron separation energy of 6He is about 1.86 MeV. As a
consequence of the weak binding, the matter radius of
6He is unusually large (about 2.4 fm compared to 1.5 fm
for 4He) [22–24]. We address this challenge by applying
the finite-basis-size corrections to the energy (11) and
neutron radius (15).

Our test case uses no-core shell model (NCSM) re-
sults [6] obtained for a chiral EFT nucleon-nucleon in-
teraction that was softened via a similarity renormaliza-
tion group (SRG) transformation [25] with a parameter
λ = 2.0 fm−1. Figure 4 shows the fit of the ground-
state energy for model spaces with ΛUV > 660 MeV and
~Ω ≥ 24 MeV (which ensures a small UV correction).
The fit yields E∞ ≈ −29.87 MeV, and the computed two-
neutron separation energy is about 0.95 MeV. Thus, both
energies are in good agreement with experiment (despite
the absence of a three-body force). The fit also yields
~k∞ ≈ 93 MeV, but the interpretation of k∞ in this case
requires further study.

Now we can extrapolate the neutron radius of 6He.
The results of NCSM calculations are shown in Fig. 5.
Without a knowledge of the finite-basis-size corrections,
it would be impossible to make any reasonable prediction
for the radius because of the apparent lack of conver-
gence. Note, however, that we are in the UV-converged
regime and 2k∞L > 3 for the NCSM data points in Fig. 4.
Thus, we should be able to apply our correction formula.
The solid and dashed lines in Fig. 5 show the results for
the radius based on a fit at leading order and next-to-
leading order, respectively. At next-to-leading order we
find r ≈ 2.40 fm, and this prediction is in reasonable
agreement with deductions from data [23]. Several ad-
ditional points at large L not included in the fit are in
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FIG. 4: (color online) Circles: NCSM ground-state energies
of the halo nucleus 6He from Ref. [6]. Full line: Fit of Eq. (11)
yields E∞ ≈ −29.87 MeV (dashed line) and ~k∞ ≈ 93 MeV.

good agreement with the extrapolation.
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FIG. 5: (color online) Circles and squares: NCSM neutron
radii of 6He. Lines: Fits of Eq. (15) to circles with k∞ fixed
from energy fit yield a radius of 2.37 fm at LO and 2.40 fm at
NLO.

Our theoretical results have been derived under the
assumption that UV convergence has been reached. It
would also be useful to know finite-basis-size corrections
in the opposite regime where IR convergence is estab-
lished, for instance through calculations in model spaces
with sufficiently small ~Ω. The remaining UV correc-
tions would, of course, depend on the interaction at hand.
We have not yet established a theoretical derivation but
can resort to empirical findings for SRG-evolved nucleon-
nucleon interactions from chiral EFT with an SRG pa-
rameter λ [6]. We plotted IR converged ground-state
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energies (computed at large values of 2k∞L) for vari-
ous light nuclei as a function of ΛUV and found as in
Refs. [11, 12] that the empirical formula

E(ΛUV ) = E∞ +A0e
−2

(
ΛUV
λ

)2

(16)

works quite well [17]. (In practice we allow λ to be a fit
parameter to optimize the fit.) This formula is consistent
with an empirically successful ansatz used for individual
~Ω values (e.g., see Ref. [6]). However, Eq. (16) allows
results with different ~Ω to be fit all at once.
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FIG. 6: (color online) Data points connected by full lines:
NCSM ground-state energies of 6He. Red dashed line: Fit
of Eq. (17) to NCSM data with Nmax = 6–10 yields E∞ ≈
−29.84 MeV. Data points connected with dotted line: Ap-
plying the correction of Eq. (17) to the NCSM data. (N =
Nmax + 1)

If we combine the empirical UV formula and the the-
oretically founded IR formula assuming the corrections
are approximately independent, then

E(ΛUV , L) ≈ E∞ +A0e
−2Λ2

UV /A
2
1 +A2e

−2k∞L . (17)

Note that this empirical formula contains exponentials
with arguments proportional to N (from Λ2

UV ) and
√
N

(from L), and thereby differs from usually employed ex-
trapolations that are exponential in N . In Eq. (17) E∞,
A0, A1, A2, and k∞ are fit parameters that are deter-
mined from a simultaneous optimization to data at all
~Ω, including in the intermediate region where both IR
and UV corrections are significant. The resulting value
E∞ ≈ −29.84 MeV from using all Nmax = 6–10 points,
which is in good agreement with the IR-only fit in Fig. 4,
is plotted as a dashed red line in Fig. 6. The points con-
nected by dashed lines are obtained by subtracting the
corrections in Eq. (17) from the NCSM energies. Thus
a perfect fit would find all points lying on the line for
E∞. (Note: the Nmax values in the figure are for exci-
tations above the ground state [6], so N = Nmax + 1 for

6He [11, 17].) All corrected points included in the fit are
close to the E∞ line and even the corrected Nmax = 4
energies (which were not included in the fit) are only
slightly overbound.

In summary, we derived analytical results for the finite-
basis-size corrections of nuclear radii and energies that
are valid in oscillator spaces with converged ultraviolet
physics. The computation of the corrections is robust
and appears to be applicable to halo nuclei. In combi-
nation with an empirical formula for the ultraviolet cor-
rection for SRG-transformed interactions, consistent and
much-improved extrapolations of ground-state energies
are possible. The analytical results can be extended to
other long-range observables that are sensitive to the tail
of the nuclear density. A systematic study of the ex-
trapolation procedure including an error analysis will be
presented in a future work [17].
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Rev. C 77, 024301 (2008).

[8] P. Maris, J. P. Vary, and A. M. Shirokov, Phys. Rev. C
79, 014308 (2009).

[9] R. Roth, Phys. Rev. C 79, 064324 (2009).
[10] S. K. Bogner, R. J. Furnstahl, and A. Schwenk, Prog.

Part. Nucl. Phys. 65, 94 (2010).
[11] S. A. Coon, M. I. Avetian, M. K. G. Kruse, U. van Kolck,

P. Maris, and J. P. Vary, arXiv:1205.3230 (2012).
[12] W. C. Haxton, C.-L. Song, Phys. Rev. Lett. 84, 5484

(2000); arXiv:nucl-th/9906082.
[13] I. Stetcu, B. R. Barrett, and U. van Kolck, Phys. Lett.

B 653, 358 (2007).
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