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The surface tension of quark matter plays a crucial role for the possibility of quark matter nucle-
ation during the formation of compact stellar objects, because it determines the nucleation rate and
the associated critical size. However, this quantity is not well known and the theoretical estimates
fall within a wide range, γ0 ≈ 5 − 300 MeV/fm2. We show here that once the equation of state is
available one may use a geometrical approach to obtain a numerical value for the surface tension
that is consistent with the model approximations adopted. We illustrate this method within the
two-flavor linear σ model and the Nambu–Jona-Lasinio model with two and three flavors. Treating
these models in the mean-field approximation, we find γ0 ≈ 7−30 MeV/fm2. Such a relatively small
surface tension would favor the formation of quark stars and may thus have significant astrophysical
implications. We also investigate how the surface tension decreases towards zero as the temperature
is raised from zero to its critical value.

PACS numbers: 11.10.Wx, 12.39.Ki, 21.65.Qr, 26.60.Kp

I. INTRODUCTION

Lattice-gauge calculations yield a non-vanishing value of the quark condensate 〈ψψ〉 in the QCD vacuum [1],
indicating that chiral symmetry is broken. This general feature of the vacuum remains present even for massless
quarks because the symmetry is then broken spontaneously. On the other hand, chiral symmetry is expected to
become restored at sufficiently high values of the net-baryon density ρ or/and the temperature T . The character
of this phase change is not yet well understood but it has significant implications in areas such as cosmology and
astrophysics and it is a focal point for current experimental and theoretical research in nuclear physics.
Nuclear collision experiments carried out with the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven

National Laboratory and with the Large Hadron Collider at CERN explore systems having relatively small net-
baryon densities ρ and the associated chemical potentials µ are negligible. Lattice calculations can readily be carried
out at vanishing µ and they indicate that a cross-over transformation from the chirally broken phase to the restored
phase occurs as the temperature is increased from below to above the cross-over temperature T× ≈ 160MeV [1–3].
The other extreme region of the QCD phase diagram, namely low temperatures and high chemical potentials, cannot

be addressed by current lattice-QCD methods, due to the fermion sign problem, and studies of this phase region must
therefore rely on less fundamental models. Most investigations suggest that there is a first-order phase transition
which, for T ≈ 0, sets in at baryon densities several times that of the nuclear saturation density, ρ0 ≈ 0.153/fm3. The
properties of strongly interacting matter in this phase region are important for our understanding of compact stars.
If indeed such a first-order phase transition exists at T = 0, then, as the temperature is raised, one would expect it to

remain present but gradually weaken and eventually terminate at a critical point (µc, Tc). The existence and location
of such a critical point is a subject of intense theoretical investigation with a variety of models, including in particular
effective-field models, such as the linear σ model (LSM), and effective quark models, such as the Nambu–Jona-Lasinio
(NJL), at different levels of sophistication considering up to three quark flavors and possibly including the Polyakov
loop to account for confinement [4, 5]. Experimentally the corresponding region of density and excitation may be
produced in current nuclear collisions at the low-energy end of RHIC and in the future with FAIR at GSI and NICA
at JINR which are being constructed with such investigations in mind.
In the present work, we concentrate on the high-µ and low-T part of the phase diagram with the aim of exploring

the expected chiral phase transition which has significant implications for the possible existence of quark stars [6, 7].
It should be noted that chiral symmetry may be restored already during the early post-bounce accretion stage of a
core-collapse supernova event and the associated neutrino burst might then provide a spectacular signature for the
presence of quark matter inside compact stars [8]. However, as pointed out in Refs. [9, 10], the possibilities depend
on the dynamics of the phase conversion and especially on the time scales involved.
When the phase diagram of bulk matter exhibits a first-order phase transition, the two phases may coexist in mutual

thermodynamic equilibrium and, consequently, when brought into physical contact a mechanically stable interface
will develop between them. The associated interface tension γT (which we shall often refer to simply as the surface
tension of quark matter) depends on the temperature T ; it has its largest magnitude at T = 0 and approaches zero
as T is increased to Tc. This quantity plays a key role in the phase conversion process and it is related to various
characteristic quantities such as the nucleation rate, the critical bubble radius, and the favored scale of the blobs
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generated by the spinodal instabilities [11, 12]. (As we shall see, the surface tension is essentially proportional to the
effective interaction range, which determines the width of the surface region, and the spatial size of the most rapidly
amplified density irregularity is also proportional to this quantity.)
Unfortunately, despite its central importance, the surface tension of quark matter is rather poorly known. Estimates

in the literature fall within a wide range, typically γ0 ≈ 10−50 MeV/fm2 [13, 14] and values of γ0 ≈ 30MeV/fm2 have
been considered for studying the effect of quark matter nucleation on the evolution of proto-neutron stars [15]. But
the authors in Ref. [16], taking into account the effects from charge screening and structured mixed phases, estimate
γ0 ≈ 50− 150 MeV/fm2, without excluding smaller values, and an ever higher value, γ0 ≈ 300 MeV/fm2, was found
by Alford et al. [17] on the basis of dimensional analysis of the minimal interface between a color-flavor locked phase
and nuclear matter.
The surface tension for two-flavor quark matter was evaluated within the framework of the LSM by Palhares and

Fraga [18]. In that work the authors considered the one-loop effective potential and then fitted its relevant part, which
included both the chirally symmetric and broken state, by a quartic polynomial. The surface tension was evaluated
using the thin-wall approximation for bubble nucleation and the estimated values cover the 5 − 15MeV/fm2 range,
depending on the inclusion of vacuum and/or thermal corrections. In principle, this range makes nucleation of quark
matter possible during the early post-bounce stage of core-collapse supernovae and it is thus a rather important result.
It is also worth noting that a small surface tension would facilitate various structures in compact stars, including mixed
phases [19].
The present work is devoted to the evaluation of the surface tension for quark matter using both the LSM (with two

flavors) and the NJL model (with two and three flavors) following the procedure employed in Ref. [12]. Here, the LSM
is mainly included to check the consistency of our procedure by comparing our present results with those obtained
by the thin-wall approximation of Ref. [18] (we find the agreement to be very good). The NJL model is considered
with two and three flavors because the latter, which contains strangeness, is one of the most popular effective quark
models used in studies related to compact stars. As explained below, the method described in Ref. [12] makes it
possible to express the surface tension for any subcritical temperature in terms of the free energy density for uniform
matter in the unstable density range. Because the models employed readily provide the equation of state (EoS) for
the full density range, they are well suited for our purpose and we may directly employ the method without any
further approximations. In practice, the procedure is rather simple to implement and it provides an estimate for the
surface tension that is consistent with the EoS implied by the model employed, with its specific approximations and
parametrizations.
The paper is organized as follows. In Sect. II we review the method for extracting the surface tension from the

equation of state. In Sec. III we then present the two-flavor versions of the two models considered and discuss how to
extract the surface tension. Section IV is devoted to the treatment for the more realistic SU(3) version of the NJL
model and our numerical results are presented in Sec. V, both for cold matter and for temperatures up to the critical
value. The conclusions and final remarks are presented in Sec. VI.

II. THE GEOMETRIC APPROACH TO THE SURFACE TENSION EVALUATION

We assume here that the material at hand, strongly interacting matter, may appear in two different phases under
the same thermodynamic conditions of temperature T , chemical potential µ, and pressure P . These two coexisting
phases have different values of other relevant quantities, such as the energy density E , the (net baryon) density ρ,
and the entropy density s. Under such circumstances, the two phases will develop a mechanically stable interface if
placed in physical contact and it is the purpose of the present study to evaluate the associated interface tension, γT .
The two-phase feature appears for all temperatures below the critical value, Tc. Thus, for any subcritical temper-

ature, T < Tc, hadronic matter at the (net-baryon) density ρ1(T ) has the same chemical potential and pressure as
quark matter at the (larger) density ρ2(T ). As T is increased from zero to Tc, the coexistence phase points (ρ1, T ) and
(ρ2, T ) trace out the lower and higher branches of the phase coexistence boundary, respectively, gradually approaching
each other and finally coinciding for T = Tc. Any (ρ, T ) phase point outside of this boundary corresponds to thermo-
dynamically stable uniform matter, whereas uniform matter prepared with a density and temperature corresponding
to a phase point inside the phase coexistence boundary is thermodynamically unstable and prefers to separate into two
coexisting thermodynamically stable phases separated by a mechanically stable interface. Because such a two-phase
configuration is in global thermodynamic equilibrium, the local values of T , µ, and P remain unchanged as one moves
from the interior of one phase through the interface region and into the interior of the partner phase, as the local
density ρ increases steadily from the lower coexistence value ρ1 to the corresponding higher coexistence value ρ2.
It is convenient to work in the canonical framework in which where the control parameters are temperature and

density. The basic thermodynamic function is thus fT (ρ), the free energy density as a function of the (net baryon)
density ρ for the specified temperature T . The chemical potential can then be recovered as µT (ρ) = ∂ρfT (ρ), and
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the entropy density as sT (ρ) = −∂T fT (ρ), so the energy density is ET (ρ) = fT (ρ) − T∂T fT (ρ), while the pressure is
PT (ρ) = ρ∂ρfT (ρ)− fT (ρ).
For single-phase systems fT (ρ) is convex, i.e. its second derivative ∂2ρfT (ρ) is positive, while the appearance of

a concavity in fT (ρ) signals the occurrence of phase coexistence, at that temperature. This is easily understood
because when fT (ρ) has a local concave anomaly then there exist a pair of densities, ρ1 and ρ2, for which the tangents
to fT (ρ) are common. Therefore fT (ρ) has the same slope at those two densities, so the corresponding chemical
potentials are equal, µT (ρ1) = ∂ρfT (ρ1) = ∂ρfT (ρ2) = µT (ρ2). Furthermore, because a linear extrapolation of fT (ρ)
leads from one of the touching points to the other, also the two pressures are equal, PT (ρ1) = ρ1∂ρfT (ρ1)− fT (ρ1) =
ρ2∂ρfT (ρ2)−fT (ρ2) = PT (ρ2). So uniform matter at the density ρ1 has the same temperature, chemical potential, and
pressure as uniform matter at the density ρ2. The common tangent between the two coexistence points corresponds
to the familiar Maxwell construction and shall here be denoted as fM

T (ρ). Obviously, fT (ρ) and fM
T (ρ) coincide at

the two coexistence densities and, furthermore, fT (ρ) exceeds fM
T (ρ) for intermediate densities. Therefore we have

∆fT (ρ) ≡ fT (ρ)− fM
T (ρ) ≥ 0.

For a given (subcritical) temperature T , we now consider a configuration in which the two coexisting bulk phases
are placed in physical contact along a planar interface. The associated equilibrium profile density is denoted by
ρT (z) where z denotes the location in the direction normal to the interface. In the diffuse interface region, the
corresponding local free energy density, fT (z), differs from what it would be for the corresponding Maxwell system,
i.e. a mathematical mix of the two coexisting bulk phases with the mixing ratio adjusted to yield an average density
equal to the local value ρ(z). This local deficit amounts to

δfT (z) = fT (z)− fi −
fT (ρ2)− fT (ρ1)

ρ2 − ρ1
(ρT (z)− ρi) , (2.1)

where ρi is either one of the two coexistence densities. The function δfT (z) is smooth and it tends quickly to zero
away from the interface where ρT (z) rapidly approaches ρi and fT (z) rapidly approaches fT (ρi). The interface tension
γT is the total deficit in free energy per unit area of planar interface,

γT =

∫ +∞

−∞

δfT (z) dz . (2.2)

As discussed in Ref. [12], when a gradient term used to take account of finite-range effects, the tension associated
with the interface between the two phases can be expressed without explicit knowledge about the profile functions
but exclusively in terms of the equation of state for uniform (albeit unstable) matter,

γT = a

∫ ρ2(T )

ρ1(T )

[2Eg∆fT (ρ)]
1/2 dρ

ρg
, (2.3)

where ρg is a characteristic value of the density and Eg is a characteristic value of the energy density, while the
parameter a is an effective interaction range related to the strength of the gradient term, C = a2Eg/ρ

2
g. We choose the

characteristic phase point to be in the middle of the coexistence region, ρg = ρc and Eg = [E0(ρc)+Ec]/2, where E0(ρc)
is energy density at (ρc, T = 0), while Ec is energy density at the critical point (ρc, Tc). The length a as a somewhat
adjustable parameter governing the width of the interface region and the magnitude of the tension [12]. For the LSM
it is natural to expect that a ≈ 1/mσ ≈ 0.33 fm which, also, is approximately the value found in an application of the
Thomas-Fermi approximation to the NJL model [20]. Therefore, we shall adopt the value a = 0.33 fm throughout the
present work. While there is some arbitrariness in fixing these quantities, it is reassuring that the resulting surface
tension is in excellent agreement with the value obtained in Ref. [18].
With these parameters fixed, the interface tension can be calculated once the free energy density fT (ρ) is known

for uniform matter in the unstable phase region, ρ1(T ) ≤ ρ ≤ ρ2(T ). While this is straightforward in a canonical
formulation, where each (ρ, T ) characterizes only one manifestation of the system, even inside the unstable phase
region, the task is more complicated in the commonly used grand canonical formulation because a given (µ, T ) phase
point characterizes three different manifestations of the system, one stable, one metastable, and one unstable. The
metastable solutions are located near the coexistence densities, while the unstable solutions are located in the inter-
mediate spinodal region where uniform matter is mechanically unstable so that even infinitesimal irregularities may
be exponentially amplified. By contrast, only irregularities of a sufficient amplitude are amplified in the metastable
regions, leading towards either nucleation (near the lower coexistence density ρ1) or bubble formation (near the higher
coexistence density ρ2).
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III. THE EOS FOR THE EFFECTIVE TWO FLAVOR QUARK MODELS

In this section, we review the mean-field results for the thermodynamic potential for the two effective models when
only two quark flavors are included. These results have been widely discussed in the literature and here we follow
Ref. [21] (see Ref. [22] for results beyond the mean-field approximation). The two models are similar in the sense
that they do not have confinement and they incorporate spontaneous chiral symmetry breaking, which happens at
the classical level in the LSM but only via quantum corrections in the NJL model. The fermionic fields representing
the quarks are the only degrees of freedom in the NJL model at the tree level, while the LSM also contains scalar (σ)
and pseudoscalar (π) meson fields.

A. The linear σ model

In standard notation, the Lagrangian density of the LSM with quarks reads

LLSM =
1

2
(∂µπ)

2
+

1

2
(∂µσ)

2
− U (σ,π) + ψ̄ [iγµ∂µ − g (σ + iγ5τ · π)]ψ , (3.1)

where ψ is the flavor isodoublet spinor representing the quarks (u and d), and

U (σ,π) =
λ2

4

(

σ2 + π2 − v2
)2

−Hσ , (3.2)

is the classical potential energy density. In the chiral limit (obtained forH = 0) the chiral symmetry, SU(2)V ×SU(2)A,
is spontaneously broken at the classical level, and the pion is the associated massless Goldstone boson. For H 6= 0,
the chiral symmetry is explicitly broken by the last term in U(σ,π) which gives the pion a finite mass at vanishing
T and µ. The parameters are usually chosen so that chiral symmetry is spontaneously broken in the vacuum and
the expectation values of the meson fields are 〈σ〉 = fπ and 〈π〉 = 0 where fπ = 93MeV is the pion decay constant.
Following Ref. [21], we fix the parameters as follows: v2 ≃ (87.73MeV)2, λ2 ≃ 20, and H ≃ (12.1GeV)3. Using the
standard relations, H = fπm

2
π, v

2 = f2
π −m2

π/λ
2, and m2

σ = 2λ2f2
π , we obtain the meson masses, mπ = 138MeV and

mσ = 600MeV. The coupling constant g is usually fixed so that the effective quark mass in vacuum, Mvac = gfπ,
be about one third of the nucleon mass, which gives g ≃ 3.3. We note that the same parameter set was also used
to evaluate the surface tension, γT , in Ref. [18]. To the one-loop level, the grand canonical potential is obtained by
integrating the action over the fermionic fields [21],

ΩLSM(σ,π;T, µq) = U (σ,π)− 2NfNc

∫

d3p

(2π)3
{

E − T ln
[

1− n+
]

− T ln
[

1− n−
]}

, (3.3)

where Nc = 3, Nf = 2, E2 = p2 +M2, and n± = {1+ exp[(E∓µq)/T ]}
−1 represent the particle/antiparticle thermal

occupancies with µq = µu = µd, where µ = 3µq. For for given values of T and µ, the equilibrium values of the meson
fields are obtained by minimizing Ω(σ,π;T, µq) with respect to those, yielding the most likely values σ and π. The
latter one vanishes in the mean-field approximation, so the associated constituent quark mass is given as M2 = g2σ2.
The minimum value of the grand potential represents minus the equilibrium pressure, Ωmin(T, µ) = −P , so the net
quark density is given by ρq = (∂P/∂µq)T , where ρq = 3ρ. The entropy density given by s = (∂P/∂T )µq

, while the
energy density, E , can then be obtained by means of the standard thermodynamic relation P = Ts− E + µρ and the
free energy density is f ≡ E − Ts = µρ− P .
In the neighborhood of the phase coexistence line in the (µ, T ) plane, the grand potential has three extrema

representing stable, metastable, and spinodally unstable matter. As emphasized above, the extraction of the surface
tension by the geometric approach requires the consideration of all three extrema.
In contrast to the NJL model, the vacuum term represented by the first term in the integrand of Eq. (3.3) is not

essential for the spontaneous breaking of chiral symmetry. In the LSM this already happens at the classical level and
the symmetry restoration is driven mainly by the terms containing n±. Therefore, we neglect the vacuum term in
the present LSM application, where the aim is to compare our estimates with the zero-temperature interface tension
obtained in Ref. [18], γ0 ≃ 12.98MeV/fm2, where the relevant part of the same thermodynamical potential was fitted
with a quartic polynomial. In our approach such a fitting procedure is not necessary because the thermodynamic
potential is evaluated for all values of µ and T . This will lead to somewhat different numerical values for the surface
tension γT . It was shown in Ref. [18] that the inclusion of vacuum terms at T = 0 increases the surface tension value
from γ0 = 12.98MeV/fm2 to about γ0 ≃ 17MeV/fm2. In practice, further refinements including vacuum and in-
medium two-loop corrections are possible by following the same technical steps that were employed in the evaluation
of the thermodynamical potential for the Yukawa theory [23].
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It is now straightforward to determine the phase-coexistence line in the (µ, T ) plane which forms the starting point
for determining all quantities related to γT . It starts at (µ = 918MeV, T = 0) and terminates at the critical point
(µc = 621MeV, Tc = 99MeV), which agrees with Ref. [21]. We now have all the ingredients needed for determining
the coexistence densities ρ1(T ) and ρ2(T ) as well as the characteristic values ρg and Eg appearing in Eq. (2.3).
The difference ∆f(ρ) can be readily determined numerically by considering the stable (global) minimum, the

metastable (local) minimum, and the unstable (local) maximum appearing in the thermodynamical potential, as will
be explicitely shown in section V. Although our method for extracting the surface tension does not require the profiles
σ(z) and ρ(z), these functions do provide interesting additional information about the interface. To obtain the profile
functions within the LSM, it suffices to consider the grand canonical potential in the σ direction only, i.e. taking
π = 0. At T = 0 it can be expressed in terms of the Fermi momentum pF (given by p2F = µ2

q − g2σ2),

ΩLSM(σ,π = 0;T = 0, µ) = U(σ)−
NfNc

24π2

{

2µqp
3
F − 3(gσ)2

[

µqpF − (gσ)2 ln

(

pF + µq

gσ

)]}

. (3.4)

We now employ the local density approximation, so the local Fermi momentum, pF (r), is related to the local density,
ρq(r) ≡ 〈ψ+ψ〉, by ρq = (NcNf/3π

2)p3F (r). Furthermore, the local scalar density ρs(r) ≡ 〈ψψ〉 is given by

ρs(r) = 2NcNf

∫

d3p

(2π)3
M(r)

√

p2 +M(r)2
=

NcNf

2π2
gσ(r)

[

µqpF (r)− g2σ(r)2 ln

(

pF (r) + µq

gσ(r)

)]

, (3.5)

where we have used that the local Fermi energy EF (r) =
√

pF (r)2 +M(r)2 equals the (constant) chemical potential
µq = µ/3. We note that

[∂σΩLSM(σ,0; 0, µ)]σ=σ(r) = U ′(σ(r)) + gρs(r) . (3.6)

Then the stationary Euler-Lagrange equation with π = 0 and ψψ replaced by ρs(r), provides an equation for the
local value of the order parameter, σ(r),

∇
2σ(r)− [U ′(σ(r)) + gρs(r)] = 0 . (3.7)

For semi-infinite geometry, the profile of the order parameter, σ(z), can then be obtained by solving the corresponding
Euler-Lagrange equation,

∂2zσ(z)− [∂σΩLSM(σ)]σ=σ(z) = 0 , (3.8)

with the boundary conditions that the order parameter approach the zero-temperature coexistence values far from
the surface,

σ(z → −∞) → σ1(T = 0) = fπ , σ(z → +∞) → σ2(T = 0) = 0.13 fπ . (3.9)

Once σ(z) is known, so is the mass M(z), and we can then obtain the local Fermi momentum pF (z) and, conse-
quently, the local net baryon density ρ(z). One may then define the associated interface location function [12, 24],

g(z) ≡
∂zρ(z)

ρ2 − ρ1
, (3.10)

which allows us to obtain additional information, such as the mean interface location, z̄ = 〈z〉 ≡
∫

zg(z)dz, the
associated interface width b, where b2 = 〈(z − z̄)2〉, as well as a measure of the profile skewness which is given by the
dimensionless parameter γ3 ≡ 〈(z − z̄)3〉/b3 [24]. The calculated results for σ(z), ρ(z), and g(z) are shown in Fig. 1.
The origin is conveniently located at 〈z〉, the width is b = 1.85 a (where a = 1/mσ ≈ 0.33 fm) and the skewness is
γ3 = 0.6 . As the temperature is increased, the profiles widen progressively and grow more symmetric, as also found
in Ref. [12].

B. The Nambu–Jona-Lasino model

We now consider the standard version of the two-flavor NJL model [25]. Its Lagrangian density is based on a
chirally symmetric four-fermion interaction,

LNJL = ψ̄ (iγµ∂
µ −m)ψ +G

[

(ψ̄ψ)2 + (ψ̄iγ5~τψ)
2
]

, (3.11)
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FIG. 1: The order parameter σ(z) in units of fπ (dashed), the net baryon density ρ(z) in units of ρ0 (solid), and the surface
location function g(z) (dotted), as functions of the dimensionless depth (z − 〈z〉)mσ relative to the average surface location.

where ψ is to be interpreted as in the LSM. Furthermore, it is assumed that mu = md so the mass matrix is given by
mc = mdiag(1, 1). In the mean-field approximation, the grand canonical potential reads [21, 22, 26]

ΩNJL(µ, T ) =
(M −m)2

4G
− 2NfNc

∫

p<Λ

d3p

(2π)3
{

E − T ln
[

1− n+
]

− T ln
[

1− n−
]}

, (3.12)

with the same definitions as used in the LSM. For each value of T and µ the dynamical mass is of the formMdiag(1, 1)
because of the assumption of isospin symmetry (mu = md = m) and chemical equilibrium (µu = µd = µ); alternative
scenarios may also be considered [27]. The single dynamical mass M is then obtained by minimizing Ω with respect
to M , leading to the well known gap equation,

M = m+ 2GNcNf

∫

p<Λ

d3p

(2π)3
M

E

[

1− n+ − n−
]

. (3.13)

Although the thermodynamic potentials for LSM (Eq. (3.3)) and the NJL model (Eq. 3.12)) have the same structure
as far as the loop contribution is concerned, some important differences between the two models exist. First, we note
that within the NJL the quark mass acquires its constituent value only when quantum corrections (loop terms) are
computed. Therefore, contrary to the LSM, the divergent term represented by the second term on the right-hand side
of Eq. (3.12) plays a central role regarding the (dynamical) chiral symmetry breaking. Another difference between
the LSM and the NJL model, in 3+1 dimensions, is that the latter is not renormalizable since the coupling G carries
dimensions (energy−2). This means that potential divergencies cannot be systematically eliminated by a redefinition
of the original parameters. By considering it as an effective model, one gives up the very high energies and evaluates
all the integrals up to an ultraviolet (non-covariant) cutoff Λ, as the notation in Eqs. (3.12) and (3.13) implies. Then
Λ is treated as a “parameter” which will be fixed, together with G and m, so as to yield the values of physical
observables such as mπ, fπ that reproduce the phenomenological value of 〈ψψ〉. For example, in Ref. [21] the authors
reproduce fπ = 93MeV and mπ = 138MeV using Λ = 631MeV and GΛ2 = 2.19 with m = 5.5MeV. These parameter
values, which we label “set I”, predict a first-order phase transition starting at T = 0, µ = 1045.5MeV and ending
at the critical point (Tc = 46MeV, µc = 996MeV), while the constituent quark mass in vacuum is Mvac = 337MeV.
In their study of the chiral phase transition in the presence of spinodal decomposition the authors in Ref. [26] use
Λ = 587.9MeV and GΛ2 = 2.44 with m = 5.6MeV in order to reproduce fπ = 92.4MeV andmπ = 135MeV obtaining
Mvac = 400MeV. We shall also consider these parameter values, which we label “set II”, in order to estimate the
influence of different parametrizations in the estimation of γT . With parameter set II the first-order transition line
starts at (T = 0, µ = 1146.3MeV) and ends at (Tc = 81MeV, µc = 990MeV). In general, a larger value of GΛ2

enlarges the coexistence region. As in the LSM case, the quantities ρ1, ρ2, ρg, Eg, and ∆f(ρ) entering the expression
(2.3) for the surface tension can be obtained from the equation of state. As already emphasized,the numerical value
for the length scale a is chosen to be 1/mσ ≃ 0.33 fm (which is about the value found in a Thomas-Fermi application
to the NJL model [20]). The remaining two numerical inputs, ρg and ǫg, are automatically fixed once the EoS has
been determined.
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FIG. 3: The pressure, P , as a function of the compression ρ/ρ0 for the NJL model as obtained with the two parameter sets.
The two coexistence points (dots) are joined by the Maxwell line (dashed) along which the global equilibrium evolves as the
density is increased through the phase coexistence region.

IV. THE EOS FOR THE NJL MODEL WITH THREE QUARK FLAVORS

In stellar modeling, the structure of the star depends on the assumed EoS built with appropriate models while the
true ground state of matter remains a source of speculation. It has been argued [28–31] that strange quark matter

(SQM) is the true ground state of all matter and this hypothesis is known as the Bodmer-Witten conjecture. Hence,
the interior of neutron stars should be composed predominantly of u, d, s quarks (plus leptons if one wants to ensure
charge neutrality which is not the case in the present work). Strangeness is implemented in the SU(3) version of the
NJL model which is given by

L = ψ̄(iγµ∂
µ −m)ψ +G

8
∑

a=0

[

(ψ̄λaψ)2 + (ψ̄iγ5λ
aψ)2

]

−K
{

detf [ψ̄(1 + γ5)ψ] + detf [ψ̄(1− γ5)ψ]
}

, (4.1)

where ψ = (u, d, s)T denotes a quark field with three flavors (and three colors), and m = diagf (mu,md,ms) is the
corresponding mass matrix. Here we assume mu = md 6= ms indicating that isospin symmetry is observed while the
SU(3) flavor symmetry is explicitely broken. The eight Gell-Mann matrices are represented by λa (a = 1, ..., 8) and

λ0 =
√

2/3I. More details concering this version of the NJL model can be found in Ref. [27]. In the mean-field
approximation the thermodynamical potential is given by

ΩNJL3
(T, µq) =

∑

q=u,d,s

[

ΩMq
(T, µq) + 2Gφ2q

]

− 4Kφuφdφs . (4.2)
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coexistence densities ρ1 = 0 and ρ2 = 3.027 ρ0. Right panel: The quantity ∆f0(ρ) as a function of ρ/ρ0 obtained with the NJL
model for parameter set I (continuous) and parameter set II (dot-dashed).

The term ΩMq
, which represents the contribution of a gas of quasiparticles with mass Mq, is given by

ΩMq
= −2Nc

∫

p<Λ

d3p

(2π)3
{

Eq − T ln
[

1− n+
q

]

− T ln
[

1− n−

q

]}

, (4.3)

where E2
q = p2 +M2

q and n±
q = {1 + exp[(Eq ∓ µq)/T ]}

−1 represent the particle/antiparticle distribution function.

For the quark condensates, φq = 〈ψ̄qψq〉, one has

φq = −2Nc

∫

p<Λ

d3p

(2π)3
Mq

Eq

[

1− n+
q − n−

q

]

. (4.4)

Finally, the gap equation is

Mi = mi − 4Gφi + 2Kφjφk , (i, j, k) = any permutation of (u, d, s) , (4.5)

which contains a non-flavor mixing term proportional to G as well as a flavor mixing term proportional to K. In our
numerical analysis we adopt the parameter values of Ref. [32] which aremu = md = 5.5MeV, ms = 140.7MeV, GΛ2 =
1.835,KΛ5 = 12.36, and Λ = 602.3MeV. Then, at T = 0 and µf = 0, one reproduces fπ = 92.4MeV, mπ = 135MeV,
mK = 497.7MeV, and mη′ = 960.8MeV. For the quark condensates one obtains φu = φd = −(241.9MeV)3, and
φs = −(257.7MeV)3. The constituent quark masses are then given by Mu =Md = 367.7MeV and Ms = 549.5MeV.
The pressure, P , and energy density, E , follow from the usual expressions,

P = −ΩNJL3
(T, {µq}) and P = Ts− E +

∑

q=u,d,s

µqρq . (4.6)
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Here, for simplicity, we take the chemical equilibrium condition, µu = µd = µs = µq = µ/3 which yields Mu = Md

also at finite T and/or µ. Of course, for a realistic description of neutron-star matter, charge and strangeness neutrality
need to be taken into account, which is technically straightforward.
The phase diagram for this three-flavor quark model model in the µ–T and ρ–T planes can be found in Ref.

[33]; the first-order transition line starts at (T = 0, µ = 1083MeV) and ends at the critical point (Tc = 67.7MeV,
µc = 955.2MeV). As already discussed, we need the EoS inside the phase coexistence region which can be obtained
by examining how the effective masses behave in this domain. This behavior is shown in Fig. 2 for T = 0; these
results go beyond those of Ref. [26] by also considering the strange quark mass. To understand this figure, let us
recall that, in most situations, one is generally interested only in those solutions of the gap equation that correspond
to global (stable) minima of the thermodynamical potential. However, when a first-order phase transition is present,
there are two different such solutions for the same thermodynamic conditions of temperature, chemical potential, and
pressure (corresponding to the solid dots on Fig. 2). As the net baryon density (which serves as a convenient order
parameter) is increased from its lower coexistence value ρ1 to its higher coexistence value ρ2, the thermodynamically
favored state is a Maxwell mixture of the two coexisting phases and the overall average of the energy per net baryon
or the effective mass, for example, evolve monotonically along the socalled Maxwell line, as the composition of the
mixture changes from being entirely one phase to being entirely the other. In the region between the dotted lines
the gap equation has three solutions, leading to the back-bending evolution brought in that diagram. It is precisely
this typical first-order behavior that will be reflected in the thermodynamical quantities, such as the pressure and
densities, as Figs. 3 and 4 show. This behavior is responsible for the fact that there is a (positive) deviation ∆f(ρ),
which then in turn leads to the surface tension.

V. NUMERICAL RESULTS

We now turn to our numerical results for the surface tension γT . To this end we need to determine the free energy
density fT (ρ), which requires the evaluation of PT (ρ) and µT (ρ) for uniform matter thermodynamically unstable
region of the phase diagram. For the considered temperature T , the associated density region is bounded by the two
coexistence densities ρ1 and ρ2, for which the chemical potential µ has the same value, as does the pressure P . As the
density ρ is increased through the lower mechanically metastable (nucleation) region, µ and P rise steadily until the
lower spinodal boundary has been reached. Then, as ρ moves through the mechanically unstable (spinodal) region,
both µ and P decrease until the higher spinodal boundary is reached. They then increase again as ρ moves through
the higher mechanically metastable (bubble-formation) region, until they finally regain their original values at ρ = ρ2.
It is convenient to express the (net) baryonic density ρ in units of the nuclear saturation density, ρ0 = 0.153/fm3.
Generally, as is common practice, we subtract from the pressure any finite value it may have in the vaccum.

A. Zero temperature

Let us start with T = 0 for which the relevant results can be readily obtained by taking the T → 0 limit in Eqs.
(3.3) and (3.12) (see, e.g. Refs. [18, 22, 27]). Figure 3 shows the pressure as a function of the degree of compression
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ρ/ρ0 obtained with the NJL model for both parameter sets I and II; the latter has a stronger coupling and a larger
coexistence region. A qualitatively similar behavior is observed in Fig. 4 which shows µ as a function of ρ/ρ0 for the
NJL model with both parameter sets. Figure 5 shows the behavior of the free energy f0(ρ) and its corresponding
Maxwell line fM

0 (ρ) for parameter set II. In the right panel of Fig. 5 we display the difference between these two free
energies, ∆f(ρ) ≡ f0(ρ)− fM

0 (ρ) for both parameter sets; this is the key quantity for the determination of the surface
tension. The LSM and the three-flavor NJL model yield similar results. At temperatures below criticality, T < Tc,
the thermodynamical potential has two degenerate minima determining the densities of the two coexisting phases,
ρ1 and ρ2. In all cases studied here, the lower coexistence density vanishes, ρ1 = 0. As for the higher coexistence
density, the LSM yields ρ2/ρ0 ≃ 1.54, the two-flavor NJL model yields ρ2/ρ0 ≃ 2.13 with set I and ρ2/ρ0 ≃ 3.03
with set II, while the three-flavor NJL model gives ρ2/ρ0 ≃ 2.62. It clear from this figure that set I produces a much
weaker phase transition because ∆f(ρ) is much smaller that for set II, as is indeed reflected in the γT values shown
in Table I. In fact, set II produces a greater coexistence region (ρ1 ≃ 0, ρ2 ≃ 3.03,ρ0, Tc = 81MeV) when compared
to set I (ρ1 ≃ 0, ρ2 ≃ 2.13ρ0, Tc = 46MeV), which is in accordance with the well known fact that set II should cause
the size of the first-order transition line to be longer than the one produced by set I which has a weaker coupling.
Further refinements, such as finite-Nc corrections [37], contributions from thermal flucutations, and the inclusion of a
repulsive vector interaction [38], also tend to shrink the first-order transition line [22] so that, within a fixed parameter
set, one should expect these effects to reduce γT .
Table I summarizes all our results for γ0 and also lists the characteristic values Eg and ρg as well as the location

of the critical point (Tc, µc). The table also provides information related to thermodynamic potential at T = 0 and
µ = 0 by showing the values of the constituent quark mass in vacuum (Mvac), which is related to the distance from
the global minimum to the origin, as well as the bag constant which gives the energy difference between the local
maximum and the global minimum of the potential in vacuum; these values were taken from Refs. [21, 27].

Model γ0 B0 Mvac

u,d Mvac

s Tc µc ρg/ρ0 Eg

NJL (I) 7.11 100 337 – 46 996 2.00 342.85

NJL (II) 30.25 141.4 400 – 81 990 2.42 495

LSM 13.18 60 306.9 – 99 621 1.19 219.25

NJL3 20.42 291.7 367.6 549.5 67.7 955.2 1.87 326.8

TABLE I: Summary of inputs and results. The length parameter was taken as a = 0.33 fm. The zero-temperature bag constant
B0 and the characteristic energy density Eg are given in MeV/fm3, while the effective quark masses in vacuum Mvac

i as well
as the critical values µc and Tc are in MeV. The resulting zero-temperature surface tension γ0 (given in MeV/fm2) may be
compared with the value γ0 = 12.98MeV/fm2 obtained in Ref. [18]) with the LSM in the thin-wall approximation.

We finally note that Palhares and Fraga [18], using the approximation γT ≈
∫

|∂zσ(z)|
2dz obtained the estimate

γ0 ≈ 12.98MeV/fm2 which is very close to our LSM value of 13.18MeV/fm2 and also rather similar to the value
12.19MeV/fm2 resulting from evaluating that intergal using our LSM profile function σ(z).

B. Finite temperature

One can easily consider finite temperatures within the employed models. The interface tension is expected to
decrease with increasing temperature because both the coexistence densities ρi and the associated free energy densities
fT (ρi) move closer together at higher T ; they ultimately coincide at Tc where, therefore, the tension vanishes. This
general behavior is confirmed by our calculations, as shown in Fig. 6. The LSM, the NJL with parameter set I, and the
three-flavor NJL display similar behaviors. The temperature dependence of the surface tension may be relevant for the
thermal formation of quark droplets in cold hadronic matter found in “hot” protoneutron stars whose temperatures,
T∗, are of the order 10–20 MeV [9, 34, 35]. For T∗ the relevant value of γT∗

may be estimated by using table I
together with Fig. 5. For example, the three-flavor NJL model yields γT∗

≈ 14 − 18MeV/fm2. The temperature
dependence of the surface tension is also important in the context of heavy-ion collisions, because it determines the
favored size of the clumping caused by the action of spinodal instabilities as the expanding matter traverses the
unstable phase-coexistence region.

VI. CONCLUSIONS

In this work we have shown that the interface tension related to a first-order phase transition may be evaluated
once the uniform-matter equation of state is available for the unstable regions of the phase diagram. It is a convenient
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feature of the method employed that knowledge of the interface profile functions is is not required, because their
determination can be quite complicated, as is the case for NJL model [20] (although it is easy for the LSM). In
addition to the EoS, the geometrical approach also requires a proper setting of three input parameters, namely the
characteristic densities ρg and Eg together with the length scale a. While this does encumber the numerical results

with some degree of uncertainty, our zero-temperature LSM result, γ0 = 13.18MeV/fm2, agrees within a few percent
with the approximate value obtained in Ref. [18], thus suggesting that those parameters were chosen reasonably.
The surface tension determined in the present fashion is entirely consistent with the employed model, including

the approximations and parametrizations adopted. For the effective quark models employed here, this amounts to
considering all the solutions to the gap equation (stable, metastable and unstable) and determine the relevant effective
quark masses. In most non-perturbative approximations (large Nc, mean field, etc.) the various quantities of interest,
such as the free energy density, become functions of this effective mass and will therefore also reflect the metastable
and unstable character of the configuration considered. As a cross check on our procedure, we have evaluated γ0 for
the LSM obtaining a result that differs by only about 2% from estimates based on the thin-wall approximation [18].
We have investigated the two-flavor NJL model as well as its more realistic three-flavor version.
Our main conclusion is that all these effective models generate relatively low values for the the surface tension. This

would favor the formation of quark matter and may thus have important astrophysical consequences regarding the
existence of pure quark stars. Of particular interest is the three-flavor NJL result, γ0 = 20.34MeV/fm2, because this
model is widely used in studies related to neutron stars. Here, for simplicity, we have considered pure quark matter
where all flavors share the same chemical potential, but it is just a technical matter to generalize our procedure so
as to include leptons (e, µ) in order to enforce β equilibrium (µd = µs = µu + µe , µe = µµ), although the additional
chemical potential introduces an increased degree of complexity into the features of the phase transition.
In principle, more refined treatments, such as the Polyakov-NJL model, can also be considered within the same

framework. However, because the effects of the Polyakov loop become more important above 100MeV [36] we
believe that our results, especially the three-flavor ones, can be considered as reasonably accurate, although numerical
variations may arise due to the parametrizations and approximations adopted.
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