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Hadron spectra and elliptic flow in high-energy heavy-ion collisions are studied within a (3+1)D
ideal hydrodynamic model with fluctuating initial conditions given by the AMPT Monte Carlo
model. Results from event-by-event simulations are compared with experimental data at both RHIC
and LHC energies. Fluctuations in the initial energy density come from not only the number of
coherent soft interactions of overlapping nucleons but also incoherent semi-hard parton scatterings
in each binary nucleon collision. Mini-jets from semi-hard parton scatterings are assumed to be
locally thermalized through a Gaussian smearing and give rise to non-vanishing initial local flow
velocities. Fluctuations in the initial flow velocities lead to harder transverse momentum spectra
of final hadrons due to non-vanishing initial radial flow velocities. Initial fluctuations in rapidity
distributions lead to expanding hot spots in the longitudinal direction and are shown to cause a
sizable reduction of final hadron elliptic flow at large transverse momenta.
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I. INTRODUCTION

One of the striking phenomena in high-energy heavy-
ion collisions at the Relativistic Heavy-ion Collider
(RHIC) and the Large Hadron Collider (LHC) is the
collective flow [1–7] generated by the tremendous pres-
sure of the dense matter, from the quark-gluon plasma
in the early time to the hadronic resonance gas in the late
stage of the evolution. Such collective transverse flow in-
fluences not only the transverse momentum spectra but
also the azimuthal anisotropy or anisotropic flow of the
final hadrons [8–10]. Anisotropic flow arises from the col-
lective expansion of dense matter with initial geometric
anisotropy. The simplest example is the hydrodynamic
expansion of dense matter with a smooth initial energy
density distribution in non-central heavy-ion collisions.
The initial radial pressure gradient in the almond-shaped
dense matter is asymmetric in the azimuthal angle. Such
an asymmetric pressure gradient drives the system into a
transverse expansion and transforms the initial geometric
asymmetry into momentum asymmetry in azimuthal an-
gle. The second Fourier coefficients of hadron azimuthal
distributions are known as the elliptic flows. The large
values of elliptic flow as measured in semi-central heavy-
ion collisions at RHIC and LHC suggest the formation
of a strongly coupled quark-gluon plasma close to a per-
fect fluid [11–17]. Comparisons of experimental data on
elliptic flow and viscous hydrodynamic simulations can
now provide phenomenological constraints on the specific
shear viscosity (the ratio of shear viscosity to entropy
density) of the quark-gluon plasma [18–22].

One of the critical inputs for the hydrodynamic model
of heavy-ion collisions is the initial condition. Smoothed
distributions of the initial energy density from either a
Glauber or Color Glass Condensate (CGC) model of par-
ton production were used in some recent hydrodynamic

calculations [10, 19–23]. However, one has to resort
to event-by-event hydrodynamic simulations [24–35] to
take into account the fluctuation in the initial conditions.
Such fluctuating initial conditions have been shown to be
responsible for odd harmonic flows (harmonic coefficients
of the azimuthal anisotropy), such as the triangular flow
[36], as well as the double-peak structure of dihadron cor-
relation [38–44] in the final hadron spectra. These odd
harmonic flows and dihadron correlations persist even
in the most central heavy-ion collisions due to fluctua-
tion of the initial local parton density [45]. Because of
approximate longitudinal boost invariance of the local
parton density in the initial condition, anisotropic flows
in transverse momentum spectra are also correlated in
pseudo-rapidity leading to the observed “ridge” structure
in dihadron correlation in azimuthal angle and pseudo-
rapidity [44–51].

Most of recent event-by-event hydrodynamic studies
[28–31, 33–35, 52] employ the Glauber [53] or CGC model
[54, 55] of parton production for the initial transverse
energy density distribution. The Monte Carlo (MC)
Glauber model assumes an initial energy density that is
proportional to the transverse density of the number of
wounded nucleons or a linear combination of the number
of wounded nucleons and binary nucleon-nucleon colli-
sions. The Monte Carlo (MC) CGC inspired models use
the Kharzeev-Levin-Nardi (KLN) description [56, 57] of
initial gluon production per wounded nucleon pair whose
produced gluon multiplicity also depends on the impact
parameter. Such fluctuating or bumpy initial energy
density distributions in the event-by-event hydrodynamic
simulations affect both the transverse momentum spec-
tra and the azimuthal anisotropic flow as compared to
the event-averaged smooth initial conditions, due to the
increased local pressure gradient around hot spots or cold
valleys. The transverse expansion of these hot spots amid
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the overall expanding medium also leads to large values
of odd harmonic azimuthal anisotropy of the final hadron
spectra which will give rise to a conic structure in the di-
hadron azimuthal correlation [45, 49, 50].

The initial conditions used for recent event-by-event
hydrodynamic simulations have mostly assumed zero lo-
cal flow velocities. Some of the hydro simulations [24–26]
have included local velocity and longitudinal fluctuation.
But their effects have not been systematically studied
before. Since initially produced partons are basically un-
correlated in different nucleon-nucleon collisions, such an
assumption is approximately correct for initial conditions
that are smoothed over a transverse area much larger
than the nucleon size. However, when fluctuation of ini-
tial energy density over the range of a nucleon size or
smaller is considered, the initial local flow velocities are
nonzero and their effects are non-negligible. The nonzero
local flow velocity can arise from multiple parton correla-
tion in mini-jets production which becomes the dominant
mechanism for initial parton production in high-energy
heavy-ion collisions at RHIC and LHC [58–60]. Mini-jets
are clusters of many partons collimated in phase space.
After initial thermalization, correlations of these partons
associated with a pair of mini-jets are not necessarily
destroyed and thus lead to non-vanishing local flow ve-
locities. Such local flow velocities are expected to in-
crease the final hadron multiplicity and the inverse slope
of hadron transverse momentum spectra. They should
also lead to small initial collective radial flow velocity at
the outer region of the dense matter, which was found
empirically important to explain the experimental data
on HBT correlations [61]. The initial local transverse
flow velocities due to mini-jets can also lead to intrin-
sic same-side and away-side dihadron correlations which
are not induced by the collective expansion of the dense
matter. Similarly, fluctuations in the local longitudinal
flow velocity are also important and should be included
in (3+1)D hydrodynamics [62].

In this paper, we will study the effects of fluctuat-
ing initial flow velocities within an ideal (3+1)D hydro-
dynamic model using the initial conditions as provided
by the AMPT (A Multi-phase Transport ) Monte Carlo
model [63]. Such initial conditions contain mini-jets given
by the HIJING Monte Carlo model [58, 59] and initial
thermalization via the parton cascade within the AMPT
model. We will study the effects of initial local flow ve-
locity fluctuations in both transverse and longitudinal
directions on the final hadron multiplicity distribution,
transverse momentum spectra, elliptic flow as well as
dihadron correlations. We will show the importance of
the initial local flow velocity fluctuation in the study of
hadron spectra and elliptic flow and therefore the cur-
rent effect of extracting shear viscosity from comparisons
between hydro calculations and experimental data.

The rest of this paper is organized as follows. In Sec.
II, we will give a brief description of the (3+1)D ideal
hydrodynamic model that we have developed, including
a new projection method for calculation of the freeze-

out hyper surface and determination of initial conditions
from the AMPT model. We will compare the calcu-
lated hadron spectra and elliptic flow with experimental
data from RHIC and LHC in Sec. III. We will inves-
tigate in detail the effects of initial local flow velocities
on hadron spectra and elliptic flow by comparing hydro-
dynamic simulations with and without initial local flow
velocities in Sec. IV. We study the sensitivity of final
hadron spectra and elliptic flow in Sec. V with a com-
parison between hydro results with a Chemical Equili-
brated (CE) Equation Of State(EoS) and Partial Chemi-
cal Equilibrium (PCE) EoS. We conclude in Sec. VI with
a discussion on the dihadron correlations from event-by-
event hydrodynamics. We will give a brief description of
the SHASTA algorithm that we use to solve the (3+1)D
hydrodynamic equations in the Appendix.

II. IDEAL (3+1)D HYDRODYNAMICS

A. Conservation equations

The ideal hydrodynamic model of high-energy heavy-
ion collisions is based on the assumption that local ther-
mal equilibrium is achieved at some initial time τ0 and
the evolution of the system afterwards can be described
by conservation equations for energy-momentum tensor
and net baryon current,

∂µT
µν = 0, (1)

∂µJ
µ = 0, (2)

where the energy-momentum tensor and net baryon cur-
rent can be expressed as

T µν = (ε+ P )uµuν − Pgµν ,

Jµ = nuµ, (3)

in terms of the local energy density ε, pressure P , the
metric tensor gµν , net baryon density n (or any con-
served charges) and time-like 4-velocity uµ with u2 = 1.
The above 5 equations contain 6 variables and can be
closed by the equation of state (EoS) P = P (ε, n). For
systems with zero net baryon density, the net baryon cur-
rent is always zero and the above equations contain only
5 variables. This will be the case that we consider in
this paper. We will use the parameterized EoSL s95p-v1
by Huovinen and Petreczky [64] which has a cross-over
between the lattice QCD results at high temperature at
T = 250 MeV and hadron resonance gas below T = 180
MeV. Such an EoS is valid only for zero baryon number
density or chemical potential. For simplicity, however, we
will assume the same EoS for all region of dense matter
in our calculation, including large rapidity region where
the net baryon density is nonzero.
The velocity of a fluid element in Cartesian coordinates

xµ = (t, x, y, z) is defined as [65]

uµ ≡ dxµ

dσ
≡ u0(1, ~̃v⊥, ṽz) (4)
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where dσ2 = dt2−dx2−dy2−dz2 and spatial components
of the flow velocity are defined as ṽi = ui/u0 (i = x, y, z).

The time-component is u0 = 1/
√
1− ṽ2.

We will work in this paper with the invariant-time co-
ordinate Xµ = (τ, x, y, ηs) where τ =

√
t2 − z2 and the

spatial rapidity ηs are defined as,

t = τ cosh ηs,

z = τ sinh ηs . (5)

The metric tensor gµν = diag(1,−1,−1,−1/τ2) and cor-
respondingly gµν = diag(1,−1,−1,−τ2) are given by the
invariant line element ds2 = gµνdX

µdXν = dτ2 − dx2 −
dy2 − τ2dη2s in the invariant-time coordinate. The veloc-
ity 4-vector in this coordinate is,

Uµ ≡ dXµ

ds
=

dXµ

dxν

dxν

ds
=

dXµ

dxν
uν (6)

=





u0 cosh ηs − uz sinh ηs
~u⊥

1
τ (−u0 sinh ηs + uz cosh ηs)



 ≡ U τ





1
~v⊥
vη
τ





where vz , ~v⊥ and vη are defined as [66],

~v⊥ = ~̃v⊥ cosh(yv)/ cosh(yv − ηs),

vη = tanh(yv − ηs),

yv denotes the rapidity of the longitudinal flow velocity

as given by ṽz = tanh yv and U τ = 1/
√

1− v2
⊥
− v2η.

Since we assume an EoS that is independent of the
local baryon number density or chemical potential, the
baryon current conservation equation decouples from the
energy-momentum conservation. We will regard T ττ ,
T τx, T τy, T τη and Jτ as independent variables in the
conservation equations. Other components of the energy-
momentum tensor and the baryon current can be ex-
pressed in terms of these 5 variables from the defini-
tions in Eq. (3). For example, from definition T τx =
(ε+P )U τUx, one can express T xx = (ε+P )UxUx+P =
vxT

τx+P . With these independent variables, we can use
the SHASTA(SHarp And Smooth Transport Algorithm)
algorithm, which is designed to solve partial differential
equations with the form ∂t(T )+∂i(viT ) = S, to solve the
hydrodynamic equations. These conservation equations
can be cast in the following form by variable substitu-
tions,

∂τ (τT
ττ )− τ∇ · (vT ττ ) = Sτ ,

∂τ (τ ~T
τ⊥)− τ∇ · (v~T τ⊥) = ~S⊥,

∂τ (τT
τη)− τ∇ · (vT τη) = Sη,

∂τ (τJ
τ )− τ∇ · (vJτ ) = 0, (7)

with the source terms,





Sτ

~S⊥

Sη



 =





τ∇ · (vP ) − v2η(T
ττ + P )− P

−τ ~∂⊥P
−(1/τ)∂ηP − 2T τη



 , (8)

where∇·(vR) = ~∂⊥ ·(~v⊥R)+∂ηs
(vηR)/τ for any variable

R. The energy density is determined from T τν through a
root finding method by iterating the following equation,

ε = T ττ − M2

T ττ + P (ε)
, (9)

to an accuracy |δε| < 10−15, where M2 = (T τ⊥)2 +
(τT τη)2. The initial value of ε for the iteration is ap-
proximated by ε = T ττ . The flow velocity is given by

~v⊥ = ~T τ⊥/[T ττ + P (ε)], (10)

vη = τT τη/[T ττ + P (ε)]. (11)

B. FCT-SHASTA Algorithm

The conservation equations in Eq. (7) have the gen-
eral form of coupled convective diffusion equations which
can be solved using extended FCT (Flux-Corrected
Transport)-SHASTA algorithm [67–69]. Here we give a
brief overview of the algorithm using the following 1D
partial differential equation as an example:

∂tρ+ ∂x(vρ) = 0. (12)

The FCT-SHASTA algorithm first evolves this equa-
tion by a transport and diffusion stage which ensures the
solution’s monotonicity and positivity,

ρtdj =
1

2
Q2

−(ρ
n
j−1 − ρnj ) +

1

2
Q2

+(ρ
n
j+1 − ρnj )

+(Q+ +Q−)ρ
n
j , (13)

Q+ = (
1

2
− v

1/2
j

δt

δx
)/

[

1 + (v
1/2
j+1 − v

1/2
j )

δt

δx

]

, (14)

Q− = (
1

2
+ v

1/2
j

δt

δx
)/

[

1− (v
1/2
j−1 − v

1/2
j )

δt

δx

]

, (15)

where td stands for “transport and diffusion”, j de-
notes the discretized space index in δx and n the time

step in δt, v
1/2
j denotes the value of vj at half time-

step n + 1/2 which is evaluated with a 2-step Runge-
Kutta method. The derivation of Q− and Q+ can be
found in the Appendix. In the zero-velocity limit (where
Q+ = Q− = 1/2) the above solution becomes,

ρtdj = ρnj − 1

8
(ρnj+1 − 2ρnj + ρnj−1)

= ρnj − fj+1/2 + fj−1/2, (16)

from which one can clearly identify the diffusion term
1
8 (ρ

n
j+1 − 2ρnj + ρnj−1). The general form of the diffusion

can be expressed by the flux fj±1/2 = ± 1
8 (ρj±1 − ρj). In

the second stage of the FCT-SHASTA algorithm, an anti-
diffusion term is added to the transported and diffused
result. Usually the anti-diffusion term are calculated in
the FCT by subtracting low order from high order trans-
port results to make sure the anti-diffusion is accurate
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enough. Since ripples arise in high order transport al-
gorithm, the flux in the anti-diffusion term must be cor-
rected to make sure no new maximum or minimum are
produced. In our calculation, the flux limiter developed
by Zalesak [68] in the anti-diffusion stage is extended to
a full multi-dimensional FCT algorithm. In this multi-
dimensional algorithm the 1D FCT-SHASTA algorithm
with time-splitting [69] is used along one direction at a
split-time step, while a x → y → ηs → y → x rota-
tion is used to extend the FCT-SHASTA algorithm to
multi-dimensions and to suppress the numerical eccen-
tricity produced in transverse direction during the hy-
drodynamic evolution.
We will use the second order midpoint Runge-Kutta

method to include the source term S in a differential
equation,

dρ

dt
= S, (17)

which involves two steps,

1. ρn+1/2 = ρn + 1
2δtS(t, ρ

n)

2. ρn+1 = ρn + δtS(t+ δt/2, ρn+1/2)

The energy density and velocity calculated in half time
step δt/2 can be used in the FCT-SHASTA algorithm
to improve the numerical precision as described in the
Appendix. The 2nd order Runge Kutta method can sig-
nificantly improve the numerical accuracy and remove
the numerical diffusion for much larger time steps.
We use the following simplified conservation equation

to describe the numerical method and procedures of
a combined FCT-SHASTA and the 2nd order Runge-
Kutta algorithm in solving hydrodynamic equations in
our study,

∂τT + ∂i(viT ) = S, (18)

where we use T ≡ τT τν to denote one component of the
energy-momentum tensor.

1. Calculate source term at time step n: S =
S(τn, εn, vni , T n).

2. Evolve ∂τT + ∂i(viT ) = 0 to time step n+ 1/2 by
using SHASTA algorithm to get T ′n+1/2.

3. Update to T n+1/2 = T ′n+1/2 +
0.5∆τS(τn, εn, vni , T n) and use the root-finding
method to calculate the energy density and velocity

εn+1/2, v
n+1/2
i .

4. Calculate source term at half-time step n + 1/2:

S = S(τn+1/2, εn+1/2, v
n+1/2
i , T n+1/2).

5. Evolve ∂τT +∂i(viT ) = 0 to time step n+1 by us-
ing SHASTA algorithm with half time step velocity

v
n+1/2
i to obtain T ′n+1.

6. Update to T n+1 = T ′n+1 +

∆τS(τn+1/2, εn+1/2, v
n+1/2
i , T n+1/2) and cal-

culate the energy density and velocity for the next
time step εn+1, vn+1

i via root-finding method.

We refer readers to the Appendix for more details about
the SHASTA algorithm. We have used 1D SHASTA al-
gorithm with time-splitting [69] to solve the hydrody-
namic equations and it is easy to implement parallel com-
puting in the future. In the current event-by-event simu-
lations, only high level parallel computing is used where
events run on separate CPU’s. The most time consuming
part in hydrodynamic simulations is to calculate spec-
tra of direct thermal hadrons and decay products from
hundreds of resonances for comparison with experimental
data. The CPU hours used in our simulations are signif-
icantly reduced by our improved algorithm to calculate
the freeze-out hyper-surface.

C. Freeze Out and Hadronization

We will use the Cooper-Frye formula [70] to calculate
the momentum distribution for particle i with degeneracy
gi:

E
dNi

d3P
=

dNi

dY pT dpTdφ
= gi

∫

Σ

pµdΣµf(p · u), (19)

where dΣµ is the normal vector of a small piece of freeze-
out hyper-surface beyond which the temperature falls
below the freeze-out temperature Tf or energy density
ε falls below the freeze-out density εf . Hadrons pass
through the freeze-out surface element is assumed to obey
thermal distribution at temperature Tf ,

f(p · u) = 1

(2π)3
1

e((p·u−µi)/Tf )) ± 1
, (20)

where ± stands for fermions and bosons respectively, u
is the flow velocity. All resonances are assumed to freeze
out from the same hyper surface and decay into stable
particles. The invariant energy of particle in comoving
frame is,

E = p · u (21)

= uτ [mT cosh(Y − ηs)− ~p⊥ · ~v⊥ −mT sinh(Y − ηs)vη]

where pµ = (mT cosh(Y − ηs), ~p⊥,mT sinh(Y − ηs)/τ).
In order to calculate the spectra, we need to know the
freeze-out hyper surface Σ = (τf , x, y, ηs) at freeze-out
time τf . The normal vector for one piece of freeze-out
hyper surface in invariant-time coordinate is,

dΣµ = (τfdxdydηs,−τfdτdydηs,−τfdτdxdηs,−dτdxdy)
(22)

In a simple cuboidal method by Hirano [66], finite grid
sizes ∆τ , ∆x, ∆y and ∆ηs are used to calculate dΣµ.
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The surface elements are calculated independently for
each direction. In the τ -direction, a cuboidal volume
dΣτ = τf∆x∆y∆ηs is recorded when the freeze-out tem-
perature falls between T (τn, x, y, ηs) at time step n and
T (τn+1, x, y, ηs) at time step n + 1. The norm vector
points to the low energy density direction along the τ
axis. The freeze-out time τf and 4-velocity u are calcu-
lated from interpolation between time step τn and τn+1.
In the x-direction, dΣx = −τ∆τ∆y∆ηs is recorded at
time step n where Tf falls between T (τn, xi, y, ηs) and
T (τn, xi+1, y, ηs). Hirano’s method seems to overestimate
the freeze-out hyper surface in one single cell where the
total cuboidal volume is always added without consider-
ing the cut-through position. After the decomposition of
pµdΣµ to 4 directions across several hydrodynamic cells,
one finds that the overestimated part in one cell actually
fills up the underestimated part in another. It is quite a
good approximation as long as the velocity at the freeze-
out hyper surface does not change too much and its 3
components can be treated as the flow velocity on the
cube edge. The requirement can be easily fulfilled by us-
ing one single hydro cell cube. The problem is that the
size of the data file for the whole freeze-out hyper surface
strongly depends on the time and space grid size used in
solving the hydrodynamic equations. If a smaller grid
size is used (for example ∆τ = 0.01 fm and ∆x = 0.1
fm) to improve the numerical accuracy in the transport
stage, the data file becomes huge and the calculation of
hadron spectra for hundreds of resonances will be very
time consuming.
To improve the computation efficiency for finer grids,

one can divide the whole hyper surface into smaller pieces
inside interpolation cubes each extending to several hy-
drodynamic grid cells along 4 directions [10, 71–73]. Each
piece of surface elements is presented by the intersections
si on edges of an interpolation cube where the hyper
surface cuts through, and its area is approximated by
a group of triangles (in the (2+1)D case) or a group of
tetrahedra (in the (3+1)D case) formed by these intersec-
tions. The main task is to triangulate these intersections
in (2+1)D or (3+1)D hydro, and calculate the areas of
the triangles or volumes of the tetrahedra piece by piece.
In the algorithm developed by Kataja, Ruuskanen

(KR) and collaborators [71, 72] and later used in the
Azhydro code by Kolb [10] for the (2+1)D case, these
intersections on the edges of an interpolation cube are
ordered into a circular sequence. The area S of one piece
of hyper surface inside an interpolation cube is approxi-
mated by the summation of the areas of a group of tri-
angles with each triangle constructed by connecting two
nearby intersections with the center point O of all the
intersections (as shown in the left panel of Fig. 1),

S =

N
∑

i=1

△Osisi+1, (23)

where N is the number of intersections and sN+1 = s1.
The flow velocity and energy density on this piece of sur-

s3

s0

s1

s2

O2

�Vout
�Vnorms0

s1

s2

s3

O2

O

KR Method Projection Method 

FIG. 1: (Color online) An example of (2+1)D freeze-out hy-
per surface. In the projection method, there are 4 triangles
formed on the convex hull ♦s0s1s2s3. Only two are chosen by
the criterion ~Vnorm · ~VLE > 0, where ~VLE is the low energy
density direction and ~Vnorm is the outward normal vector of
each surface triangle.

face element used in the Cooper-Frye formula is approx-
imated by interpolation of their values at the 8 corners
of the cube. In the KR method for the (2+1)D case, the
most difficult part is to order these intersections in a cir-
cular sequence and this is achieved by using a bit-chart
of the distances between the mid-points of any 2 of the
12 edges of the interpolation cube. Once the intersec-
tions are ordered, the area of one triangle formed by the
center point O and two neighboring intersections can be
calculated from:

~V 2+1D
norm =

1

2

∣

∣

∣

∣

∣

∣

n i j
A0 A1 A2

B0 B1 B2

∣

∣

∣

∣

∣

∣

= ndΣ0 + idΣ1 + jdΣ2, (24)

where A and B are the two vectors that span the triangle
in (2+1)D hydro. This method can be considered as one
variant of the Marching Cubes algorithm [74].
The above KR method has been extended to (3+1)D

hydro recently by the McGill group [73]. A bit-chart for
32 edges on the dτdxdydηs super cube was constructed.
The triangles are replaced by tetrahedra. The volume of
one tetrahadron is then,

~V 3+1D
norm =

1

6

∣

∣

∣

∣

∣

∣

∣

n i j k
A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

∣

∣

∣

∣

∣

∣

∣

= ndΣ0+idΣ1+jdΣ2+kdΣ3,

(25)
where A, B and C are the three vectors that span the
tetrahedron in the (3+1)D case.
In this paper, we develop a projection method to cal-

culate the freeze-out hyper surface dΣµ in our (3+1)D
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hydrodynamic simulation. We illustrate the method here
for the (2+1)D case as shown in the right panel of Fig. 1.
The extension to (3+1)D or (n+1)D is straightforward.
Here we list a step-by-step procedure for calculating the
freeze-out hyper surface in our projection method:

• Identify interaction points whenever energy den-
sity difference ǫ− ǫfr changes sign between two grid
points, where ǫfr is the freeze-out energy density.

• An “n-simplex” is an n-dimensional polytope which
is the convex hull of its n+1 vertices. A 2-simplex is
a triangle, a 3-simplex is a tetrahedron, a 4-simplex
is a pentachoron [75].

• One can calculate the area of one piece of hyper
surface directly if there are only 3 intersections on
the edges of the interpolation cube. For 4 or more
intersections, select any 4 intersections si=0,1,2,3 to
construct one 3-simplex ♦s0s1s2s3 that has 4 tri-
angles on its surface as shown in the right panel of
Fig. 1.

• Consider one triangle △s0s1s3 whose center is de-
noted by O2. The vector between the fourth inter-
section point and the center of the chosen triangle,
~Vout = ~s2O2 is defined as the outward direction of
the tetrahedron on △s0s1s3 side. In the (3+1)D

case, ~Vout is defined as ~snOn where sn is the inter-
section point opposite to center of the tetrahedron
On.

• The normal vector of △s0s1s3 has two directions
(this is also true for 3+1D case). Choose the out-

ward normal vector ~Vnorm that satisfies ~Vnorm ·
~Vout > 0.

• For an interpolation cube with more than 4 in-
tersections, select another intersection si out-
side the first constructed 3-simplex or tetrahedron
♦s0s1s2s3. This intersection si is considered out of
the tetrahedron on a triangle △s0s1s3 side when
~Vnorm · ~O2si > 0. Find all possible triangles of the
tetrahedron that the intersection si is out of. Form
a new tetrahedron between si and each of these
triangles. Remove those triangles that are shared
between the first and the new tetrahedra to form a
new convex hull.

• Repeat the above step for the rest of intersections
and the previous formed convex hull until a closed
convex hull is formed with all the outer triangles
that one has constructed.

• Consider ~viLE as the low energy density flow vector
for each intersection point on one triangle △s0s1s3.

Then define ~VLE =
∑

i=0,1,3 ~viLE as the low energy
density flow vector of the triangle △s0s1s3. This
triangle will be considered as a piece of the freeze-

out hyper surface only when ~Vnorm · ~VLE > 0.

• Use the criteria ~Vnorm · ~VLE > 0 to select all the
triangles of the closed convex hull that will form
the freeze-out hyper surface of the interpolation
cube, with contribution from each triangle given

by ~Vnorm.

The above algorithm can be easily extended to the
(3+1)D case with 3-simplex replaced by 4-simplex and

triangles replaced by tetrahedra whose ~Vout, ~Vnorm and
~VLE can be similarly defined.
If 4 intersections are coplanar in (2+1)D or 5 intersec-

tions are co-tetrahedron in (3+1)D hydro, random tiny
placements with an amplitude of 10−9 will be applied to
the intersections before the above procedure is applied in
our algorithm. A numerical error of the order of 10−9 for
the hyper surface calculation is negligible but this will
keep the algorithm continue to run for all possible hyper
surfaces. This has been checked for calculating the vol-
ume of a 3D cube with the same time coordinate τ in 4
dimensional space.
The hyper surface can cut through the same edge of the

interpolation cube more than once which are recorded on
the hydro cubes several of which make up the interpola-
tion cube. In all above methods, if the number of cuts
is odd, the intersections are approximated by a single
point. An even number of intersections on a single edge
of the interpolation cube are neglected. This approxi-
mation can be improved in the future by refining our
projection method at the expense of minimal increase of
computer time. However, one still has to neglect multi-
ple intersections of the hyper surface with the basic hydro
cubes.
We have compared our projection method with Hi-

rano’s cuboidal freeze-out method, and find very tiny
discrepancies in multiplicity distribution and pT spectra.
However, for small grid size, our projection method is
much faster than the cuboidal freeze-out method in cal-
culating the final particles’ spectra, especially in event-
by-event simulations of higher order harmonic flows.

D. Resonance decays

To calculate the final hadron spectra from hydrody-
namic simulations, one needs to include both direct ther-
mal hadrons that go through the freeze-out surface and
decay products from resonances which are assumed to
freeze out at the same temperature. Resonances with
mass up to 1.68 GeV are considered in the current cal-
culation.
We have extended the numerical procedure for reso-

nance decay from Kolb’s (2+1)D Azhydro code to our
(3+1)D hydrodynamic simulations in this study. In the
original Azhydro code, Bjorken scaling is assumed for the
rapidity distributions of thermal hadrons and resonances.
In this case, final hadron spectra at any given rapidity
will contain decay products from resonances in all rapidi-
ties with a uniform and infinitely long distribution. In
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our (3+1)D hydro calculation, this uniform and infinite
rapidity distribution of resonances is replaced with the
more realistic ones that are not smooth in each event as
determined at the freeze-out in our hydro evolution with
the fluctuating AMPT initial conditions. In our numeri-
cal calculations, we still have to limit the rapidity range
to a finite value [−8, 8] and use a linear interpolation out-
side this range assuming yields for all resonances to be
zero at Y = ±20.

E. Initial Conditions

To incorporate fluctuations and correlations in both
transverse and longitudinal flow velocities in event-by-
event (3+1)D hydrodynamic simulations, we will use the
AMPT model [63] to provide the local initial energy-
momentum tensor in each hydrodynamic cell. The
AMPT model uses the HIJING model [58–60] to generate
initial partons from hard and semi-hard scatterings and
excited strings from soft interactions. The number of ex-
cited strings in each event is equal to that of participant
nucleons. The number of mini-jets per binary nucleon-
nucleon collision follows a Poisson distribution with the
average number given by the mini-jet cross section, which
depends both on the colliding energy and the impact pa-
rameter through an impact-parameter dependent parton
shadowing [58] in a nucleus. In this model, the total local
energy-momentum density of partons and its fluctuations
will be determined by the number of participants, bi-
nary nucleon-nucleon collisions, number of mini-jets per
nucleon-nucleon collision and the fragmentation of ex-
cited strings. HIJING uses the Glauber model to de-
termine the number of participants and binary nucleon-
nucleon collisions with the Wood-Saxon nuclear distribu-
tion.
The formation times for partons from mini-jets pro-

duced via semi-hard scatterings are short. Their energy-
momentum density can be used as part of the initial con-
ditions for the hydrodynamic evolution. However, strong
color fields in the soft strings take time to materialize
and their contribution to the initial energy-momentum
density at earlier times is hard to estimate. In the option
that we use in AMPT, strings are melt via conversion of
hadrons into quarks and anti-quarks after the string frag-
mentation which will participate in the parton cascade
together with hard and semi-hard partons. The forma-
tion time of these soft partons are estimated according
to their transverse momentum and energy (tf ∼ 2p0/p

2
T ).

In our study we allow AMPT model to run through the
parton cascade for an initial period of time. We record
the space-time points of the last scattering or formation
time for all the partons. Most of the partons are found to
concentrate along the hyperbola of an initial proper time
τ0. As an approximation, we simply assign the proper
time τ0 to all partons and use their 4-momenta to cal-
culate the local energy-momentum tensor as the initial
condition for our ideal hydro evolution. In this approxi-

mation for the initial conditions at a given proper time,
parton interaction at large spatial rapidity at very late
Cartesian time in the AMPT model is neglected. These
are questionable approximations that one has to keep in
mind when one considers theoretical uncertainties and
future improvements. In principle, one should run the
AMPT model to the end (no further interactions). The
recorded particles’ (both partons and hadrons) space-
time positions when they cross the hyperbola with fixed
τ0 will provide the initial condition for the hydrodynam-
ical evolution. This is, however, too demanding in com-
puter time.
The 4-momenta and space coordinates of partons from

the AMPT model according to the above description will
be used to calculate the local energy-momentum tensor
as the initial conditions for our event-by-event (3+1)D
hydrodynamic simulations. Its value in each grid cell
is approximated by a gaussian distribution in invariant-
time coordinates,

T µν(τ0, x, y, ηs) = K
∑

i

pµi p
ν
i

pτi

1

τ0
√

2πσ2
ηs

1

2πσ2
r

× exp

[

− (x− xi)
2 + (y − yi)

2

2σ2
r

− (ηs − ηis)
2

2σ2
ηs

]

,

(26)

where pτi = miT cosh(Yi − ηis), p
x
i = pix, p

y
i = piy and

pηi = miT sinh(Yi − ηis)/τ0 for parton i, which runs over
all partons produced in the AMPT model simulations.
We have chosen σr = 0.6 fm, σηs

= 0.6 in our calcula-
tions. The transverse mass mT , rapidity Y and spatial
rapidity ηs are calculated from the parton’s 4-momenta
and spatial coordinates. Note here that the Bjorken scal-
ing assumption Y = ηs is not used here because of early
parton cascade before the initial time and the uncertainty
principle applied to the initial formation time in AMPT.
The scale factor K and the initial time τ0 are the only
two parameters that one can adjust to fit the experimen-
tal data on central rapidity density of produced hadrons.
Note that the Gaussian smearing in Eq. (26) smoothes

out the energy-momentum tensor within several hydro
grid cells. Such a smearing acts like an initial thermaliza-
tion process similar to the parton cascade in the AMPT
model within the initial time τ0. The initial matter in
each grid cell is then assumed to reach a local thermal
equilibrium and one can obtain the initial local energy
density and flow velocity from Eq. (26) using the root
finding method in Eqs. (9-11). This is equivalent to the
prescription in Ref. [76] for a constant proper time sur-
face.

III. HADRON SPECTRA FROM
EVENT-BY-EVENT HYDRODYNAMICS

In this section, we will compare hadron spectra from
our event-by-event (3+1)D ideal hydrodynamic simula-
tions to experimental data at RHIC and LHC energies.
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For Au + Au collisions at the RHIC energy
√
s = 200

GeV, we use a scale factor K = 1.45 and an initial time
τ0 = 0.4 fm/c in the initial conditions from the AMPT
model. We have used grid spacings δx = δy = 0.3
fm, δηs = 0.2 and δτ = 0.04 fm/c with grid size
Lx×Ly ×Lη = (30fm)× (30fm)× 6. For Pb+Pb colli-
sions at the LHC energy

√
s = 2.76 TeV, we use K = 1.6,

τ0 = 0.2 fm/c, δx = δy = 0.2 fm, δηs = 0.3 and δτ = 0.03
fm/c and grid size Lx×Ly×Lη = (30fm)×(30fm)×12.
With these grid spacings and sizes, we have checked that
the increase of the total entropy of the system due to the
numerical viscosity over the entire evolution duration of
about 20 fm/c is less than 1%.
Shown in Figs. 2, 3 and 4 are pseudo-rapidity distribu-

tions for charged hadrons, pT spectra for charged pions
and pT spectra for identified charged hadrons, respec-
tively, from our event-by-event ideal hydrodynamic cal-
culations. Also shown are experimental data for Au+Au
collisions with different centralities at the RHIC energy.
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FIG. 2: (Color online) Charged hadron pseudo-rapidity distri-
butions from event-by-event (3+1)D ideal hydro (lines) with
AMPT fluctuating initial conditions compared to the PHO-
BOS experimental data [77] (symbols) for Au+Au collisions
at the RHIC energy

√
sNN = 200 GeV. Centralities and

the corresponding ranges of impact parameters are given by
STAR’s Glauber model results [78].

The experimental data on central pseudo-rapidity den-
sity of charged hadrons in the most central 0− 5% colli-
sions are used to calibrate the parameters, K = 1.45 and
τ0 = 0.4 fm/c, in our model for the initial conditions.
For other centralities, the range of impact parameters is
varied according to the Glauber model [78]. We assumed
the freeze-out temperature Tf = 0.137 GeV and the pa-
rameterized equation of state EoSL s95p-v1 [64]. The
spectra for charged hadrons include both direct thermal
hadrons and decay products from resonances with masses
up to 1.68 GeV. All hadron spectra agree with the exper-
imental data well for all centralities and pT < 3 GeV/c
except for protons which are about a factor of 1.2 smaller
than the data. The deficiency in proton spectra might be
caused by finite chemical potential due to chemical freeze-
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FIG. 3: (Color online) Transverse momentum spectra for π+

from event-by-event (3+1)D ideal hydro (lines) with AMPT
fluctuating initial conditions compared to the PHENIX [79]
and STAR experimental data [80] (symbols) for Au+Au colli-
sions at different centralities at the RHIC energy

√
sNN = 200

GeV

out time earlier than the pions and kaons [81, 82]. The
charged hadron yields at large rapidity from our (3+1)D
hydro calculation (Figs. 2) are somewhat larger than the
experimental data. In these large rapidity regions, the
net baryon density is quite large. One has to consider
the evolution of the net baryon density coupled to the
energy-momentum density and the EoS we used for zero
baryon chemical potential is no longer valid. Inclusion
of shear viscosity also slows down the longitudinal ex-
pansion and gives a narrower tail of the pseudo-rapidity
distribution of charged hadrons [31, 84].

The overall geometric shape of the overlapped region
and local density fluctuation of the initially produced
dense matter will lead to azimuthal anisotropies in the
final hadron spectra. The strong elliptic flow measured
during the first years of RHIC experiments is considered
as one of the evidences for a strongly coupled quark-gluon
plasma (sQGP) formed in the central Au+Au collisions
[13]. Recent efforts have been focused on extracting the
shear viscosity of the sQGP by comparing experimen-
tal data with viscous hydrodynamic calculations [19–22].
However, quantitative studies are complicated by uncer-
tainties in the initial conditions [83]. Inclusion of fluc-
tuations will add to the complexities of the problem. It
is therefore useful to study the variation of anisotropic
flows with more realistic initial conditions even in ideal
hydrodynamics without viscous corrections. Most re-
cent studies [27–31, 33–35] employed either Monte Carlo
Glauber[53] or Monte Carlo KLN [54] initial conditions,
both lack fluctuations in local flow velocity and longitu-
dinal distribution in pseudo-rapidity.

The differential harmonic flow vn of hadron spectra is
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FIG. 4: (Color online) Transverse momentum spectra for
identified particles from event-by-event (3+1)D ideal hydro
(lines) with AMPT fluctuating initial conditions compared
to the PHENIX experimental data (symbols) [79] for the
most central (0-5%) Au + Au collisions at the RHIC energy√
sNN = 200 GeV. A factor of 1.2 is multiplied to the hydro

proton spectra due to possible early chemical freeze-out.

defined as:

vn(pT , η) =

∫ 2π

0
dφ dN

dηpT dpT dφ cos
(

n(φ−Ψn)
)

∫ 2π

0
dφ dN

dηpT dpT dφ

, (27)

where Ψn can be the azimuthal angle for the participant-
plane (PP) in coordinate space of initial partons in the-
oretical studies or event-plane (EP) in momentum space
of the final hadrons in experimental analyses,

ΨPP
n =

1

n

(

arctan
〈r2 sin(nφr)〉
〈r2 cos(nφr)〉

+ π
)

, (28a)

ΨEP
n =

1

n
arctan

〈pT sin(nφp)〉
〈pT cos(nφp)〉

. (28b)

The average in Eq. (28a) for ΨPP
n is over all initial par-

tons weighted by their squared transverse coordinates
r2 = x2 + y2, while the average in Eq. (28b) for ΨEP

n is
over final particles weighted by their transverse momenta.
The corresponding hadronic flows will be denoted as vPP

n

and vEP
n , respectively. Note that the final hadron spec-

trum from Coorper-Frye formula is a continuous distribu-
tion function. Therefore, integrations over the transverse
momentum pT , pseudo-rapidity η and azimuthal angle φp

in calculating ΨEP
n will not introduce plane resolution due

to finite number of particles per event which will have to
be corrected for in experimental analyses.
In Fig. 5, we compare our ideal hydro calculation of

vEP
2 (solid lines) with the PHENIX data [85] for charged
hadrons within a pseudo-rapidity range [−0.35, 0.35] in
Au + Au collisions at

√
sNN = 200 GeV with different

centralities. The event-planes in the PHENIX analysis
were determined with 2 sub-events to correct for the
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FIG. 5: (Color online) Elliptic flow for charged hadrons with
respect to participant-planes (PP) (solid) and event-planes
(EP) (dashed) from event-by-event (3+1)D hydrodynamic
simulations with AMPT initial conditions compared to the
PHENIX data [85] (symbols) on vEP

2 for Au + Au collisions
at the RHIC energy

√
sNN = 200 GeV.
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FIG. 6: (Color online) Elliptic flow for π+ at different central-
ities from event-by-event ideal hydro simulations compared to
the STAR data [2] for Au+Au collisions at the RHIC energy√
sNN = 200 GeV.

event-plane resolution. Our hydro calculations fit the
experimental results quite well at low pT for all central-
ities. At higher pT , viscous corrections and other non-
equilibrium effects such as jet quenching [86–88] are ex-
pected to become important. Ideal hydrodynamics will
fail, producing much larger elliptic flow than the exper-
imental data. We also show vPP

n (dashed lines) from
our hydro calculations as determined by the participant-
plane. It is a very good approximation of vEP

n as deter-
mined by the event-plane, especially at low pT . In the
rest of this paper, we will focus on the elliptic flow vEP

2

with respect to event-planes.

To study the elliptic flow of identified hadrons, we
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FIG. 7: (Color online) Elliptic flow for identified particles at
centrality 30 − 40% from event-by-event ideal hydro simula-
tions (lines) compared to the STAR data [2] (symbols).

show in Fig. 6 our ideal hydro results on v2 for positively
charged pions in Au+Au collisions at the RHIC energy√
sNN = 200 GeV that fit the STAR experimental data

[2] very well in 10−20%, 20−30% and 30−40% centrality
bins for pT ≤ 1 GeV/c. Such an agreement with exper-
imental data in all centralities cannot be achieved with
smoothed initial conditions initial conditions according
to Glauber model. One, however, can achieve the same
agreement with smoothed initial condition but account-
ing for fluctuations in geometrical eccentricity [89]. In
our hydro calculations, we used 100 events for each cen-
trality bin. Much more events are needed for a true min-
imum bias (0− 80%) calculation using the AMPT initial
conditions. For one single centrality bin 30 − 40%, our
hydro results on v2 for identified charged pions and anti-
protons fit the STAR data [2] reasonably well as shown in
Fig. 7. But the hydro results for charged kaons deviates
significantly from the STAR data.

Following the same procedure with the same param-
eters for initial conditions from the AMPT model, we
can calculate hadron spectra in Pb+Pb collisions at the
LHC energy

√
s = 2.76 TeV. We have set the overall

scale factor K = 1.6 and the initial time τ0 = 0.2 fm/c
as constrained by the experimental data on the central
rapidity density of charged hadrons. Shown in Fig. 8
are the charged hadron rapidity distributions in Pb+Pb
collisions at different centralities from our (3+1)D ideal
hydro calculations. The ranges of impact parameters are
selected according to the centralities in the ALICE data
[91] for the central rapidity region.

The corresponding transverse momentum spectra of
charge hadrons in the central rapidity region |η| < 0.8 for
the most central Pb + Pb collisions also agree with the
experimental data well as shown in Fig. 9. The elliptic
flow in Pb+ Pb collisions at the LHC energy

√
s = 2.76

TeV in Fig. 10 is very similar to that in Au + Au col-
lisions at RHIC (see Fig. 5). The ideal hydro results
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FIG. 8: (Color online) Charged hadron rapidity distributions
from event-by-event ideal hydro calculations in Pb+Pb colli-
sions at

√
s = 2.76 TeV at different centralities as compared

to the ALICE experimental data [91].
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FIG. 9: (Color online) Transverse momentum spectra for
charged hadrons in the central rapidity region |η| < 0.8 from
event-by-event ideal hydro calculations in Pb + Pb collisions
at

√
s = 2.76 TeV as compared to the ALICE data [92].

agree with the ALTAS experimental data well in cen-
tral collisions but fail to describe the data at large pT
in peripheral collisions, indicating the importance of vis-
cous or non-equilibrium corrections. Here the charged
hadrons are restricted to |η| < 2.5 and event-planes are
determined with charged hadrons in the pseudo-rapidity
window 3.3 < |η| < 4.8 as in the ATLAS data. Shown
in Fig. 11 are v2 for identified hadrons as compared to
the preliminary ALICE data [90]. The (3+1)D hydro
results describe the flavor dependence quite well, except
anti-protons in the 10-20% centrality.
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FIG. 10: (Color online) Elliptic flow of charged hadrons in
the central rapidity region |η| < 2.5 from event-by-event ideal
hydro calculations in Pb + Pb collisions at

√
s = 2.76 TeV

compared to the ATLAS data [44]. Event-planes are deter-
mined with charged hadrons in 3.3 < |η| < 4.8.
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FIG. 11: (Color online) Elliptic flow from ideal hydro for
identified particles in Pb + Pb collisions with four different
centralities at the LHC energy

√
s = 2.76 TeV compared to

the preliminary ALICE data [90].

IV. EFFECTS OF LONGITUDINAL AND FLOW
VELOCITY FLUCTUATIONS

Most of the fluctuating initial conditions such as MC
Glauber or MC KLN model assume zero initial trans-
verse flow velocity while the longitudinal flow velocity
is assumed to be the same as the local spatial pseudo-
rapidity ηs in the Bjorken scaling model. The latest
(3+1)D viscous hydrodynamic model [29] also assumes
zero initial transverse flow velocity and a Bjorken scaling
scenario for the initial parton distribution in the longitu-
dinal direction with an overall envelop function adjusted
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FIG. 12: (Color online) Event averaged multiplicity, pT spec-
tra and v2 from ideal hydro with (solid) and without initial
flow (dashed) velocity in the initial conditions for 10 − 20%
Au+Au collisions at

√
s = 200 GeV/nucleon.

to reproduce the final hadron rapidity distribution.

The initial condition in Eq. (26) from the AMPTmodel
that we use in this study should contain non-vanishing
local transverse and longitudinal flow velocities as well
as fluctuations in the parton rapidity distribution. The
AMPT model uses the HIJING model for initial parton
production which contains many mini-jets as well as ex-
cited strings. After initial thermalization via parton cas-
cade within the initial time τ0 and the Gaussian smear-
ing in Eq. (26), these mini-jets will lead to small but
non-vanishing collective radial flow velocities as well as
large local flow velocity fluctuations. The local fluctu-
ating initial flow velocities due to mini-jets should also
have strong back-to-back correlation in azimuthal angle.
Such initial collective radial flow and local velocity fluc-
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FIG. 13: The event-averaged initial radial flow velocity along
the x and y-axis in the 30-40% semi-central Au+Au collisions
at

√
s = 200 GeV from the AMPT model at τ0 = 0.4 fm/c.

tuations should influence the final hadron spectra after
hydrodynamic evolution.

To check the influence of the initial flow velocity fluctu-
ations on hadron spectra, we show in Fig. 12 the pseudo-
rapidity distributions (top), transverse momentum spec-
tra (middle) and elliptic flow of positively charged pions
in 10-20% central Au +Au collision from our hydro cal-
culations with (solid) and without initial local flow ve-
locities (dashed). These two initial conditions have the
same initial local energy density distributions as deter-
mined by Eq. (9) with the initial energy-momentum ten-
sor from AMPT simulations via Eq. (26). The local flow
velocities as determined from Eqs. (10) and (11) are set
to zero in the latter case. There is a slight increase in
the hadron multiplicity or initial total entropy and the
inverse slope of hadron spectra and a slight decrease of
the elliptic flow at high pT due to the fluctuating initial
local flow velocities.

To understand the change in hadron transverse mo-
mentum spectra, we show in Fig. 13 the event-averaged
initial radial flow velocities along the x and y-axis in 30-
40% non-central Au+Au collisions at

√
sNN = 200 GeV

at an initial time τ0 = 0.4 fm/c. One can see that parton
interaction or thermalization during the initial time gen-
erates significant amount of radial flow that is anisotropic
in azimuthal angle and is responsible for the harder trans-
verse momentum spectra of final hadrons. Such radial
flow velocities in the initial conditions for the hydrody-
namic evolution is also shown to influence the HBT cor-
relation of final hadrons [61] and other aspect of hydro
evolution [93].

The fluctuation in the initial flow velocities seems to
defuse the initial geometrical anisotropy a little and leads
to slightly smaller elliptic flow for final hadrons as shown
in the lower panel of Fig. 12. The calculated elliptic flow

is determined mainly by the geometric eccentricity and
averaged over many events. We find, however, there are
significant differences between the elliptic flows with and
without the initial flow velocities on an event-by-event
basis. We characterize these differences by the variance

∆v2 =

√

√

√

√

Nevent
∑

i=1

(vWIF
2i − vWOF

2i )2/Nevent (29)

between the elliptic flow vWIF
2 with the initial flow ve-

locity and vWOF
2 without, where Nevent is the number

of events. As shown by the dot-dashed line in the lower
panel of Fig. 12, the variance is quite large reaching
about 0.07 at pT = 3 GeV/c. Note that we used hadrons
in the rapidity range 3.1 < |η| < 3.9 to determine the
event-planes and calculate the elliptic flow for hadrons in
the central rapidity region |η| < 1.0.
To investigate the effect of longitudinal fluctuation on

hadron spectra we compare our event-by-event hydro cal-
culations using the initial condition from the full AMPT
results with that using a tube-like smooth initial longi-
tudinal distribution. In the tube-like initial condition,
we take the initial energy-density and transverse flow ve-
locity from AMPT results in the central rapidity region
and assume these transverse fluctuations to be the same
along the longitudinal direction with an envelop function

H(η) = exp
[

−θ(|η| − η0)(|η| − η0)
2/2σ2

w

]

, (30)

in rapidity. The length of the plateau η0 in the cen-
tral rapidity region and the width σw of the Gaussian
fall-off at large rapidities are adjusted to fit the charged
hadron rapidity distribution. As another comparison, we
also calculate the elliptic flow from a one-shot AMPT
initial condition, which is the average of many AMPT
events each rotated by an angle to a common participant-
plane. We prefer this as one-shot-tube initial condition
since the initial parton density also has smooth tube-
like distribution in the longitudinal direction. Shown
in Fig. 14 are the transverse momentum spectra (upper
panel) and elliptic flow (lower panel) of charged pions
in semi-central (30-40%) Au+Au collisions at the RHIC
energy

√
sNN = 200 GeV with the full AMPT initial con-

ditions (solid lines) as compared to the initial conditions
with a tube-like structure in the longitudinal direction
(dot-dashed lines) and the one-shot AMPT with tube-
like longitudinal distribution initial condition (dashed).
The event-by-event fluctuations in the tube-like AMPT
initial conditions significantly reduce elliptic flow of final
hadrons with respect to the event-planes as compared to
the one-shot-tube AMPT initial condition. The slope of
the pT spectra from the event-by-event tube-like initial
conditions on the other hand is increased by the fluctua-
tions (both the energy density and flow velocity) or hot
spots in the transverse direction as compared to the spec-
tra from one-shot-tube initial conditions. Similar results
were found by both (2+1)D [32] and (3+1)D hydro [29]
calculations. However, fluctuations in the longitudinal
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direction in the full AMPT initial conditions have also
hot spots in the longitudinal direction. The expansion
of such longitudinal hot spots will dissipate more trans-
verse energy into the longitudinal direction. This in turn
decrease noticeably the value of the elliptic flow at large
pT compared to the results from tube-like event-by-event
AMPT initial conditions. The slope of the pT spectra
is also significant smaller than that from event-by-event
tube-like AMPT initial condition without fluctuation in
the longitudinal direction.
Since anisotropic flow, at large pT in particular, is used

to extract transport coefficients (such as shear viscosity)
from comparisons between experimental data and viscous
hydrodynamics, the inclusion of fluctuation in initial ra-
pidity distribution in the hydrodynamic calculations will
be necessary for more qualitative studies.
In all the above calculations of elliptic flows for iden-

tified charged hadrons in the central rapidity region
|η| < 1.0, the event-planes are determined using charged
hadrons in 3.1 < |η| < 3.9. To illustrate the sensitivity of
the calculated elliptic flows to the rapidity selection for
charged hadrons that determine the event-plane, we show
in Fig. 15 elliptic flows for hadrons in the central rapid-
ity region with the event-planes determined by hadrons
in different rapidity widows. The dependence on the ra-
pidity window is quite small. They are all slightly larger
than the elliptic flow measured against the participant-
planes (solid lines).
Since mini-jets in initial conditions from the AMPT

model contain both near-side and away-side correlations,
the fluctuations in the initial flow velocities that we use
will also have important effects on final two-hadron cor-
relations [94] in both azimuthal angle and rapidity. This
is beyond the scope of our study in this paper and will
be discussed in future studies.

V. PARTIAL CHEMICAL EQUILIBRIUM

Studies of hadron chemistry in high-energy heavy-
ion collisions [95] indicate that chemical equilibrium is
reached during the early stage of the hadronic phase
of the dense matter. The flavor abundance of the fi-
nal hadrons indicates a freeze-out temperature Tcf ≈
158−164 MeV at the RHIC and LHC energies [96]. This
chemical freeze-out temperature is significantly higher
than the kinetic freeze-out temperature Tf = 137 MeV
that we used in our ideal hydro simulation. This is one of
the reasons why the calculated proton spectra from our
ideal hydro simulations are about a factor of 1.2 lower
than the experimental measurements as shown in Fig. 4.
To take into account the earlier chemical freeze-out

during the hadronic phase of the hydrodynamical evo-
lution, one should use a Partial Chemical Equilibrated
(PCE) EoS [97]. We compare the hadron spectra and dif-
ferential elliptic flow from hydro calculations with Chem-
ical Equilibrium (CE) version s95p-v1 (lines) and PCE
version s95p-PCE165-v0 EoS (symbols) at both RHIC
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FIG. 14: Transverse momentum spectra (upper panel) and
elliptic flow (lower panel) for charged pions from hydrody-
namic simulations of 30-40% semi-central Au+ Au collisions
at

√
s = 200 GeV with full fluctuating AMPT initial con-

ditions (solid lines), tube-like AMPT initial conditions (dot-
dashed lines) and one-shot AMPT tube-like initial conditions
(dashed).

and LHC energies in Figs. 16 and 17. We have used a
kinetic freeze-out temperature Tfrz = 137 MeV in both
calculations. Because of the finite chemical potential at
the kinetic freeze-out in the hydro with a PCE EoS,
the corresponding kaon and proton yields at low pT is
higher, improving agreement with the experimental data
at RHIC. However, the slope of hadron spectra at high pT
is steeper than that from hydro with a CE EoS which is
also below the experimental data. This can be improved
a little by the viscous correction in the viscous hydro-
dynamics. As shown in Fig. 17, the elliptic flow from
hydro with a PCE EoS hydro is also about 20% higher
than that from hydro with a CE EoS, again leaving more
rooms for improvement in the viscous hydrodynamics.
One should note that the PCE EoS’ are parameterized
to take into account the higher chemical freeze-out tem-
perature, which however is different in heavy-ion colli-
sions at different colliding energy [96]. One therefore has
to use different parameterization of PCE EoS at different
colliding energies. The PCE EoS that was fitted to RHIC
data, however, cannot describe the recent experimental
data on identified hadron spectra from LHC using the
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viscous hydrodynamics [98].

VI. CONCLUSION

We have studied hadron spectra and elliptic flow in
high-energy heavy-ion collisions within a (3+1)D ideal
hydrodynamic model. The (3+1)D ideal hydrodynamic
equations are solved numerically using an extended FTC-
SHASTA algorithm. A projection method is developed
to compute the freeze-out hyper surface for final hadrons.
We carried out event-by-event hydrodynamic simula-
tions with fluctuating initial conditions for the energy-
momentum tensor from the AMPT model using a Gaus-
sian smearing function for each initially produced par-
ton. Such initial conditions provide both the local energy
density as well as non-vanishing local flow velocities for
the hydrodynamic evolution. With a set of parameters
(widths of the Gaussian smearing, an overall scale fac-
tor and initial time), the hadron rapidity distributions,
transverse momentum spectra as well as elliptic flows
agree very well with experimental data, in particular at
low pT , at both the RHIC and LHC energies.
We also illustrated the effects of local flow velocity in

initial conditions from the AMPT model on final hadron
spectra. Due to rescattering during the initial time in the
AMPTmodel, partons also develop some initial collective
radial flow which leads to harder transverse momentum
spectra as compared to hydro calculations without initial
local flow velocities. The averaged elliptic flow however
is not affected much. The fluctuation in the longitudi-
nal distribution, however, is shown to reduce the elliptic
flow at large pT even in the central rapidity region. We
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FIG. 16: Transverse momentum spectra of identified hadron
spectra in semi-central (20-30%) heavy-ion collisions at RHIC
(lower panel) and LHC (upper panel) energies from hydro
simulations with CE (lines) and PCE (symbols) EoS.

also studied the sensitivities of the hydro results on the
EoS and found influence of the early chemical freeze-out
as parameterized in the PCE EoS to be important and
should be considered in hydro calculations at different
colliding energies separately.
Our (3+1)D ideal hydro calculations provide a good

description of hadron spectra at low pT in high-energy
heavy-ion collisions. At larger pT , viscous corrections
are known to become important [19, 20], in particular
for higher hadronic flows. An extension of the study to
the viscous hydrodynamics will be necessary for hadron
spectra at moderately large transverse momenta.

VII. APPENDIX: SHASTA ALGORITHM

There are high order and low order numerical algo-
rithms to solve a partial differential equation. A low
order algorithm keeps the solution monotonic but suffers
from numerical diffusion, while a high order algorithm is
more accurate but leads to dispersion (small ripples with
new maximum and minimum during the evolution). The
FCT (flux corrected transport) algorithm is developed to
solve these problems in which the low order algorithm is
used for the transport and diffusion, and a second step
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high order algorithm is used to do anti-diffusion with a
corrected flux (equals to the diffusion term with ripples
corrected). The SHASTA (SHarp And Smooth Trans-
port Algorithm) algorithm is one kind of FCT algorithms
which is good at dealing with strong gradients and shocks
[67–69]. We provide the basic steps of the FCT-SHASTA
algorithm in this appendix.
Hydrodynamic equations contain mainly partial differ-

ential equations whose basic form in one dimension is:

∂tρ+ ∂x(vρ) = S(ρ, v), (31)

where ρ can be mass density, energy density or momen-
tum density and v is the velocity along x direction. In
the following, we consider ρ as the mass density for sim-
plicity. The source term S can be taken into account by a
two-stage second-order mid-point Runge Kutta method:

ρn+1
j = ρnj +∆tS

1/2
j (ρ

n+1/2
j , v

n+1/2
j ), (32)

where ρnj denotes the mass density at grid point j and

time step n, S
1/2
j are calculated from ρ

n+1/2
j and v

n+1/2
j

given by the first stage half time step calculation in the
Runge-Kutta method. To explain the SHASTA algo-
rithm, we only consider ∂tρ+∂x(vρ) = 0 in this appendix.

A. The geometric interpretation of transport stage
in SHASTA

j j+1

m
ρ

p
ρ

n
j

ρ

O
x

q
ρ

FIG. 18: The geometric explanation of SHASTA algorithm.
The dashed trapezoid represents the total mass in one fluid
element between grid point j and j + 1 at time t = 0. After
one time step, the boundaries of this fluid element move to
pointsm and p and the mass in this fluid element is conserved.
One important principle of SHASTA algorithm is total mass
conservation: M = Σjρ

n
j δx = Σjρ

n+1

j δx. The grid size δx
and time step δt must satisfy vδt < δx/2 in the SHASTA
algorithm to keep the positivity of the mass in each cell.

For the 1D FCT-SHASTA algorithm, we assume the
velocity of the matter being transported at grid point j

between time t and t + δt can be approximated by v
1/2
j

at t = t + δt/2 which can be calculated from the 2-step
Runge-Kutta method. The mass density ρj and ρj+1

at the boundaries of one fluid element as illustrated in
Fig. 18 (the dashed trapezoid) change to ρm and ρp after
one time step. Since the mass in this fluid element is
conserved,

1

2
(ρ0j + ρ0j+1)δx =

1

2
(ρm + ρp)

[

δx+ (v
1/2
j+1 − v

1/2
j )δt

]

.

(33)
If we consider the two sides of the solid trapezoid vary in
the same rate, we get

ρp = ρ0j+1δx/
[

δx+ (v
1/2
j+1 − v

1/2
j )δt

]

, (34)

ρm = ρ0jδx/
[

δx+ (v
1/2
j+1 − v

1/2
j )δt

]

. (35)

Consider a cell centered at grid point j (between the
dot-dashed lines in Fig. 18). The total mass in cell j at
time t+ δt comes from the mass moved in from cell j− 1
to j and the residual mass after some moved out from
j to j + 1, The mass density at point q where the right
boundary of cell j intersects with the solid trapezoid is
calculated from interpolation:

ρq = ρp+(ρm−ρp)(δx/2+v
1/2
j+1δt)/

[

δx+ δt(v
1/2
j+1 − v

1/2
j )

]

(36)
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The residual mass is given by the area of the residual
trapezoid:

∆mre = (ρm + ρq)lre/2

= δx

[

1

2
Q2

+(ρ
n
j+1 − ρnj ) +Q+ρ

n
j

]

,
(37)

where lre = δx/2− v
1/2
j δt and

Q± = (1/2∓ v
1/2
j δt/δx)/

[

1± (v
1/2
j±1 − v

1/2
j )δt/δx

]

.(38)

Similarly, the mass transported from cell j − 1 to cell j
can be calculated as,

∆mtr = δx

[

1

2
Q2

−(ρ
n
j−1 − ρnj ) +Q−ρ

n
j

]

. (39)

The mass density at grid point j (averaged over cell j)
and time step n+ 1 is therefore:

ρn+1
j = (∆mre +∆mtr)/δx

=
1

2
Q2

−(ρ
0
j−1 − ρ0j) +

1

2
Q2

+(ρ
0
j+1 − ρ0j)

+(Q+ +Q−)ρ
0
j . (40)

For a uniform velocity, the above equation takes a simple
form:

ρn+1
j = ρnj −

ǫ

2
(ρnj+1−ρnj−1)+(

1

8
+
ǫ2

2
)(ρnj+1−2ρnj +ρnj−1)

where ǫ = vδt/δx. For zero velocity, it becomes

ρn+1
j = ρnj +

1

8
(ρnj+1 − 2ρnj + ρnj−1) (41)

In the above transport stage of SHASTA, the solution
is monotonic and positive but has a large zero order dif-
fusion.

B. Anti-diffusion Stage

To correct the diffusion, an explicit form of anti-
diffusion can be used (for the zero velocity case):

ρn+1
j = ρn+1

j − 1

8
(ρn+1

j+1 − 2ρn+1
j + ρn+1

j−1 ). (42)

One can illustrate the above diffusion and
anti-diffusion stage with a square wave initial

field profile (· · · 1, 1, 0, 0, · · · ). The field becomes
(· · · 1, 78 , 1

8 , 0, · · · ) after the transport stage, and becomes

(· · · 65
64 ,

61
64 ,

3
64 ,− 1

64 , · · · ) after the explicit anti-diffusion
stage. One can see that new maximum and minimum
are created, and the positivity is destroyed. To solve this
problem, the anti-diffusion terms are written in mass
flux form:

ρ̄n+1
j = ρn+1

j − fn+1
j+1/2 + fn+1

j−1/2, (43)

where the anti-diffusion mass flux is defined as:

fn+1
j±1/2 = ±1

8
(ρn+1

j±1 − ρn+1
j ). (44)

The above mass flux is further corrected as

f
(c)n+1
j+1/2 = σmax

{

0,min

{

σ∆j−1/2,
1

8
∆j+1/2, σ∆j+3/2

}}

(45)
which is limited term by term so that no anti-diffusive-
flux transfer of mass can push the density at any grid
point beyond the density value at neighboring points.
Here ∆j+1/2 = ρn+1

j+1 − ρn+1
j and σ = sgn∆j+1/2. This is

the origin of the name “Flux Corrected Transport”. The
final mass density at grid j and time step n + 1 after
corrected anti-diffusion stage is then

ρ̄n+1
j = ρn+1

j − f
(c)n+1
j+1/2 + f

(c)n+1
j−1/2 , (46)

where the diffusion is corrected by the anti-diffusion and
the dispersion is corrected by the limitation on the mass
flux. The formula can be checked with several examples.
In our (3+1)D hydrodynamics, we use a limiter de-

scribed by Zalesak [68] which is proved better than the
original one given by Boris and Book [67].
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