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Neutrino-nucleus coherent elastic scattering provides a theoretically appealing way to measure
the neutron part of nuclear form factors. Using an expansion of form factors into moments, we
show that neutrinos from stopped pions can probe not only the second moment of the form factor
(the neutron radius) but also the fourth moment. Using simple Monte Carlo techniques for argon,
germanium, and xenon detectors of 3.5 tonnes, 1.5 tonnes, and 300 kg, respectively, we show that
the neutron radii can be found with an uncertainty of a few percent when near a neutrino flux of
3×107 neutrinos/(cm2 s). If the normalization of the neutrino flux is known independently, one can
determine the moments accurately enough to discriminate among the predictions of various nuclear
energy functionals.

PACS numbers: 21.10.Gv, 25.30.Pt, 21.60.Jz

I. INTRODUCTION

The size of a nucleus is one of its most fundamental
properties. Although the distributions of protons in nu-
clei are well known, the neutron distributions are com-
paratively poorly constrained. A precise measurement of
neutron radii could have important implications in both
nuclear physics and astrophysics.
In nuclear physics the most common framework for

predicting neutron densities is energy density functional
theory (DFT) — both relativistic and non-relativistic
— with parameters that are at least in part fit-
ted to other nuclear observables or pseudo-data such
as nuclear-matter properties, root-mean-square radii,
atomic masses, etc. [1]. Recent efforts to determine new
generations of energy density functionals have pointed
to the complex correlations among the values of physical
quantities that they predict [2, 3]. Among observables
used to optimize functionals, the neutron form factor is
particularly important because it determines the neutron
skin and radii, which in turn are strongly correlated in
density functionals with the symmetry energy and incom-
pressibility of nuclear matter [4]. Precise measurements
of neutron radii could, therefore, significantly improve
the predictive power of energy functionals.
In astrophysics, the size of the neutron skin may have

important implications for neutron stars. While there
are accurate measurements of pulsar orbital periods and
masses, the radius of neutron stars, as well as their mo-
ments of inertia or gravitational redshift remain poorly
constrained by observation, and must be provided by the-
ory [5–8]. Such global properties as masses, radii, and
composition, are determined by the equation of state
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(EOS) of neutron-rich nuclear matter, which involves
such quantities as the density dependence of the nuclear
symmetry energy. As just noted, the symmetry energy is
itself strongly correlated with the neutron skin [9]. Pre-
cise measurements on the neutron skin, therefore, pro-
vide information about the equation of state of neutron
matter and thus the size of neutron stars [10].

Experiments with hadrons [11, 12] quote errors as
low as 1% but rely on models of nuclear structure
and/or hadron-nucleus interactions to extract their re-
sults. Parity-violating electron scattering, used by the
PREX experiment at Jefferson Laboratory to measure
the radius of lead, is cleaner. The parity-violating asym-
metry, i.e. the fractional difference in cross section be-
tween positive- and negative-helicity electrons, is roughly
proportional to the weak form factor, which is the Fourier
transform of the weak charge density. If one can measure
the asymmetry (at a single Q2) to 3% then one can de-
termine the root mean square neutron radius to 1%. The
uncertainty on the neutron radius from PREX is about
2.5% [13] but ±1% may be possible in the future.

The use of neutrino-nucleus coherent scattering to
probe the weak form factor was first proposed in Ref. [14].
The authors considered a one tonne 40Ar detector, with a
nucleus described by a simplified form factor. Their anal-
ysis suggested that ton-scale detectors could replicate the
10% uncertainty of hadronic scattering methods when
used in conjunction with a source of Michel-spectrum
neutrinos. While large detectors are required since neu-
trinos interact only weakly, the theoretical interpretation
of the results is straightforward and model independent.
Neutrino-nucleus coherent scattering has been proposed
for a number of other purposes as well, for example to
detect supernova neutrinos [15], to measure the Weinberg
angle [16, 17], to look for a neutrino magnetic moment,
and to search for sterile neutrinos [18]. In all these cases,
a weak nuclear form factor must be either measured or
assumed before useful information can be extracted.

Both neutron and proton distributions in the nucleus
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affect neutrino-nucleus coherent scattering, but the neu-
tron distribution has much more leverage. In this paper
we suggest the use of a Taylor expansion to write the
nuclear-neutron form factor in terms of moments of the
neutron density distribution. Using this expansion and a
simple Monte Carlo simulation, we show that neutrino-
nucleus coherent scattering can probe not only neutron
radii, but also the higher-order moments of neutron dis-
tributions. We use the examples of argon [16], germa-
nium [19] and xenon targets to show the expected ranges
of sensitivity.
The paper is organized as follows. In section II, we

introduce the model used to estimate neutrino-nucleus
scattering count rates, including in our discussion the
Taylor expansion of the neutron form factor and the cal-
culation of the moments of the neutron distribution in
nuclear DFT. In section III, we present and discuss the
results of the Monte-Carlo simulations.

II. COHERENT SCATTERING AND THE

FORM FACTOR

We present in this section the details of the model, in-
cluding the kinematics of neutrino-nucleus coherent scat-
tering, the dependence of the neutron form factor on
the moments of the neutron distributions, and the DFT-
based calculations of the moments.

A. Kinematics

To calculate the cross section for neutrino-nucleus co-
herent elastic scattering, we sum the contributions of
each nucleon to the amplitude, which we then square
and sum over available phase space. The resulting cross
section, for spherical nuclei (neglecting small corrections
from various sources) is [20]

dσ

dT
(E, T ) =

G2
F

2π
M

[

2− 2T

E
+

(

T

E

)2

− MT

E2

]

× Q2
W

4
F 2(Q2) , (1)

where E is the energy of the incoming neutrino, T is the
nuclear recoil energy, M is the mass of the nucleus, GF

is the Fermi constant, and QW = N − (1 − 4 sin2 θW )Z
is the weak charge of the nucleus (with N the number
of neutrons, Z the number of protons, and sin2 θW ≈
0.231). The cross section also contains the form factor
F (Q2), which is a function of the momentum transfer
Q2 = 2E2TM/(E2 − ET ) and which, by convention, is
normalized so that F (0) = 1.
The form factor corrects for scattering that is not com-

pletely coherent at higher energies. It encodes informa-
tion about the nuclear densities through a Fourier trans-
form, which in spherical nuclei takes the approximate

form [15]

F (Q2) =
1

QW

∫

[

ρn(r) − (1− 4 sin2 θW )ρp(r)
]

× sin (Qr)

Qr
r2dr , (2)

where ρn,p(r) are the neutron and proton densities. This
expression neglects effects due to the finite size of the
nucleons, which alter the relation between the point-
neutron density and the form factor at high Q. These
effects could easily be included and would barely change
the results of our sensitivity analysis below. The same
is true, in odd-A nuclei, of higher multipoles, which re-
flect nuclear deformation and nonzero spin. The higher
multipoles alter the form factor only at order Q4, and
even those changes are much smaller than O(1/A) in the
nuclei considered here.
The separation of the neutron and proton terms in Eq.

(2) makes it possible to write the form factor as

F (Q2) =
1

QW

[

NFn(Q
2)− (1− 4 sin2 θW )ZFp(Q

2)
]

.

(3)
Since the coefficient of the proton form factor, (1 −
4 sin2 θW )Z ≈ 0.076Z, is small, the scattering depends
mainly on the neutrons, making neutrino-nucleus coher-
ent scattering well suited to measuring neutron distribu-
tions. Proton form factors, moreover, are usually known
from electron scattering experiments. We include them
in the quantitative analysis to follow, but their role is
small.
There are two primary types of neutrino sources to con-

sider: neutrinos generated from fission processes in nu-
clear reactors, and neutrinos from the decay of stopped
pions. Reactor neutrinos have lower energy, resulting
in correspondingly low nuclear-recoil energies. Because
background can obscure low-energy recoil, we consider
neutrinos produced from the decay of stopped pions.
Stopped pions are produced in large quantities at both
spallation sources and accelerator sources. An example
of a spallation source is the Spallation Neutron Source
at Oak Ridge National Laboratory, which hits a mercury
target with a beam of protons. Pions are produced, with
negative pions captured in the target and positive pions
coming to rest and decaying. The pions decay through
π+ → νµ + µ+. The muon neutrinos are monoenergetic
with an energy of 29.9 MeV. The muons then come to
rest and further decay via µ+ → e++νe+νµ. The prob-
ability that neutrinos νe or antineutrino νµ are emitted
in the range (E,E + dE) read

fνe =
96

m4
µ

(mµE
2
νe − 2E3

νe)dEνe ,

fνµ
=

16

m4
µ

(3mµE
2
νµ

− 4E3
νµ
)dEνµ

, (4)

where mµ is the mass of the muon. The energy of the
neutrinos range up to ∼ 52 MeV, which results in typical
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nuclear recoil energies on the order of tens of keV to
100 keV. The momentum transfer associated with these
energies runs up to ∼ 100 MeV.
To calculate the number of scattering events as a func-

tion of recoil energy, we fold the neutrino spectra with
the cross section:

dN

dT
(T ) = NtC

∫ mµ/2

Emin(T )

f(E)
dσ

dT
(E, T )dE , (5)

where Nt is the number of targets in the detector, C
is the flux of neutrinos of a given flavor arriving at the
detector, the normalized energy spectra f(E) includes
all three types of neutrino produced in pion decay, and
Emin(T ) =

1
2 (T +

√
T 2 + 2TM) is the minimum energy

a neutrino must have to cause a nuclear recoil at energy
T . The upper bound of mµ/2 is the maximum energy for
a neutrino produced from muon decay at rest.

B. Form-factor expansion
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FIG. 1. (Color online.) The neutron form factors Fn(Q
2)

for 40Ar (a) 74Ge (b) and 132Xe (c) predicted by the Skyrme
functional SkM∗ (solid black curve), and truncations of the
expanded form factor at various orders of Q: Q0 (dashed blue
curve), Q2 (dotted red curve), Q4 (dot-dashed green curve)
and, in the bottom panel, Q6 (dot-dashed red curve). Ter-
minating the expansion at Q4 (with coefficient 1

5!
〈R4

n〉) gives

good agreement with the full form factor in 40Ar and 74Ge
over the range of Q2 relevant for the scattering of neutrinos
from stopped pion beams. Precise agreement in 132Xe requires
the Q6 term as well.

Since the form factor is included in the calculation of
the number of events, nuclei with different density distri-

butions will produce different recoil-energy distributions.
The recoil distributions therefore provide a good test for
models that predict the density. We can increase the use-
fulness of the recoil distribution by expanding the form
factor in Q. The dominant neutron piece can be repre-
sented as

Fn(Q
2) ≈ 1

N

∫

ρn(r)

(

1− Q2

3!
r2 +

Q4

5!
r4 − Q6

7!
r6 + · · ·

)

r2dr

≈
(

1− Q2

3!
〈R2

n〉+
Q4

5!
〈R4

n〉 −
Q6

7!
〈R6

n〉+ · · ·
)

, (6)

with

〈Rk
n〉 =

∫

ρnr
kd3r

∫

ρnd
3r

. (7)

Written this way, the form factor is a sum of the even
moments of the neutron density distribution. These mo-
ments are straightforward to calculate from the density,
and represent physically relevant and measurable quan-
tities. Since the neutrinos we consider have relatively
low energy, we can truncate the expansion after just two
terms for lighter nuclei such as argon and germanium,
and three terms for heavier nuclei like xenon. As an il-
lustration, we show in Fig. 1 the theoretical neutron form
factor predicted by the Skyrme functional SkM∗ [21] for
selected isotopes of Ar, Ge, and Xe. Including moments
up to 〈R4

n〉 in Ar and Ge and 〈R6
n〉 in Xe is sufficient to

reproduce the form factors with reasonable accuracy over
the relevant range of Q values. In other words, one will
be able to fit experimental scattering data in Ar and Ge
with just two parameters, 〈R2

n〉 and 〈R4
n〉, and in Xe with

three.
Fig. 2 shows the effects on event rates in 40Ar of chang-

ing a single important measure of the density distribu-
tion, the root-mean-square (RMS) neutron radius 〈R2

n〉
1

2 .
We produced the figure as follows: First, we calculated
event rates as a function of recoil energy with the func-
tional SkM∗, via the expansion in Eq. (6). Next, we did
the same with the RMS neutron radius 10% larger and
no changes to the other terms in the expansion. The re-
sulting curves for 40Ar, with an assumed neutrino flux of
3× 107 neutrinos/(cm2 s) per flavor, appear in the panel
(a) of Fig. 2, while the difference between them is plotted
in the panel (b). A 10% difference in the RMS neutron
radius results in a difference of ∼780 events, which is
about 1.2% of the total event rate over the entire energy
range. This difference is concentrated at a nuclear recoil
energy of 30 keV.
We obtain similar results in Ge and Xe, though there

we must use effective moments, which we define in the
next section, to average over different isotopes. In Ge,
a 10% difference in the effective RMS radius yields an
integrated difference of ∼8100 events in one tonne over
a year, or about 6% of the total, concentrated around a
nuclear recoil of 15 keV. In a one tonne Xe detector, the
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FIG. 2. (Color online.) (a): Event rates in 40Ar as a func-
tion of recoil energy, with two different RMS neutron radii.
The red (solid) curve represents predictions of the Skyrme
functional SkM∗, while the blue (dotted) curve represents the
same for an RMS radius made 10% larger, as described in
the text. The flux at the detector is taken to be 3 × 107

neutrinos/(cm2 s) per flavor. (b): The difference between the
two curves on top. The discontinuity in both panels is due to
the mono-energetic muon neutrinos emitted promptly in pion
decay.

same change in effective RMS radius results in a differ-
ence of ∼20200 events over a year, or about 8% of the
total, and is concentrated at a nuclear recoil energy of 8
keV.
As Q2 goes to zero, the form factor approaches F (0) =

1, so the low energy portions of the event-rate curves
converge and all the difference curves go to zero. At high
energies, there are very few events, so both event-rate
curves approach zero and the differences also approach
zero. The larger elements have smaller total recoil-energy
ranges. In all three cases, however, the largest differ-
ence in the event-rate curves occurs at a recoil energy of
about 20% of the maximum possible recoil energy. We
note that the highest and lowest energies will most likely
be excluded from an experimental analysis because of
background at the detector, and that the effect of chang-
ing 〈R2

n〉
1

2 is most prominent in the energy range that
is experimentally accessible to cryogenic detectors such
as CLEAN [22] and CLEAR [16, 23], even though more

events occur at inaccessibly low recoil.

TABLE I. Isotopes and abundances used in the calculations
for germanium and xenon [24].

Isotope Abundance Isotope Abundance
70Ge 0.205 128Xe 0.0191
72Ge 0.274 129Xe 0.264
73Ge 0.078 130Xe 0.041
74Ge 0.365 131Xe 0.212
76Ge 0.078 132Xe 0.269

134Xe 0.104
136Xe 0.089

C. Effective Moments

Naturally occurring argon is made at 99.6% of 40Ar:
the expansion in Eq. (6) is therefore sufficient to accu-
rately compute neutrino-nucleus scattering. Germanium
and xenon, however, both have multiple isotopes that oc-
cur naturally with relatively high abundance (see table
I). To account for that fact, we define effective moments
for these elements as follows:
To calculate the event curves for germanium and

xenon, it is necessary to sum over all isotopes. There are
several isotope-specific quantities in the cross section, in-
cluding the mass, neutron number, and the moments of
the neutron and proton distributions. In addition, each
isotope will have a different number of atoms in the de-
tector. To calculate the rate for all isotopes, we therefore
use

dN

dT
(T ) = NAMdetectorC (8)

×
∫

f(E)
∑

i

[

Xi

Mi

(

dσ

dT
(T,E)

)

i

]

dE,

where the coefficient Nt in Eq. (5) is now replaced by
NAMdetector and a summation over isotopes i of the cross-
section with the weights Xi/Mi. Here, Xi is the natural
abundance of isotope i, Mi is the mass of that isotope,
NA is Avogadro’s number, and Mdetector is the total mass
of the element (including all its isotopes) in the detector.
Since the form factor appears squared in the cross sec-

tion, the sum in Eq. (8) will have neutron terms, proton
terms, and terms that include both neutron and proton
moments (see Eq. (3)). The definitions for the proton ef-
fective moments will follow the same pattern as those for
the neutrons, so we will concentrate only on the neutrons
at this point.
Some algebra and the definitions of the cross section

and form factor allow us to write the sum in Eq. (8) as
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∑

i

[

Xi

Mi

(

dσ

dT
(T,E)

)

i

]

=
G2

F

8π

[

∑

i

(

XiN
2
i

)

(

2− 2T

E
+

(

T

E

)2
)

−
∑

i

(

XiN
2
i Mi

)

(

T

E2

)

−
∑

i

(

XiN
2
i Mi〈R2

n〉i
)

(

2− 2T

E
+

(

T

E

)2
)

Q2

3〈M〉 +
∑

i

(

XiN
2
i M

2
i 〈R2

n〉i
)

(

T

E2

)

Q2

3〈M〉

+
∑

i

(

XiN
2
i M

2
i 〈R2

n〉2i
)

(

2− 2T

E
+

(

T

E

)2
)

Q4

36〈M〉2 −
∑

i

(

XiN
2
i M

3
i 〈R2

n〉2i
)

(

T

E2

)

Q4

36〈M〉2

+
∑

i

(

XiN
2
i M

2
i 〈R4

n〉i
)

(

2− 2T

E
+

(

T

E

)2
)

Q4

60〈M〉2 −
∑

i

(

XiN
2
i M

3
i 〈R4

n〉i
)

(

T

E2

)

Q4

60〈M〉2

−
∑

i

(

XiN
2
i M

3
i 〈R2

n〉i〈R4
n〉i
)

(

2− 2T

E
+

(

T

E

)2
)

Q6

360〈M〉3

−
∑

i

(

XiN
2
i M

4
i 〈R2

n〉i〈R4
n〉i
)

(

T

E2

)

Q6

360〈M〉3 + · · ·
]

, (9)

where 〈M〉 =∑iXiMi and Q2 = 2E2T 〈M〉/(E2−ET ).
In the above equation, we have kept all terms that have
〈R2

n〉, 〈R4
n〉, or both. (For xenon, we use all additional

terms that include 〈R6
n〉.) In this expression several ef-

fective (isotope-weighted) moments occur, two of each
order. The two effective second moments, after normal-
ization, are

〈R2
n〉eff,1 =

∑

iXiN
2
i Mi〈R2

n〉i
∑

iXiN2
i Mi

, (10)

〈R2
n〉eff,2 =

∑

iXiN
2
i M

2
i 〈R2

n〉i
∑

i XiN2
i M

2
i

, (11)

and the two effective fourth moments are

〈R4
n〉eff,1 =

∑

i XiN
2
i M

2
i 〈R4

n〉i
∑

iXiN2
i M

2
i

, (12)

〈R4
n〉eff,2 =

∑

i XiN
2
i M

3
i 〈R4

n〉i
∑

iXiN2
i M

3
i

. (13)

The differences between the values of the two moments
of each order is small, as can be seen for the Skyrme
functional SkM∗ in table II. In fact, these differences are
smaller than the typical numerical uncertainties in DFT
calculations coming from the truncation of the basis or
the size of the mesh. We therefore make the approx-
imation that the two second moments are equal (call-
ing them 〈R2

n〉eff) and that the two fourth moments are
equal (calling them 〈R4

n〉eff.) There are also terms in
the cross section that involve 〈R2

n〉2, from which we can
define (〈R2

n〉2)eff. Although mathematically (〈R2
n〉2)eff is

not equal to (〈R2
n〉eff)2, numerically they are very similar,

as shown in table II. After equating them and making the
similar approximations just described, we can rewrite Eq.
9 in terms of effective moments as
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∑

i

[

Xi

Mi

(

dσ

dT
(T,E)

)

i

]

=
G2

F

8π

[

∑

i

(

XiN
2
i

)

(

2− 2T

E
+

(

T

E

)2
)

−
∑

i

(

XiN
2
i Mi

)

(

T

E2

)

−〈R2
n〉eff

∑

i

(

XiN
2
i Mi

)

(

2− 2T

E
+

(

T

E

)2
)

Q2

3〈M〉 + 〈R2
n〉eff

∑

i

(

XiN
2
i M

2
i

)

(

T

E2

)

Q2

3〈M〉

+〈R2
n〉2eff

∑

i

(

XiN
2
i M

2
i

)

(

2− 2T

E
+

(

T

E

)2
)

Q4

36〈M〉2 − 〈R2
n〉2eff

∑

i

(

XiN
2
i M

3
i

)

(

T

E2

)

Q4

36〈M〉2

+〈R4
n〉eff

∑

i

(

XiN
2
i M

2
i

)

(

2− 2T

E
+

(

T

E

)2
)

Q4

60〈M〉2 − 〈R4
n〉eff

∑

i

(

XiN
2
i M

3
i

)

(

T

E2

)

Q4

60〈M〉2

−〈R2
n〉eff〈R4

n〉eff
∑

i

(

XiN
2
i M

3
i

)

(

2− 2T

E
+

(

T

E

)2
)

Q6

360〈M〉3

+〈R2
n〉eff〈R4

n〉eff
∑

i

(

XiN
2
i M

4
i

)

(

T

E2

)

Q6

360〈M〉3 + · · ·
]

, (14)

TABLE II. Numerical values for the different effective mo-
ments of germanium and xenon as well as the percent differ-
ence between definitions. The definitions for the effective mo-
ments are given in equations 10-13. The values of (〈R2

n〉
2)

1/4
eff

are compared to those of 〈R2
n〉

1/2
eff,1.

Ge Xe

〈R2
n〉

1/2
eff,1 (fm) 4.0495 4.8664

〈R2
n〉

1/2
eff,2 (fm) 4.0505 4.8668

% Difference 0.02 0.009

〈R4
n〉

1/4
eff,1 (fm) 4.3765 5.2064

〈R4
n〉

1/4
eff,2 (fm) 4.3774 5.2068

% Difference 0.02 0.009

(〈R2
n〉

2)
1/4
eff (fm) 4.0509 4.8670

% Difference 0.001 0.01

The approximations leading to Eq. (14) from Eq. (9)
cause an error of 0.01% over the entire event curve.
We define effective moments for the protons in the

same way as for neutrons. The terms in the cross section
that involve both neutron moments and proton moments
can be calculated from these effective moments. Since the
proton moments are known quite accurately from elec-
tron scattering, we are finally able to represent the recoil
distribution in terms of just two unknown parameters,
〈R2

n〉eff and 〈R4
n〉eff, or three for xenon.

D. Density Functional Theory Calculations of

Moments

Our Monte-Carlo simulations require the knowledge of
the radii and moments 〈Rk

n,p〉 of the neutron and proton
distributions in both even-even and odd-even isotopes.

In this work, we compute these quantities in DFT with
Skyrme functionals. We use nine common parameteri-
zations of the Skyrme functional (SkM* [21], SkI3 [25],
SLy4 [26], SLy5 [26], SkX [27],HFB9 [28], SkO [29], UN-
EDF0 [2] and UNEDF1 [3]). These functionals are char-
acterized by relatively different nuclear matter, surface,
and deformation properties, and therefore provide a good
“statistical” sample of Skyrme functionals.

We model pairing correlations with a density-
dependent delta pairing force with mixed volume-surface
characteristics and the Lipkin-Nogami prescription to ap-
proximate particle number projection. For each element,
we fit the strength of the pairing force to odd-even mass
differences according to the general procedure outlined in
[2]: in 40Ar for argon, 72Ge for germanium and 130Xe for
xenon. Only parameterizations UNEDF0 and UNEDF1
are accompanied by specific prescriptions for the pair-
ing channel. We compute the ground-state in odd-mass
isotopes by performing systematic blocking calculations:
for a given odd-mass isotope, we consider all blocking
configurations within 2 MeV of the ground state of the
neighboring even-even nucleus, and take the ground state
of the odd isotope to be the configuration yielding the
lowest energy with the correct spin.

We carry out all these calculations with the latest ver-
sion of the DFT solver HFBTHO [30]. The code solves
the Skyrme Hartree-Fock-Bogoliubov equations in a har-
monic oscillator basis with axial symmetry and, there-
fore, time-reversal invariance. We perform all calcula-
tions in a full HO basis of 20 shells with a basis frequency
parameter defined by ~ω = 1.2× 41/A1/3. In argon and
germanium isotopes the basis is spherical, while in xenon
isotopes, the ground states of which are weakly deformed,
its deformation is β2 = 0.3. Such characteristics ensure
excellent convergence of the results [31]. We do the block-
ing calculations in the equal filling approximation [32],
which agrees with the full blocking prescription to within
100 keV or less [33].
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III. RESULTS AND DISCUSSION

A. Monte-Carlo simulations

We use a simple Monte Carlo simulation to give an
idea of how accurately the nuclear moments can be de-
termined. We assume that a detector, filled with ei-
ther 40Ar, natural germanium, or natural xenon, expe-
riences a flux from the decay of pions at rest of 3 × 107

neutrinos/(cm2 s) in each flavor for one year. The neu-
trino production rate at the Spallation Neutron Source at
Oak Ridge National Laboratory [16], DAEδALUS [34, 35]
and the European Spallation Source [36] ranges from
1 × 1015 neutrinos/s to 3.5 × 1015 neutrinos/s of each
flavor. A flux of 3 × 107 neutrinos/(cm2 s) corresponds
to detectors placed approximately 16 m from the source
at SNS, 18 m from the source at DAEδALUS, and 30 m
from the source at ESS.
We perform a Monte Carlo simulation that includes

statistical error and uncertainty on the beam normaliza-
tion. Another significant source of systematic error is the
uncertainty in the detection efficiency. We discuss this
in Sec. III B, and for the purposes of the Monte Carlo
assume 100% detection efficiency. We also assume that
leptons and photons produced by charge-current and in-
elastic neutral-current scattering can be detected and the
corresponding events efficiently rejected as background.
We calculate a recoil curve assuming that the true nu-

clear density distributions are given by the Skyrme model
SkM∗. We place the events into bins based on energy, and
then add Gaussian-distributed statistical noise to each
bin. We then take the general form factor from Eq. 14
and use χ2 minimization to find the optimal values of
〈R2

n〉, 〈R4
n〉, or the effective moments, and the beam nor-

malization. In the case of xenon, we use the same proce-
dure to find the optimal value of 〈R6

n〉. Typical values of
χ2 range from 0.5 to 10.
We do separate sets of runs, some assuming that the

normalization of the flux is determined by other means,
and some allowing for an uncertainty of ±10% in the nor-
malization. Because background is anticipated to be sub-
stantial at high and low energies, we exclude the highest
and lowest bins from the χ2 minimization. The energy
ranges included are 5-120 keV for 40Ar, 5-70 keV for Ge,
and 5-40 keV for Xe. All energy bins are 10 keV wide
except for the lowest, which is 5 keV wide. Finally, we
assign confidence levels to closed areas on an 〈R2

n〉 vs.
〈R4

n〉 plot by running the Monte Carlo many times and
dividing the number of times the minimum-χ2 result falls
in that area by the total number of runs.
With this setup, we vary the size of the detector un-

til the 〈R2
n〉1/2 or 〈R2

n〉
1/2
eff inside the 91% confidence re-

gion vary by only about ±5% from the best values. For
that level of precision, 3.5 tonnes of argon are necessary,
1.5 tonnes of germanium, and 300 kg of xenon. The re-
quired detector mass decreases with atomic size because
the event rate increases roughly as N2.
The sizes of current and proposed cryogenic detectors

can give an idea of the feasibility of this measurement.
In the case of argon, the existing ICARUS T600 de-
tector contains 500 tons of LAr [37], suggesting that a
detector big enough to for measure the form factor is
feasible. For germanium, existing dark-matter detectors
such as CDMS II [38] consist of a few kg of germanium.
The TEXONO-CDEX program is currently using a 1 kg
high-purity germanium detector for neutrino physics and
dark matter searches [39]. The MAJORANA [40] and
GERDA [41] double-beta decay experiments will soon
deploy about 40 kg of germanium enriched in 76Ge. One
proposed experiment, GEODM [19, 38], would be made
up of 300 ∼5 kg Ge crystals, making a total mass of ∼
1.5 tonnes. Existing xenon detectors, such as XENON100
[42] and LUX [43], are made up of on the order of a few
hundred kg of xenon, approximately the amount required
for a form factor measurement. A proposed experiment,
the LUX-ZEPLIN project, will use 1.5 tonnes of Xe [43].
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FIG. 3. (Color online) Confidence regions in the 〈R2
n〉

1/2–

〈R4
n〉

1/4 plane for an argon detector of mass 3.5 tonnes. The
curves enclose confidence regions of 40%, 91%, and 97%. The
colored vertical band shows the experimental result reported
for the RMS radius, obtained from argon-carbon scattering,
in Ref. [44], and the black crosses are the predictions of some
commonly used Skyrme functionals, including the functional
SkM∗ that we use to generate the “data.” Numerical results
are summarized in tables III and IV. (a): the neutrino flux
is allowed to vary by ±10 %. (b): the flux is assumed to be
known exactly.

The results of the analysis appear in Figs. 3, 4, and
5. The closed curves correspond to 40% confidence, 91%
confidence, and 97% confidence. As mentioned above, we
considered two cases: one in which the normalization of
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FIG. 4. (Color online) Same as Fig. 3, but for effective mo-
ments in germanium, and without experimental result.

the flux is allowed to vary (by ±10%), and a second in
which the normalization is kept constant. Panel (a) of
each figure shows the results with the flux unconstrained
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FIG. 5. (Color online) Same as Fig. 4, but in xenon.

within that 10% range, and panel (b) shows the same
results with the assumption that the flux is known per-
fectly. The colored vertical band in Fig. 3 shows a model-
dependent experimental result for the RMS radius, ob-
tained from argon-carbon scattering in Ref. [44]. There
is a clear discrepancy between that result and the predic-
tions of the 9 Skyrme functionals selected for this study,
labeled by small crosses in Fig. 3 (the outlyer in Fig-
ures 3-4 corresponds to the SkX functional of [27], which
predicts systematically smaller radii than other function-
als). Those functionals include SkM∗, the one we use to
generate the “data.” This discrepancy is mentioned by
Ozawa et al., but no explanation is offered. While we
marginalize over 〈R6

n〉eff for xenon, the quantity is poorly
constrained and not included in the plot in Fig. 5. Nu-
merical results at the 91% confidence level for the mean,
minimum, and maximum of the (effective) RMS neutron
radius and fourth moment, (and sixth moment in xenon)
appear in Tabs. III and IV.

B. Discussion

There are several noticeable differences among figures

3, 4, and 5. The first is the dependence on 〈R4
n〉

1/4
eff .

For 40Ar, the range of plausible values is large compared
to the range of 〈R2

n〉1/2. As the nuclei grow in size to

germanium and then xenon, the range of 〈R4
n〉

1/4
eff gets

smaller. In germanium and xenon, it is comparable to
the range of the effective RMS neutron radius.
We can explain this difference by isolating the effects

of the (effective) fourth moment on the recoil distribu-
tions. In 40Ar, a 10% change in the fourth moment re-
sults in approximately 0.2% more events, as compared
to the 1.2% difference with a 10% change in the RMS

radius. In comparison, the same change in 〈R4
n〉

1/4
eff of

10% results in 1.3% and 3% more events for germanium
and xenon, respectively, as compared to 6% and 8% from

a 10% change in 〈R2
n〉

1/2
eff . The nuclear recoil energy at

which this difference is concentrated decreases and the
importance of the fourth moment relative to the RMS
radius increases as the nuclear mass increases.
Our ability to learn about the nuclear quantities

〈R2
n〉

1/2
eff and 〈R4

n〉
1/4
eff obviously improves if we can get

an independent handle on the beam normalization. This
can be seen clearly by comparing the top and bottom

panels in Figs. 3, 4 and 5. The range in 〈R2
n〉

1/2
eff in all

three elements shrinks to ±2% at the 91% level in the
bottom panels, where the beam normalization is known

exactly. Likewise, the range in 〈R4
n〉

1/4
eff decreases for all

three elements. The effect is most dramatic for 40Ar,
where the uncertainty decreases to ∼ ±10%, but it exists
in both germanium and xenon as well.
As mentioned above, we consider the systematic er-

ror of the uncertainty in detection efficiency. In order to
study the effect, we remove the statistical error and ran-
domly distribute systematic errors, proportional to the
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TABLE III. Numerical results at the 91% confidence level for the 3.5 tonne 40Ar detector, the 1.5 tonnes Ge detector, and
the 300 kg Xe detector with Lν allowed to vary by ±10%. The first column contains the element, the second the moment or
effective moment considered in the corresponding row, the third the calculated values of the moments or effective moments for
the Skyrme model SkM∗, the fourth the mean values for the moments or effective moments, produced by the Monte Carlo,
the fifth the percent difference between the mean values and the SkM∗ values, the sixth the minimum values chosen by the
Monte Carlo, and the seventh the percent difference between the minimum and the mean value. The eighth column gives the
maximum values chosen by the Monte Carlo, and the ninth column gives the percent difference between the maximum and the
mean values.

SkM∗ values Mean
% Difference
(from SkM∗)

Min
% Difference
(from mean)

Max
% Difference
(from mean)

40Ar
〈R2

n〉
1/2 (fm) 3.4168 3.4103 -0.2 3.2587 -4 3.5999 +6

〈R4
n〉

1/4 (fm) 3.7233 3.6576 -2 2.8304 -23 4.3210 +18

Ge
〈R2

n〉
1/2
eff (fm) 4.0495 4.0516 +0.05 3.8792 -4 4.2697 +5

〈R4
n〉

1/4
eff (fm) 4.3765 4.3603 -0.4 3.7276 -15 5.0096 +15

Xe
〈R2

n〉
1/2
eff (fm) 4.8664 4.8648 -0.001 4.6788 -4 5.0980 +5

〈R4
n〉

1/4
eff (fm) 5.2064 5.1914 -0.3 4.7180 -10 5.5521 +7

〈R6
n〉

1/6
eff (fm) 5.4887 5.3149 -3 0.5491 -90 10.433 +97

TABLE IV. Same as table III, except for Lν held constant.

SkM∗ values Mean
% Difference
(from SkM∗)

Min
% Difference
(from mean)

Max
% Difference
(from mean)

40Ar
〈R2

n〉
1/2 (fm) 3.4168 3.4154 -0.04 3.3483 -2 3.4933 +2

〈R4
n〉

1/4 (fm) 3.7233 3.7018 -0.6 3.2826 -11 4.0865 +10

Ge
〈R2

n〉
1/2
eff (fm) 4.0495 4.0491 -0.009 3.9857 -1.6 4.1175 +1.7

〈R4
n〉

1/4
eff (fm) 4.3765 4.3679 -0.2 4.0826 -7 4.6546 +7

Xe
〈R2

n〉
1/2
eff (fm) 4.8664 4.8654 -0.02 4.7958 -1.4 4.9323 +1.4

〈R4
n〉

1/4
eff (fm) 5.2064 5.1990 -0.14 4.9265 -5 5.4478 +5

〈R6
n〉

1/6
eff (fm) 5.4887 5.3877 -1.8 0.5491 -90 10.433 +94

number of events in the bin, at the level of 10%, 1% and
0.1% in each bin in an uncorrelated manner. At the 10%
level, detectors of the size considered here lose the ability
to make any useful measurement of the neutron radius.
When we lower the uncertainty in detection efficiency to
1%, measurements of the neutron radius to ∼ ±5-7%
are possible. At this level, the range in the value of the
fourth moment is ∼ ±20%. If we lower the uncertainty
in detector efficiency to 0.1%, the neutron radius can be
measured to better than ∼ ±1%, and the fourth moment
to ±2%.

IV. CONCLUSIONS

Neutron radii are not only of fundamental interest for
nuclear structure but are also needed to fully analyze
supernova-neutrino signals [15] and interpret measure-
ments of the Weinberg angle or of neutrino magnetic mo-
ments [16]. At present the distributions of neutrons in
nuclei is not known nearly as well as those of protons.
We have presented a model-independent method, in-

volving the Taylor expansion of the scattering form fac-
tor, for extracting the RMS radius and fourth moment of
the neutron density distribution in certain nuclei from the
nuclear-recoil distribution in a neutrino-scattering exper-
iment. The radius and fourth moment can also be be cal-
culated theoretically, so that our technique will provide
a straightforward connection between theory and exper-
iment. To obtain a rough estimate of the effectiveness
of this approach, we considered a stopped pion neutrino
source of 3 × 107 neutrinos/(cm2 s) and liquid Ar, Ge,
and Xe detectors in the tonne range. We conclude that
it is possible to determine the neutron radius to a few
percent if the uncorrelated error on the efficiency is less
than 1%. The detailed analysis of the shape of the recoil
spectrum in a cryogenic detector, such as the one we have
suggested here, has not previously been considered. More
detailed simulations of realistic experimental setups are
therefore required for definitive feasibility studies.
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