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We study dissipation and relaxation processes within the time-dependent Hartree-Fock approach
using the Wigner distribution function. On the technical side we present a geometrically unrestricted
framework which allows us to calculate the full six-dimensional Wigner distribution function. With
the removal of geometrical constraints, we are now able to extend our previous phase-space anal-
ysis of heavy-ion collisions in the reaction plane to unrestricted mean-field simulations of nuclear
matter on a three-dimensional Cartesian lattice. From the physical point of view we provide a
quantitative analysis on the stopping power in TDHF. This is linked to the effect of transparency.
For the medium-heavy 40Ca+40Ca system we examine the impact of different parametrizations of
the Skyrme force, energy-dependence, and the significance of extra time-odd terms in the Skyrme
functional.

PACS numbers: 21.60.-n,21.60.Jz

I. INTRODUCTION

Time-dependent Hartree-Fock (TDHF) theory pro-
vides a fully self-consistent mean-field approach to nu-
clear dynamics. First employed in the late 1970’s [1–4]
the applicability of TDHF was constrained by the lim-
ited computational power. Therefore, early applications
treated the problem in only one spatial dimension, uti-
lizing a very simplified parametrization of the nuclear
interaction. Due to the increase in computational power,
state-of-the-art TDHF calculations are now feasible in
three-dimensional coordinate space, without any symme-
try restrictions and using the full Skyrme interaction [5–
10].

In this work the Wigner distribution function [11] is
calculated as an analysis tool to probe the phase space be-
havior in TDHF evolution of nuclear dynamics. In com-
parison to previous work [12], where the Wigner analysis
was performed in one and two dimensions, we are now
able to carry out both the TDHF simulation and the
phase-space analysis in three dimensions. Transforma-
tion from coordinate-space representation to phase-space
representation, i.e. calculating the Wigner distribution
from the density matrix, still remains a computation-
ally challenging problem. Here, we present a fully three-
dimensional analysis which allows the study of relaxation
processes simultaneously in all directions in k-space. An
early one-dimensional study of the Wigner function for
TDHF can be found in [13].

The paper is outlined as follows: In Sec. II we intro-
duce the Wigner distribution function and discuss the
numerical framework used in this work. We then intro-
duce the principal observables summarizing the local or
global momentum-space properties of the Wigner func-
tion. First the quadrupole operator in momentum space
which gives rise to the usual deformation parameters β
and γ to probe relaxation processes in dynamical calcu-
lations. In addition, we define an estimate for the occu-

pied phase-space volume to obtain a relation between the
fragment separation in momentum and coordinate space.

Sec. III provides a detailed discussion of the central
40Ca+40Ca collision, paying particular attention to the
effect of transparency. We discuss the impact of different
Skyrme parametrizations on the relaxation behavior, as
well as the dependence on the center-of-mass energy for a
fixed Skyrme interaction. We also examine the influence
of extra time-odd terms in the Skyrme functional.

II. OUTLINE OF FORMALISM

A. Solution of the TDHF equations

The TDHF equations are solved on a three-
dimensional Cartesian lattice with a typical mesh spac-
ing of 1 fm. The initial setup of a dynamic calculation
needs a static Hartree-Fock run, whereby the station-
ary ground states of the two fragments are computed
with the damped-gradient iteration algorithm [14, 15].
The TDHF runs are initialized with energies above the
Coulomb barrier at some large but finite separation. The
two ions are boosted with velocities obtained by assum-
ing that the two nuclei arrive at this initial separation
on a Coulomb trajectory. The time propagation is man-
aged by utilizing a Taylor-series expansion of the time-
evolution operator [16] up to sixth order with a time step
of t = 0.2 fm/c. The spatial derivatives are calculated us-
ing the fast Fourier transforms (FFT).

B. Computing the Wigner function

The Wigner distribution function is obtained by a par-
tial Fourier transform of the density matrix ρ(r−s

2 , r+
s
2 , t),

with respect to the relative coordinate s = r− r′



2

f
(3)
W (r,k, t) =

∫
d3s

(2π)3
e−ik·sρ(r− s

2
, r+

s

2
, t) , (1)

ρ(r, r′, t) =
∑
l

Ψ†l (r, t)Ψl(r
′, t) . (2)

Because fW is not positive definite, it is misleading to
consider the Wigner function as a phase-space probability
distribution. We will refer to the appearance of negative
values for fW in Sec. III.

Evaluating the Wigner function in six-dimensional
phase space is still a computational challenge and only
possible employing full Open MP parallelization and ex-
tensive use of FFT’s. The determing factor is the grid
size, which results in

N2
x log (Nx) ? N2

y log (Ny) ? N2
z log (Nz) (3)

steps to provide the Wigner transform in full space, where
Nx, Ny, Nz are the grid points in each direction. Stor-
ing the Wigner function reduced to the reaction plane,

i.e. f
(3)
W (x, y = 0, z,k) at one time step will consume

∼ 140 Mb of disk space for the applications presented in
Sec. III. Going to larger grid sizes, needed for heavier sys-
tems, and/or storing the full three-dimensional Wigner
function will clearly result in entering the Gb regime.

C. Observables

In this section we discuss some of the observables used
in our analysis. In order to avoid any misunderstand-
ings we will label all observables evaluated in momentum
space with a subscript k, and all observables in coordi-
nate space with a subscript r.

1. Quadrupole in momentum space

As an observable to probe relaxation in phase-space
quantitatively, we evaluate the quadrupole operator in
momentum space. The local deviation of the momentum
distribution from a spherical shape is a direct measure
for equilibration. The local quadrupole tensor in k-space
is given by

Qij
k (r, t) =

∫
d3k

[
3〈ki(r, t)〉〈kj(r, t)〉 − 〈k2(r, t)〉δij

]
,

(4)
using the m-th moment from the local momentum distri-
bution

〈k(m)(r, t)〉 =

∫
d3k (k− 〈k(r, t)〉)mf (3)W (r,k, t)∫

d3k f
(3)
W (r,k, t)

, (5)

with 〈k(r, t)〉 denoting the average local flow

〈k(r, t)〉 =

∫
d3k k f

(3)
W (r,k, t)∫

d3k f
(3)
W (r,k, t)

. (6)

The spherical quadrupole moments Q20
k (r, t) and

Q22
k (r, t) are computed by diagonalization of Qij

k (r, t)

Q20
k (r, t) =

√
5

16π
λ3 (7)

Q22
k (r, t) =

√
5

96π
(λ2 − λ1) (8)

with λ3 > λ2 > λ1 labeling the eigenvalues of Qij
k (r, t).

Switching to polar notation the observables

βk(r, t) =
√
β2
20(r, t) + 2β2

22(r, t) (9)

γk(r, t) = | arctan

√
2β22(r, t)

β20(r, t)

180◦

π
| , (10)

are obtained via the dimensionless quantities

β20
k (r, t) =

4πQ20

5r2kρ(r, t)
(11)

β22
k (r, t) =

4πQ22

5r2kρ(r, t)
, (12)

where

rk(r, t) =
√
〈k(r, t)〉2/ρ(r, t) , (13)

accounts for the local rms-radius in k-space. The norm
is defined such that

ρ(r, t) =

∫
d3k f

(3)
W (r,k, t) . (14)

In the presented formalism it is straightforward to de-
fine global observables. The global quadrupole tensor is
calculated by spatial integration

Qij
k (t) =

∫
d3r ρ(r, t)Qij

k (r, t) . (15)

Applying the same diagonalization as in the local case (7)
we end up with a global definition for β20

k (t) and β22
k (t).

For the following results we exclusively use the global
definition since it is more compact and allows the simul-
taneous visualization of multiple time-dependent observ-
ables.

2. Quadrupole in coordinate space

To illustrate the global development of a reaction, we
will also use the expectation value Q20

r ≡ 〈Q̂20
r 〉 of the

quadrupole operator in coordinate space.

3. Occupied phase space volume

To give a rough measure for the phase-space volume
occupied by the fragments during a heavy-ion collision
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we assume a spherical shape of the local momentum dis-
tribution. Adding up the k-spheres

Vk(r, t) =
4π

3
〈k2(r, t)〉3/2 , (16)

leads to the total occupied phase-space volume

Vk(t) =

∫
d3r Vk(r, t) . (17)

III. RESULTS AND DISCUSSION

It is the aim of this work to provide a quantitative
analysis of the magnitude of relaxation processes occur-
ring in TDHF. Therefore we will vary a single reaction
parameter, while all the other parameters are fixed. The
40Ca+40Ca-system provides a suitable test case. This
particular choice is motivated by Ref. [17] where the ap-
plicability of TDHF was demonstrated up to very high
energies. All calculations in this section were done for
central collisions (impact parameter b = 0). The numer-
ical grid was set up with 36× 242 grid points.

A. Variation of the Skyrme force

In the first set of calculations we vary the Skyrme
parametrization. Figure 1 shows the results of a central
40Ca+40Ca collision with the Skyrme parametrizations
SLy4, SLy6 [18], SkMs [19], SkI3, and SkI4 [20]. While
SkMs was chosen as an example for an outdated interac-
tion, the SLy(X) set of forces was originally developed to
study isotopic trends in neutron rich nuclei and neutron
matter with applications in astrophysics. The SkI(X)
forces take the freedom of an isovector spin-orbit force
into account. This results in an improved description of
isotopic shifts of r.m.s. radii in neutron-rich Pb isotopes.

The global development of the reaction is visualized
in subplot (d). The time-dependent expectation value
Q20

r (t) shows the five trajectories initially in good agree-
ment but finally fanning out. A similar splitting behavior
depending on the employed Skyrme parametrization was
already found in [21]. While the two Sk(X)-forces show
a full separation of the two fragments, there is a slight
remaining contact between the fragments for the case of
SLy6, which will result in complete separation in a longer
calculation. However the trajectories for SLy4 and SkMs
show a merged system in the final state, which was found
to persist in long-time simulations.

We now consider the relationship between the observed
characteristics in coordinate space with the dynamics in
phase space. Subplot (a) shows the βk-value, measur-
ing the global deviation of the momentum distribution
from a sphere. The initial βk-peak is strongly damped
for all five Skyrme-forces. While the time development
for all parametrizations remain in phase up to the second
peak, later it starts to vary and continue with damped
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FIG. 1. Global observables βk(t) (a), γk(t) (b), Vk(t) (c),
and Q20

r (t) (d) are shown for a central 40Ca+40Ca collision
with a center-of-mass energy Ec.m. = 160 MeV. Each curve
corresponds to a different Skyrme force as indicated in the
legend.
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TABLE I. Effective masses of Skyrme parametrizations used
in this work are listed in connection with the maximal βk-
values from the plots (a, e) in Fig. 1.

Skyrme force m∗/m βmax
k

SkM 0.79 0.0116
SLy4 0.70 0.0111
SLy6 0.69 0.0106
SkI4 0.65 0.0102
SkI3 0.57 0.0095

oscillations. For a better visualization the first peak is
magnified in subplot (e). The taller the βk-peak the
longer the fragments will stick together in coordinate
space. The effect appears to depend on the effective mass
m∗/m. Smaller effective masses give rise to a smaller βk-
deformation. Table I summarizes the m∗/m-values as-
sociated with the maximal deformations βmax

k for all the
Skyrme forces used in this work. It seems logical that the
m∗/m-dependence is visible in the phase-space analysis
since it is directly linked to the nucleons’ kinetic motion.
It is harder to randomize the directed motion of a nu-
cleon with a higher effective mass than it is for a nucleon
with a smaller m∗/m-dependence.

Subplot (b) shows the γk-value which indicates,
whether a deformation is prolate, oblate, or triaxial [22].
For the present scenario of a central collision the γk-value
jumps between prolate and oblate configurations indicat-
ing that the momentum distribution oscillates between
being aligned primarily in the beam direction or trans-
verse to it. For the sake of completeness we additionally
present the occupied phase-space volume (c) which will
prove more useful for the next reaction parameter to be
discussed: the center-of-mass energy.

B. Variation with the center-of-mass energy

As a second reaction parameter the center-of-mass en-
ergy, Ec.m., is varied. Results are presented for ener-
gies ranging from Ec.m. = 2 MeV/nucleon up to Ec.m. =
3 MeV/nucleon. The Skyrme interaction now is fixed to
be SkI4. For the case of the lowest (highest) energy
Video 1 (Video 2) provides a video visualizing the re-
action in phase space. The calculation done with the
lowest energy Ec.m. = 160 MeV shows two fully sepa-
rated fragments in the exit channel. In contrast, the case
with the highest energy (as well as the one at an inter-
mediate energy) results in a merged system. The global
observables are plotted in Fig. 2. It may not be obvious
at first why the fragments should split for lower ener-
gies and merge for higher ones. But the estimate for the
occupied phase-space volume Vk(t) presented in subplot
(c) indicates that V increases with energy. Therefore the
fragments’ average distance in phase space is larger, while
in compensation they can come closer to each other in co-
ordinate space. However, this behavior is also dependent
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Video 1. (color online) Two-dimensional z-kz-slice from

the full six-dimensional Wigner distribution f
(3)
W (r,k) for a

central 40Ca+40Ca collision with a center-of-mass energy of
Ec.m. = 160 MeV.
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Video 2. (color online) Same as Video 2 with a center-of-
mass energy of Ec.m. = 240 MeV.

on the particular Skyrme force used and the presence of
time-odd terms, which is discussed in the next subsec-
tion.

C. Influence of time-odd terms

Skyrme energy-density functionals are calibrated to
ground state properties of even-even nuclei [18–20]. This
leaves the choice of the time-odd terms in the functional
(current j2, spin-density s2, spin kinetic energy density

T, and the spin-current pseudotensor J
↔

) largely unspec-

http://th.physik.uni-frankfurt.de/~loebl/vid1.mpeg
http://th.physik.uni-frankfurt.de/~loebl/vid2.mpeg
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FIG. 2. Global observables βk(t) (a), γk(t) (b), Vk(t) (c),
and Q20

r (t) (d) are shown for a central 40Ca+40Ca collision
with fixed Skyrme interaction SkI4. Each curve corresponds
to a different center-of-mass energy.

ified [24]. Galilean invariance requires at least some of
these terms to be present depending on the presence of
the associated time-even term, e.g. j2 for the (ρτ − j2)
combination. In our calculations we always include the
time-odd part of the spin-orbit interaction. In order to in-
vestigate the effects of the remaining time-odd terms, we
have compared different choices by using a single Skyrme
parametrization and the same test case. We choose the
force SLy4 and start with the minimum number of time-
odd terms which is needed to ensure Galilean invari-
ance [25]. In the next stage, we include also the spin-
density terms proportional to s2. Finally, we also add the
combination which includes the tensor spin-current term

(s ·T−J
↔

2). A comprehensive notation of the full Skyrme
functional can be found, e.g. in Ref. [26]. As shown in
Fig. 3, at least for the quantities βk and Q20

r , varying
these time-odd terms has a very little effect in the ini-
tial contact phase and the dynamical behavior becomes
somewhat different only in later stages of the collision.
On the other hand, small differences near the threshold
energy (the highest collision energy for a head-on colli-
sion that results in a composite system. At higher en-
ergies the nuclei go through each other) can have large
long-term effects on the outcome of the collision. For
example a small difference in dissipation may be enough
to influence the decision between re-seperation or form-
ing a composite system. We have also checked a broader
range of collision energies from the fusion regime up to
deep inelastic collisions. The interesting quantity is the
loss of fragment kinetic energy between the entrance and
exit channels. It was found that the spin terms contribute
small changes to this loss which can go in both directions,
less dissipation near fusion threshold and more dissipa-
tion above. Subplot (b) of Fig. 3 shows the effects near
the Coulomb barrier where spin terms reduce dissipation.

IV. SUMMARY

We have presented a geometrically unrestricted frame-
work to study nuclear dynamics within TDHF in the full
six-dimensional phase space. The impact of different re-
action parameters on the outcome of a heavy-ion collision
was studied in detail for the 40Ca+40Ca system. We find
that the occurrence of transparency is clearly reflected in
the global asymmetry of the Wigner momentum distri-
bution. The surprising result that in some cases the sys-
tem merges at higher energies and shows transparency
at lower ones can be related to the interplay between
momentum- and configuration-space volumes which is a
reflection of the Pauli principle. It is also interesting that
the two distributions in phase-space never truly com-
bine to form a single distribution. This clearly indicates
that two-body collisions will be necessary to achieve true
equilibrium as the reaction proceeds to longer contact
times. The detailed degree of relaxation found depends
on energy and also the properties of the Skyrme force,
where especially the effective mass seems to be impor-
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FIG. 3. Global observables βk(t) (a), and Q20
r (t) (d) are

shown for a central 40Ca+40Ca collision with fixed Skyrme
interaction SLy4.

tant. The presence of additional time-odd terms in the
Skyrme functional appears to have a complex impact on
the outcome of a collision as well. In this paper only one
non-central collision was studied. A systematic investiga-
tion of impact parameter and energy dependence (fusion,
deep-inelastic reactions) as well as even heavier systems
would be highly interesting but is beyond computational
feasibility at the moment.
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