
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Heine-Stieltjes correspondence and the polynomial
approach to the standard pairing problem

Xin Guan, Kristina D. Launey, Mingxia Xie, Lina Bao, Feng Pan, and Jerry P. Draayer
Phys. Rev. C 86, 024313 — Published 28 August 2012

DOI: 10.1103/PhysRevC.86.024313

http://dx.doi.org/10.1103/PhysRevC.86.024313


CT10309

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

The Heine-Stieltjes correspondence and the

polynomial approach to the standard pairing problem

Xin Guan,1 Kristina D. Launey,2 Mingxia Xie,1 Lina Bao,1 Feng Pan,1, 2 and Jerry P. Draayer2

1Department of Physics, Liaoning Normal University, Dalian 116029, China
2Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001, USA

(Dated: August 8, 2012)

A new approach for solving the Bethe ansatz (Gaudin-Richardson) equations of the standard
pairing problem is established based on the Heine-Stieltjes correspondence. For k pairs of valence
nucleons on n different single-particle levels, it is found that solutions of the Bethe ansatz equations
can be obtained from one (k+1)× (k+1) and one (n− 1)× (k+1) matrices, which are associated
with the extended Heine-Stieltjes and Van Vleck polynomials, respectively. Since the coefficients in
these polynomials are free from divergence with variations in contrast to the original Bethe ansatz
equations, the approach provides an efficient and systematic way to solve the problem, which by
extension, can also be used to solve a large class of Gaudin-type quantum many-body problems,
including an efficient angular momentum projection method for multi-particle systems.

PACS numbers: 21.60.Cs, 21.60.Fw, 03.65.Fd, 71.10.Li, 74.20.Fg, 02.60.Cb

I. INTRODUCTION

It is well known that the pairing force, similar to that
in the Bardeen-Cooper-Schrieffer (BCS) theory of super-
conductors [1], is a key residual interaction of the nuclear
shell model that is required to reproduce ground state
and low-energy spectroscopic features of nuclei, in partic-
ular, binding energies, excitation spectra, low-lying col-
lective states, odd-even staggering effects, single-particle
occupancies, electromagnetic transition rates, transfer re-
action amplitudes, level densities, moments of inertia,
and so on [2–4]. Unlike electrons in solids, drawbacks
of the application of BCS theory and its extensions to
nuclei can be pronounced due to the fact that the num-
ber of valence nucleons under the influence of the pairing
force is too few to be treated by such particle-number
nonconservation (quasi-particle) approximations [5, 6].

An exact solution of the standard pairing problem
was first obtained by Richardson and is now referred to
as the Richardson-Gaudin method [7, 8]. Recently, ex-
tensions of the Richardson-Gaudin theory have also been
made by using the Bethe ansatz methodology [9–13]. Its
advantage lies in the fact that the huge matrix in the
Fock subspace is reduced to a set of equations, called
Bethe ansatz equations (BAEs), such that the number
of these equations equals exactly the number of pairs of
the valence particles involved. However, less attention
has been paid to the Richardson solutions of the pair-
ing problem in realistic applications mainly because the
non-linear BAEs involved are very difficult to be solved
numerically, especially for large-size systems. While con-
siderable efforts in designing algorithms to obtain solu-
tions have revealed promising results [14–19], including
an advantageous polynomial technique for a shell of two
levels [12], an efficient procedure for solving the general
problem obviously seems still unclear. Thus, a simple
and clear approach to the problem is in demand.

In the present study, we suggest a new approach for

solving the standard pairing problem. In particular, we
derive polynomial solutions of the second order Fuchsian
equation. This, in turn, transforms the problem to one
that involves the handling of only two matrix equations
and hence, makes exact pairing solutions feasible even
when more energy levels or heavy nuclei are considered.

II. POLYNOMIAL SOLUTIONS TO THE

EXACT PAIRING PROBLEM

The Hamiltonian of the standard pairing model is
given by

Ĥ =
∑

j

ǫj n̂j −G
∑

jj′

S+
j S−

j′ , (1)

where the sums run over given j-levels of total number
n, G > 0 is the overall pairing strength, ǫj are nonde-

generate single-particle energies, n̂j =
∑

m a†jmajm is the
number operator for valence particles in the j-th level,

and S+
j =

∑

m>0(−)j−ma†jma†j −m (S−
j = (S+

j )†) are

pair creation (annihilation) operators. The formalism is
first presented for an even number of particles that are
all paired (seniority-zero case), while the generalization
to an additional odd unpaired particle is discussed in re-
lation to the pairing eigen-energies.

According to the Richardson-Gaudin method, k-pair
eigenstates of (1) can be written as

|k;x〉 = S+(x1)S
+(x2) · · ·S

+(xk)|0〉, (2)

where |0〉 is the pairing vacuum state satisfying S−
j |0〉 = 0

for all j, and S+(xi) =
∑

j S
+
j /(xi−2ǫj), in which xi (i =

1, 2, · · · , k) are spectral parameters to be determined. It
can then be verified by using the corresponding eigen-
equation that (2) is the eigenstates of (1) only when the
spectral parameters xi satisfy the following set of BAEs:
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1− 2G
∑

j

ρj
xi − 2ǫj

− 2G

k
∑

i′=1
( 6=i)

1

xi − xi′
= 0, (3)

where the first sum runs over all j-levels and ρj = −Ωj/2

with Ωj = j+1/2. For each x(ξ) solution, the correspond-

ing eigen-energy is given by E
(ξ)
k =

∑k
i=1 x

(ξ)
i .

As shown by Heine and Stieltjes, there is a one-
to-one correspondence between every set of the BAEs
and a set of orthogonal polynomials, called the extended
Heine-Stieltjes polynomials. Roots of these BAEs are
zeros of the polynomials, which can be interpreted as
stable equilibrium positions in the two dimensional com-
plex plane for a set of free unit charges in an external
electrostatic field [20]. This link between Richardson’s
BCS pairing model for nuclei and the corresponding elec-
trostatic problem was established in [21] based on an
earlier unpublished preprint of Gaudin, which was then
made clearer in [22]. A much more general approach to
the pairing model was shown in [23] and [24]. Accord-
ing to Heine-Stieltjes correspondence, for nonzero pairing
strength G, the polynomials y(x) with zeros correspond-
ing to the solutions of Eq. (3) should satisfy the following
second-order Fuchsian equation:

A(x)y′′(x) +B(x)y′(x)− V (x)y(x) = 0. (4)

Here, A(x) =
∏

j(x − 2ǫj) is a polynomial of degree n,

the polynomial B(x) is given as

B(x)/A(x) =
∑

j

2ρj
x− 2ǫj

−
1

G
, (5)

where the sum runs over all j-levels and V (x) are called
Van Vleck polynomials [20] of degree n − 1, which are
determined according to Eq. (4). In the original elec-
trostatic analogue considered by Heine and Stieltjes [20],
the parameters {ρj} that specify fixed charges should all
be positive for no external electrostatic field, 1/G → 0.
Therefore, the polynomials y(x) with negative {ρj} and
1/G 6= 0 are called extended Heine-Stieltjes polynomials.
They approach the original Heine-Stieltjes polynomials
with negative {ρj} in the G → ∞ limit.

In search for polynomial solutions of (4), we write

y(x) =
k

∑

j=0

ajx
j , V (x) =

n−1
∑

j=0

bjx
j , (6)

where {aj} and {bj} are the expansion coefficients
to be determined. Substitution of (6) into Eq. (4)
yields two matrix equations. Namely, the condition
that the coefficients in front of xi (i = 0, . . . , k) must
be zero yields a (k + 1) × (k + 1) matrix F with
Fv = b0v, where the eigenvector v of F is simply given
by the expansion coefficients v = {a0, · · · , ak}. In
addition, the condition that the coefficients in front of

xi (i = k+ 1, · · · , n+ k− 1) must be zero yields another
(n−1)× (k+1) upper-triangular matrix P with Pv = 0,
which provides a unique solution for bi (i = 1, · · · , n− 1)
in terms of {aj}. Entries of the two matrices are all
linear in the coefficients {b1, b2, · · · , bn−1}. Matrices F

and P can be easily constructed, for which a simple
MATHEMATICA code is available [25].

A. Eigenvalues of the standard pairing model

Hamiltonian: pairing energies

Let the single-particle energies satisfy the interlacing
condition ǫ1 < · · · < ǫn. Real parts of zeros of y(x) satisfy
the interlacing condition, −∞ < Re(x1) < Re(x2) <
· · · < Re(xk) < +∞, whereRe(xi) lies in one of the n+1
intervals (−∞, ǫ1), (ǫ1, ǫ2), · · · , (ǫn−1, ǫn), and (ǫn,+∞).
It should be noted that many Re(xi) of adjacent zeros
may lie within the same interval. When G → ∞, there
will be only n intervals with (−∞, ǫ1) being removed.

The number of different such allowed configurations
gives the possible solutions of y(x) and the corresponding
V (x). The number of solutions of y(x), excluding those
with sum of zeros of y(x) complex, should equal to the
number of levels produced by the standard pairing model,
which is given by

η(n, k) =

−2ρ1
∑

p1=0

· · ·

−2ρn
∑

pn=0

δq,k , (7)

where q =
∑n

i=1 pi. When ρi = −1/2 for any i, which
corresponds to the case of the Nilsson mean-field plus
pairing model, η(n, k) =

(

n
k

)

.
Furthermore, if we set ak = 1 in y(x), the coeffi-

cient ak−1 becomes equal to the negative sum of the y(x)
zeros. Hence, for each set of solutions, ak−1 yields the
corresponding energy,

ak−1 = −
k
∑

i=1

xi = −Ek. (8)

Therefore, the solution corresponding to the largest real
ak−1 is that for the ground state of the system; the one
corresponding to the next largest real ak−1 is that of the
first excited state; and so on. In the standard pairing
model, the solution with the same ak−1 is unique ex-
cept complex conjugation and permutations within {xi}.
This is helpful for simplifying the calculation process, es-
pecially when only a few low-lying states are needed.

For odd-A systems, one of the particles in a system
does not form a pair and blocks the level it occupies.
When the j′-th level is blocked, its space dimensionality
becomes ρj′ = −(Ωj′ − 1)/2. This together with k =
A−1
2 for A total number of particles enter into Eq.(3),

and hence, into Eq. (4). Pairing solutions, x(ξ), ξ =
1, . . . , η(n, k), are thus obtained for the A−1 system with
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the j′-th level blocked. The corresponding energy of the

ground state is thereby given as E
(1)
k =

∑k
i=1 x

(1)
i + ǫj′ .

In contrast to the original BAEs of Eq. (3), the
coefficients {aj} and {bj} in F, P, and v are free from
divergence with variations, and, hence, one can use
any standard recursive or iteration method to solve the
problem with arbitrary initial values of these coefficients.
Because solving the eigen-equation Fv = b0v, in which
F is a (k + 1) × (k + 1) matrix, is the only CPU time-
consuming operation involved, the CPU time needed
in the process should always be reasonable for most
realistic applications in nuclear physics. For example,
on a 2 × 2.8 GHz CPU / 4 GB RAM desktop computer
with Mac OS X, a single solution for n = 10 levels can
be calculated by using MATHEMATICA v.8.0.4 in 0.32
seconds for k = 5, in 0.59 seconds for k = 10, and in
13.39 seconds for k = 40, which scales roughly as k2.
Similarly, a reasonable trend is observed with increasing
number of levels, namely, for five pairs, the execution
time is 1.24 seconds for n = 15 and 3.07 seconds for
n = 20 levels.

B. Solutions and pairing energies for 110Sn

To demonstrate the new approach, we consider a
simple example of k = 5 pairs in the fifth harmonic oscil-
lator (HO) shell, 1g7/2, 2d5/2, 2d3/2, 3s1/2, and 1h11/2,
which is relevant, for example, for applications to the tin
isotopes, in this case 110Sn, as well as to 154Sm if the
sixth shell is considered [18]. While these cases are dif-
ficult to be solved by employing directly the nonlinear
BAEs (3), the η(5, 5) = 71 solutions y(x) for 110Sn are
easily obtained in the present polynomial approach. We
set single-particle energies to be of an equal spacing with
ǫi = i, and the overall pairing strength G = 0.5. First
five sets of zeros of the corresponding polynomials y(x)
and ak−1 coefficients are listed in Table I.

We note that the use of B(x) in Eq. (4) [and not
B(x)/A(x) of (5)] removes the singularities of the origi-
nal BAEs (3) and, hence, results such as xi = 2ǫj, may
appear among the solutions of Eq. (4). Additionally, in
low-precision calculations we made for 110Sn, we found
some unphysical solutions with complex ak−1 that had
to be discarded. This also resulted in a total number of
solutions greater than η(n, k) and therefore it is recom-
mended that calculations explicitly include a check for
singularities and make use of high precision. As very lit-
tle is known about the polynomials with negative charges,
further analytical studies are also essential.

C. Angular momentum projection method

As shown in our previous study [26], a new angular
momentum projection method for multi-particle systems
can be established based on the BAEs similar to (3). In

TABLE I: First five sets of solutions to the extended Heine-
Stieltjes polynomials Eq. (4) and the corresponding eigen-
energies (in arbitrary units) of the standard pairing model
Hamiltonian (1) in the case of k = 5 pairs in the fifth major
shell with n = 5 single-particle levels, 1g7/2, 2d5/2, 2d3/2,
3s1/2, and 1h11/2. The single-particle energies used are ǫi = i,
and the overall pairing strength G = 0.5.

Zeros of the polynomials
∑

5

i=1
xi

x1 = −1.4993, x2 = −1.1412 − 2.1396ı, −3.6158

x3 = −1.1412 + 2.1396ı, x4 = 0.0829 − 4.5018ı,

x5 = 0.0829 + 4.5018ı

x1 = −0.5078 − 1.0411ı, x2 = −0.5078 + 1.0411ı, 3.0299

x3 = 0.5469 − 3.3066ı, x4 = 0.5469 + 3.3066ı,

x5 = 2.9517

x1 = −0.9234 − 1.0718ı, x2 = −0.9234 + 1.0718ı, 3.5444

x3 = 0.0573 − 3.3613ı, x4 = 0.0573 + 3.3613ı,

x5 = 5.2767

x1 = −1.1244 − 1.0987ı, x2 = −1.1244 + 1.0987ı, 4.8379

x3 = −0.1739 − 3.4422ı, x4 = −0.1739 + 3.4422ı,

x5 = 7.4346

x1 = −1.2032 − 1.1109ı, x2 = −1.2032 + 1.1109ı, 5.77020

x3 = −0.2619 − 3.4804ı, x4 = −0.2619 + 3.4804ı,

x5 = 8.7004

fact, for n single-particle levels with angular momentum
ji (i = 1, 2, · · · , n), the multi-particle state with total
angular momentum J =

∑

i ji − k can be written as

|η, J, M = J〉 = J−(x1)J
−(x2) · · ·J

−(xk)|h.w.〉, (9)

where η is a quantum number needed to resolve the
multi-occurrence of J , |h.w.〉 is the highest weight single-
particle product state with |j1, m1 = j1, · · · , jn, mn =
jn〉, and

J−(x) =

n
∑

i=1

1

x− 2ǫi
J−
i , (10)

where J−
i is the angular momentum lowering operator

acting only on the i-th single-particle state |ji, mi〉, and
ǫi (i = 1, 2, · · · , n) can be any set of unequal num-
bers [26]. The condition that J+|η, J, M = J〉 = 0,
where J+ is the total angular momentum raising opera-
tor, yields the same BAEs of Eq. (3) with the replace-
ment of ρi by −ji in the G → ∞ limit. Therefore, once
the solutions of (3) in the G → ∞ limit are obtained,
the resultant sets of {xi} determine multi-particle states
with a good angular momentum J . The number of these
sets is exactly equal to the number of occurrence of J for
the given system. In this case, the polynomials y(x) that
satisfy Eq. (4) become the original Heine-Stieltjes poly-
nomials. This angular momentum projection is certainly
much simpler than the projection operator technique [3]
and that based on the permutation group method [27].
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III. PAIRING GAPS FOR MEDIUM-MASS

NUCLEI

The empirical like-particle pairing gap can be esti-
mated by the third derivative of binding energies, BE,

with respect to the number of valence like-particles [28],
which for neutrons is,

∆nn ≡
1

4
(BE(Z,N − 2)− 3BE(Z,N − 1) + 3BE(Z,N)−BE(Z,N + 1)). (11)

This isolates the like-particle pairing interaction of the
N th and (N − 1)st neutrons for an even-even (Z,N − 2)-
core and removes the average contribution of additional
one- and two-body interactions (equivalently, the N and
N2 energy dependence).

To determine neutron pairing energies, the filter (11)
is applied to the lowest pairing energies for Ca, Ni, and
Sm isotopes, using two pairing approaches, namely, the
polynomial approach presented here, referred as “HS
Pairing”, and the BCS scheme (“BCS Pairing”) [1, 5].
While other terms in the nuclear Hamiltonian may be
important for reproducing binding energies, such as the
averagemean field (e.g., −5.86N for Ca isotopes, −8.57N
for Ni isotopes, and −5.80N for Sm isotopes) as well as
the average two-body interaction ∼ N(N − 1)/2, these
contributions are filtered out by (11) and hence, as ex-
pected, are irrelevant for pairing gap estimates.

To obtain BCS solutions, we solve the two BCS non-
linear equations [1, 5] for a Lagrange multiplier λ and
a “gap” parameter ∆, using the (“non-shifted”) single-
particle energies that enter in (1). The pairing ener-

gies are then calculated as, E = 2
∑

j ǫjv
2
jΩj − ∆2

G −

G
∑

j Ωjv
4
j with probability amplitudes, v2j = 1

2{1 −

(ǫj − λ)[(ǫj − λ)2 + ∆2]−
1

2 }. For odd-A systems, the
BCS equations are solved (and hence E obtained) for
k = A−1

2 pairs and with Ωj′ − 1 for the j′-level blocked
by the odd particle. The lowest energy of an odd-A
system is approximated by the quasi-particle excitation,
E + [(ǫj′ − λ)2 +∆2]

1

2 .

For all applications, we employ the particle-hole for-
malism, which treats pairs of holes when more than half
of the model space is occupied. In this case, the single-
particle energies used in (1) are replaced by −ǫj.

To compare both pairing theories and
how they agree with the experiment [29], we
use the root-mean-square deviation measure,

σ =
√

∑N
µ=1

(

thµ − expµ
)2

/N , where thµ are theoreti-

cal predictions, expµ are the corresponding experimental
values, and N is the total number of nuclei considered.

A. Ca isotopes

Calculations for Ca isotopes are performed for
a 40Ca core and a model space of 5 j-levels,
f5/2, 7/2, p1/2, 3/2, g9/2. The single-particle energies
(s.p.e.) used in (1) are,

ǫ7/2 = −2.50 MeV

ǫ3/2 = −0.56 MeV

ǫ5/2 = 0.08 MeV

ǫ1/2 = 1.11 MeV

ǫ9/2 = 1.95 MeV. (12)

These estimates are obtained from the 40Ca and 41Ca
binding energies [29] and the 41Ca energy spectrum[30].
The average single-particle energy (ǫavg = −5.86 MeV)
is then subtracted to yield the set in (12). For the odd-
A systems, the levels blocked by the odd particle are
obtained from the experiment as follows: f7/2 (43−47Ca),

p3/2 (49−53Ca), f5/2 (55−57Ca), and p1/2 (59Ca).

TABLE II: Root-mean-square deviations σ (in MeV) of the
theoretical pairing gaps as compared to the experimental val-
ues [29] for the 42−49Ca, 58−77Ni, and 146−153Sm isotopes.

Isotopes σ (MeV)

“HS Pairing” “BCS Pairing”
42−49Ca 0.155 0.210
58−77Ni 0.079 0.137

146−153Sm 0.364

For pairing strength G = 16/A MeV, pairing gaps
(11) obtained using the present approach are found to
reproduce the experimental data remarkably well (Fig.
1, left and Table II). This holds even for a small number
of pairs and is a remarkable result given the simplicity
of the Hamiltonian and the approximation for the single-
particle energies, which are assumed not to vary with
the particle number. The outcome also agrees with the
BCS scheme, which, however, if kept simple and without
invoking the number projection method yields wavefunc-
tions that do not preserve the number of particles.
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FIG. 1: (Color online) Pairing gaps in MeV as calculated in the present study (“HS pairing”) and using the BCS approach
(“BCS pairing”), and compared to experiment [29] for (a) Ca isotopes, 42Ca to 49Ca, using five j-levels, f5/2, 7/2, p1/2, 3/2, g9/2,

and G = 16/A MeV, and (b) Ni isotopes, 58Ni to 77Ni, using four j shells, f5/2, p1/2, 3/2, g9/2 and G = 23/A MeV.

B. Ni isotopes

Calculations for Ni isotopes are performed for
a 56Ni core and a model space of four j-levels,
f5/2, p1/2, 3/2, g9/2. The single-particle energies used
in (1) are,

ǫ3/2 = −1.68 MeV

ǫ5/2 = −0.91 MeV

ǫ1/2 = −0.57 MeV

ǫ9/2 = 1.33 MeV. (13)

They are obtained from the 56Ni and 57Ni binding ener-
gies [29] and the 57Ni energy spectrum [31]. The average
single-particle energy (ǫavg = −8.57 MeV) is subtracted
from the s.p.e.’s experimentally deduced to yield (13).
For odd-A systems, the levels blocked by the odd parti-
cle are obtained from the experiment as following, p3/2
(57−61Ni), p1/2 (63Ni), f5/2 (65Ni), p1/2 (67Ni), and g9/2
(69−77Ni). As there are no experimental values for 75Ni
and 77Ni, the lowest energy obtained by the theory is
used, which predicts the level g9/2 as the most probable
to be occupied by the odd particle in both cases.

We find that a paring strength of G = 23/A yields
a close reproduction of experiment. Even in the case of
complex systems like the isotopes of Ni, the pairing en-
ergies (11) calculated using the present approach closely
follow the experimental trend (Fig. 1, right) and yield
better results than the BCS scheme (Table II).

C. Solutions for heavy nuclei: Sm isotopes

Larger valence spaces that are necessary for good de-
scriptions of heavier systems are typically very difficult to

be solved directly by employing the original BAE’s. For
isotopes of Sm, we show that the exact pairing solutions
are made feasible using the present polynomial approach.

Calculations for Sm isotopes are performed for va-
lence neutrons in the sixth HO shell with a model space
of 6 j-levels, f5/2, 7/2, p1/2, 3/2, h9/2, i13/2. The single-
particle energies used for (1) are,

ǫ7/2 = −1.056 MeV

ǫ3/2 = −0.162 MeV

ǫ13/2 = 0.049 MeV

ǫ9/2 = 0.368 MeV

ǫ1/2 = 0.552 MeV

ǫ5/2 = 0.603 MeV. (14)

These estimates are obtained from the 144Sm and 145Sm
binding energies [29] and the 145Sm energy spectrum [32].
The average single-particle energy (ǫavg = −5.80 MeV)
is subtracted. For the odd-A systems, experimental data
indicates that the f7/2 levels are most likely to be blocked

by the odd particle for 145−149Sm. For 151−153Sm, the
lowest theoretical energy corresponds to the odd particle
occupying the f7/2 level.

Calculations for a large number of pairs are possible
when the polynomial approach is employed. We find that
using G = 24/AMeV yields a very close agreement of the
theoretical paring gaps with the experimental counter-
parts (Fig. 2, right and Table II). This example shows
that the polynomial approach can be straightforwardly
applied for heavy nuclear systems and large model spaces,
and hence, can provide exact pairing solutions in regions
where the BAE’s are impossible to handle.

In short, the comparison of the two pairing ap-
proaches reveals the superiority of the present “HS Pair-
ing” solutions as compared to the BCS ones, especially
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FIG. 2: (Color online) Pairing gaps in MeV as calculated in
the present study (“HS pairing”) and using the BCS approach
(“BCS pairing”), and compared to experiment [29] for Sm
isotopes, 146Sm to 153Sm, using six j levels in the pfhi shell
and G = 24/A MeV (right).

for a small number of particles. The polynomial approach
makes exact pairing solutions feasible for many pairs in
large model spaces.

IV. CONCLUSION

In summary, we have established a new approach for
solving the standard pairing problem based on a robust

mathematical foundation — the extended Heine-Stieltjes
polynomials and the corresponding Van Vleck polynomi-
als satisfying the polynomial solutions of the second or-
der Fuchsian equation. Thus, we reach the goal of the
Richardson-Gaudin theory via the Heine-Stieltjes corre-
spondence, which provides an exact solution to the pair-
ing problem by solving only two matrix equations. This
makes exact pairing solutions feasible even when more
energy levels or heavy nuclei are considered. The ap-
proach can easily be extended and applied to solve a large
class of Gaudin-type quantum many-body problems. A
new efficient angular momentum projection method for
multi-particle systems is thus proposed as a byproduct, of
which the application to either boson or fermion systems
will be studied elsewhere.
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